张量分析第一章

合集下载

第一章 张量分析初步

第一章 张量分析初步

eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行



i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3

a13 x3 a23 x3

b1 b2

a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,

a j ij ai ii ( ii不求和) ai

黄克智版张量分析第一章习题解析

黄克智版张量分析第一章习题解析

k az bz
a y bz a z by i a z bx a xbz j a xby a y bx k 0

a y bz a z b y 0 a z bx a x bz 0 a x b y a y bx 0
或 故
ax a y az c bx by bz
C i C j C k A B C B C A B C B C A B C D i D j D k C A B D B D B A D A D D A B C B C B A C A C i C A B D B D B A D A D D A B C B C B A C A C j C A B D B D B A D A D D A B C B C B A C A C k
a c mb i 2 j 3k m2i j 2k 1 2m i 2 m j 3 2m k
b a 2i j 2k 1 2m i 2 m j 3 2m k 21 2m 2 m 23 2m 2 9m 0
x y z x y z z y y z x x z z x x y z x y z x x z z x y y x x y z x x z z x y y x y x y z z y z x y y x y x y z z y z x y y x z x y z z y y z x x z z x y z z y y z x x z
证明: 参见:1.2.2.4 由协变基矢量求逆变基矢量 式(1.2.17)及式(1.2.25 )。
1.10 已知:以i,j,k 表示三维空间中笛卡坐标基矢量,

张量分析书籍附详尽易懂

张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。

最新张量分析第一章ppt课件

最新张量分析第一章ppt课件
132,321,213
0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.

张量分析提纲及部分习题答案

张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。

第一章张量分析基础知识

第一章张量分析基础知识

第⼀章张量分析基础知识晶体物理性能南京⼤学物理系由于近代科学技术的发展,单晶体⼈⼯培养技术的成熟,单晶体的各⽅⾯物理性能(如⼒、声、热、电、磁、光)以及它们之间相互作⽤的物理效应,在各尖端科学技术领域⾥,都得到了某些应⽤.特别是⽯英⼀类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电⼦技术中,⽐较早地在⼯业规模上进⾏⼤批⽣产和⼴泛应⽤.激光问世的四⼗多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应⽤中,已成单晶体应⽤中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之⼀,⽬的就是希望对晶体特别是光电技术中使⽤的晶体(包括基质晶体与⾮线性光学晶体)的有关物理性能及其应⽤⽅⾯的基本知识,有⼀个了解.对今后从事光电晶体的⽣长、检测和应⽤的⼯作,在分析问题、解决问题⽅⾯有所帮助,同时要在今后⼯作中不断从实践和理论两个⽅⾯扩⼤知识领域,有⼀个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个⽅⾯作深⼊全⾯的介绍,也将侧重于激光晶体有关的⼀些性能及其应⽤.鉴于以上考虑,《晶体物理性能》讲义将以离⼦晶体为主要对象,以光电技术上应⽤为线索组织内容,共分为⼋章.着重于从宏观⾓度结合微观机制介绍晶体基本物理性能以及各种交互作⽤过程的物理效应和它们在光电技术中的某些应⽤,包括弹性与弹性波(第⼆章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第⼋章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、⽅便地描述这些物理性能必须使⽤张量来表⽰.因此,在第⼀章,我们介绍了关于张量分析基础知识⽅⾯的内容.由于⽔平有限,实践经验缺乏,时间仓促,因⽽内容安排不妥、取舍不当、错误之处⼀定很多,希望同学们提出宝贵意见,批评指正.第⼀章张量的基础知识§1.1标量、⽮量和⼆阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5⼆阶张量的变换与张量的定义………………………………………………………§1.6张量的⾜符互换对称…………………………………………………………………§1.7张量的矩阵表⽰和矩阵的代数运算…………………………………………………§1.8⼆阶对称张量的⼏何表⽰和⼆阶张量的主轴………………………………………§1.9⼆阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第⼆章晶体的弹性与弹性波§2.1弹性性质与原⼦间⼒…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应⼒……………………………………………………………………………………§2.4推⼴的虎克定律、弹性系数…………………………………………………………§2.5⽴⽅晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因⼦的测量⽅法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3⾼频电场的介电极化(光的⾊散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离⼦晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的⼀般性质…………………………………………………………………§4.2常⽤铁电体的实验规律……………………………………………………………§4.3铁电体的相变热⼒学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电⽅程和机电耦合系数…………………………………………………………§4.7压电晶体的应⽤实例――⽯英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲⾯……………………………………………………………§5.4晶体表⾯上的折射…………………………………………………………………§5.5晶体偏光⼲涉及其应⽤……………………………………………………………第六章倍频与参量频率转换§6.1⾮线性极化…………………………………………………………………………§6.2⾮线性极化系数……………………………………………………………………§6.3⾮线性介质中电磁场耦合⽅程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7⾓度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放⼤…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐⽅法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13⾮线性材料的性能要求……………………………………………………………第七章电光效应及其应⽤§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的⼏个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第⼋章声光效应及其应⽤§8.1弹光效应……………………………………………………………………………§8.2声光交互作⽤产⽣的衍射现象……………………………………………………§8.3声光交互作⽤的理论………………………………………………………………§8.4声光效应在⼀些物理常数测量中的应⽤…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散⾓α的推导………………………………………………………E.双轴晶体中双折射⾯相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第⼀章张量分析基础知识以前学的课程中,有关⼒学、热学、电学、光学等的性质都是以各向同性介质来表述的或以⼀维问题来说明问题,这对于突出某些物理现象的微观的物理原因⽅⾯是必要的,但晶体物理性能是讲晶体中的⼒学、电学、光学、声学、磁学、热学等物理性能,⽽晶体的各向异性却是⼀种很普遍的特性,特别是很多现象如热电、压电、电光、声光、⾮线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要⽅⾯。

张量分析第一章 习题答案

张量分析第一章 习题答案
j
一阶张量 一阶张量 根据张量识别定理: δ ij 是1+1阶即二阶张量. (2) 对于任意二阶张量 b jk 缩并:
∑ε
j ,k
ijk
b jk
一阶张量
∑ε
j ,k
1 jk b jk = b23 − b32
∑ε
j ,k
2 jk
b jk = b31 − b13
∑ε
j ,k
3 jk
b jk = b12 − b21

i1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ Aj1′ j1 Aj2′ j2 ⋅⋅⋅ Ajν ′ jν ai1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jν 命题得证! 命题得证!
ci1′i2′ ⋅⋅⋅iµ′ =
∑ ∑
i1i2 ⋅⋅⋅iν j1 j2 ⋅⋅⋅ jν

i1i2 ⋅⋅⋅iµ j1′ j2′ ⋅⋅⋅ jν ′ j1 j2 ⋅⋅⋅ jν
在新坐标系中: ci1′i2′ ⋅⋅⋅iµ′ = ∑ ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ b j1′ j2′ ⋅⋅⋅ jν ′
j1′ j2′ ⋅⋅⋅ jν ′
比较
ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ =
ai1′i2′ ⋅⋅⋅iµ′ =

i1i2 ⋅⋅⋅iµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ ai1i2 ⋅⋅⋅iµ
命题得证! 命题得证!
6. 根据张量识别定理证明:δ ij是二阶张量, ε ijk 为三阶张量. 证: (1) 对于任意一阶张量 对于任意 阶张量 a j ∑ δij a j = ai

张量分析-第1讲LJ

张量分析-第1讲LJ

a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 应力分析
主要掌握:应力张量,应力张量的对称性,变换规律,主应力,主 方向,剪应力,应力偏张量等
第三章 连续介质运动学
4
主要掌握:物质坐标与空间坐标,物质导数,随波导数,速度张 量,速度分解定理等.
第四章 连续介质力学基本定律
三大守恒定律:质量守恒,动量守恒,能量守恒,状态方程,熵 不等式,热力学两大定律.
间位置的变化及各邻近点距离的变化;研究随时间变化 的物理量的时间变化率. 2)连续介质满足的物理基本定律
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
课程内容
第一章 连续介质力学中的数学模型
主要掌握:张量的概念,张量的表示方法以及张量的运算规律等
O
b
a -axb
12
(6)并矢 定义 ab ai eibj ej ai bj eiej
展开共9项, ei e j 可视为并矢的基
ai bj 为并矢的分解系数或分量
13
1.1.3 Einstein求和约定
在同一项内的一个指标的重复,将表示对该指标 在它的范围上遍历求和.
自由指标:无重复出现的指标,取值域1,2,3(三维空间中) 哑标: 重复出现一次且仅重复一次的指标为求和指标或 为哑标.
ds2 dx2 dy2 dz2 dxidxi ijdxidx j
ij jk ik
aiij a j
xi x j
xi, j
ij
19
例: Aijbj
分量形式:
Ai1b1 Ai2b2 Ai3b3
uii
u11 u22 u33
k
1 2 3
(2)连续介质的研究对象是三维连续体,
i, j, k 取值范围为1,2,3
15
(3) 同一项中重复出现的指标不能超过两次.
(a11 a22 a33 )(b11 b22 b33 ) aiibii
应写成 aiibjj
(4)同一等式中,同一文字指标在其中的一项单独出现, 则它在其他某项内重复出现,对该项也不求和.
32
若 c0
则有
xi


ji
x
'
j
xi' ij x j
矢量的坐标 变换规律.
1) 基矢量具有与坐标分量相同的变换规律;
ei' i' jej ei ij' ej'
2) ij' j' j ] 正交性
αi'
j


ccooss((ee12''
27
1.3 张量
张量 是数学上或物理上所用的概念.应力,应变等 当坐标系改变时,满足特有的转换规律。
两个向量
u, v
可以写成:
ui

a
jiu
' j
a ji
表示坐标转换 的夹角的余旋
vi a jiv'j
28
当组合两个向量时,可得到
Tij
左边
uivj (akiuk' )(aljvl' ) akialjuk' vl'
ir is it ijkrst jr js jt
kr ks kt
(利用了行列式的定义)
24
令 i r 上式得:
ii ijkist ji
ki
is js ks
it jt kt
ii
js ks
jt kt
is

31 32 33
31
矢量OP在不同坐标系中的变换有:
OP O'P OO'
或 x xjej x'jej' c
用 ei 点乘上式,得 xi ji x'j ci
或用 ei' 点乘,得
xi' ij xj ci'
质点的运 动变换
c 代表坐标系平移部分. ij 代表坐标系旋转部分.
1.3.2笛卡尔坐标变换
笛卡尔坐标系
平移旋转后
ox1x2 x3
o'
x' 1
x2'
x3'
基矢量 ei , ei'
ij ei' ej cos(ei',ej )
x3
x3'
P e3' e2'
x2'
o'
e3
o e2
e1'
x2
x1'
x1 e1
11 12 13
21
22

23
第五章 本构方程
本构概念,本构方程遵循的一些理论
5
考核方法:平时作业和出勤情况占 30%; 期末考试占70%。
参考书目: 1) 冯元祯,连续介质力学导论,重庆大学出版社 2) 吕洪生等编著,连续介质力学基础,国防科技 大学出版社
6
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
26
第三种证法:
ei e j ijk ek
ei e j ij
混合积的行列表达式有:
p1 p2 p3
pij ep (ei e j ) i1 i2 i3
j1 j2 j3
p1 p2 p3 p1 k1 s1 pp pk ps pijpks i1 i2 i3 p2 k 2 s2 ip ik is
123,231,312
ijk
-1,当 i, j, k 是1,2,3的奇排列
132,321,213
0,当 i, j, k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积
a b (a2b3 a3b2 )e1 (a1b2 a2b1)e3 (a3b1 a1b3)e2
用置换符号可写成

a

b

a

c
11
(5)矢量的叉积
e1 e2 e3 a b a1 a2 a3
b1 b2 b3


(a2b3 a3b2 )e1 (a1b2 a2b1)e3 (a3b1 a1b3)e2
注意:
a b b a
axb

OR
TT12''11
T1'2 T2'2
T1'3 T2'3

u3' v1'
u3' v2'
u3' v3'

T3'1
T3'2
T3'3

29
换一种表示方法,有 Tij akialjTk'l
这样,得到一个量 T 具有分量 Tij
T 定义此量为(笛卡尔) 2阶张量
30
如 ai jia'j a b a1b1 a2b2 a3b3 aibi
a1 11a1' 21a2' 31a3'
aii a11 a22 a33
14
几个注意事项:
(1)求和指标不区分该指标表示的各个分量,而是 一种约定的求和标记.
aibi a jbj aijbj aikbk
i j i j
几个重要式子:
Aijij Aii Ajj A11 A22 A33
ijij ii 11 22 33 3
18
ijai 1 ja1 2 ja2 3 ja3 aa12
a3
j 1 j2 j3
aj
fi Tii
f1 T11 f2 T22
f3 T33
16
(5) 不能改变某一项的自由标,但所有项的自由标可以 改变.
如 a ji xi bj
akixi bj akixi bk
Wrong Right
17
(6) Kronecker 符号 Delta
ij
ij

1 0
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.
矢量的表示
粗体字或字母上箭头
矢量相等
大小和方向相同
单位矢量
大小为1
零矢量
大小为0
8
图形表示
矢量 a (a1, a2 , a3)
分量: ai
x1
用三个有序数组表示
矢量大小
x3 a
a
23
1.2 恒等式 ijkist js kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
(a c)b (a b)c aibkcsisek aibkcsikes aibkcs (is jk ik js )ej
将上两式代入,移项,得
aibk cs[pijpks (ik js is jk )]ej 0
由 ai ,bk , cs 的任意性,可证明 pijpks ik js is jk
25
第二种方法:
相关文档
最新文档