误差修正模型实例
DLCM和DLhs300的误差修正模型

DLCM和DLhs300的误差修正模型建立误差修正模型的目的:通过做当月连续以及hs300的误差修正模型,使得短期非均衡的情况在进行误差修正后,能够不断自我调整以逼近长期均衡过程。
1.对CM 和hs300做OLS估计得f t = -58.4476 + 1.023049 s t +μt。
再将hs300的数据代入f t中,估计出f’t。
f’t=α’+β’s t = -58.4476 + 1.023049 s tECM= f t - f’t2.做当月连续的误差修正模型。
Δf t = c +αΔs t-1 + βΔf t-1 + θECM t-1 +μt。
在Eviews中将LCM(Δf t),DLCM(Δf t-1),ECM(ECM t-1)和DLhs300(Δs t-1)作为一个组打开,进行OLS估计3.做沪深300的误差修正模型。
Δs t = c +αΔs t-1 + βΔf t-1 + θECM t-1 + μt。
在Eviews中将Lhs300(Δs t),DLCM(Δf t-1),ECM(ECM t-1)和DLhs300(Δs t-1)作为一个组打开,进行OLS估计,所得结果如下:DLCM的误差修正系数为-0.361657,其绝对值大于DLhs300的误差修正系数-0.036316,说明当出现一个正的ECM时,DLCM会减少的更多,所以会使得一个时刻的ECM值变小。
同时,DLCM的误差修正系数P值为0.0036,DLhs300的误差修正系数的P值为0.7765。
所以在5%的显著水平下,DLCM的误差修正项是显著的,误差修正机制存在。
结论:对于当月连续,存在误差修正机制。
当出现误差项时,当月连续是向着沪深300的方向进行调整,因此沪深300起着主导作用,即股指期货的价格会依现货的变动而变动,股指期货会自我调整以实现与现货之间的某种均衡。
误差修正模型实例

一、误差修正模型的构造对于y t 的(1,1)阶自回归分布滞后模型:t t t t t y x x y εβββα++++=--12110在模型两端同时减y t-1,在模型右端10-±t x β,得:tt t t t t t t tt t t t x y x x y x y x x y εααγβεββββαββεββββα+--+∆=+---+--+∆=+-+++∆+=∆------)(])1()1()[1()1()(1101012120120121100其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。
记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++∆=∆-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。
二、误差修正模型的含义如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ∆,右端)0(~I x t ∆,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。
当y t 和x t 协整时,设协整回归方程为:t t t x y εαα++=10它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样0<γ;当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。
误差修正模型有以下几个明确的含义:1.均衡的偏差调整机制2.协整与长期均衡的关系3.经济变量的长期与短期变化模型长期趋势模型:t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++∆=∆-10三、误差修正模型的估计建立ECM 的具体步骤为:1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性;2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t :t t t x y εβα++=0 tt t x y e 0ˆˆβα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++∆=∆-10γβ说明:(1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量;(2)第2步可以估计动态自回归分布滞后模型:t i t i i t i t y x y εβαα∑∑+++=--此时,长期参数为:∑∑-=)1(i i βαθ协整回归方程和残差也相应取成:t t x y θ=, tt t x y e θˆ-= (3)第2步估计出ECM 之后,可以检验模型的残差是否存在长期趋势和自相关性。
计量经济学第五章协整与误差修正模型

根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质
stata误差修正模型命令

stata误差修正模型命令(原创版)目录1.引言2.Stata 误差修正模型的基本概念3.Stata 误差修正模型的命令格式4.示例:使用 Stata 误差修正模型命令进行分析5.总结正文1.引言在实证研究中,由于数据的局限性,我们常常需要对数据进行误差修正。
Stata 作为一种广泛应用于社会科学、经济学、统计学等领域的数据分析软件,提供了丰富的误差修正模型命令,以帮助研究者更准确地分析数据。
本文将介绍 Stata 误差修正模型的基本概念以及命令格式,并通过示例演示如何使用 Stata 误差修正模型命令进行分析。
2.Stata 误差修正模型的基本概念Stata 误差修正模型主要包括两种类型:内生性误差和选择性误差。
(1)内生性误差:当一个或多个解释变量与误差项相关时,就存在内生性误差。
内生性误差可能导致估计系数的偏误,从而影响研究结论的有效性。
(2)选择性误差:当样本的选择不是随机的,而是基于某些观测到的或未观测到的变量时,就存在选择性误差。
选择性误差可能导致估计系数的偏误,从而影响研究结论的有效性。
3.Stata 误差修正模型的命令格式Stata 误差修正模型的命令格式主要包括以下两个部分:(1)模型设定部分:这部分主要包括被解释变量、解释变量和误差项的定义。
(2)修正部分:这部分主要包括使用哪种误差修正方法,如两阶段最小二乘法(2SLS)、三阶段最小二乘法(3SLS)等。
4.示例:使用 Stata 误差修正模型命令进行分析假设我们有一个数据集,其中包括个体的收入、教育水平和是否失业等变量。
我们希望研究教育水平对收入的影响,但由于教育水平可能是内生变量(例如,家庭背景可能同时影响教育水平和收入),因此需要使用误差修正模型进行分析。
以下是使用 Stata 进行两阶段最小二乘法分析的命令示例:```* 导入数据* insheet using "data.csv", clear* 定义变量local income "收入"local education "教育水平"local unemployed "是否失业"* 模型设定部分reg income education unemployed* 修正部分estimates store olstwostage, none```在这个示例中,我们首先导入数据并定义变量,然后使用回归模型(reg)进行基本分析。
时间序列与误差修正模型

2
GDP ---→ C
4.279
0.032
拒绝
C ---→GDP
1.823
0.194
不拒绝
3
GDP ---→ C
10.219
0.001
拒绝
C ---→GDP
0.496
0.691
不拒绝
4
GDP ---→ C
19.643
0.001
拒绝
C ---→GDP
5.247
0.015
拒绝
5
GDP ---→ C
当影响Xt的主要因素难以确定,或虽然知晓影响因素但因素水平很难给以确切表征(如消费偏好、宏观环境等)时,结构模型分析法实际上是难以操作的。 而时间序列模型只使用该序列的过去水平来预测未来值,较好地克服了结构模型分析中的上述问题
例:线性时间序列模型的一般形式ARMA(p, q)
例:检验1978—2000年中国人均GDP序列(Y)的平稳性
冲击经济波动与政策
时间序列数据的平稳性及其检验
财政政策对劳动力市场的影响分析
模型3:
模型2:
模型1:
结论:人均GDP序列是非平稳的
时间序列数据的平稳性及其检验
滞后阶数的确定
4、时间序列平稳性的运用
(1)构建一平稳时间序列模型而不是结构模型进行预测及其它应用
3、时间序列平稳性的判断 (1)图示判断 依据序列水平判断:
t
Xt
t
Xt
平稳序列分布
非平稳序列分布
时间序列数据的平稳性及其检验
3、时间序列平稳性的判断 (1)图示判断 依据自相关函数判断:
k
rk
0
1
k
rk
实验报告二——误差修正模型的建立与分析

实验报告(二)——误差修正模型(ECM)的建立与分析一、单位根检验:1、绘制cons与GDP的时间序列图:从时间序列图中可以看出,cons与GDP随时间增加都呈上升趋势,表现出非平稳性。
2、对cons进行单位根检验:先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为0.9888,大于0.05的显著性水平,说明原序列是非平稳的。
选择cons的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5099)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。
再试用ADF检验,在滞后期(maximum lags)中填入8,选择一阶差分和trend and intercept,得出上表,可以看出P值=0.0801,大于0.05,没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。
再试用ADF检验,在滞后期(maximum lags)中填入6,选择二阶差分和trend and intercept,得出上表,可以看出P值=0.0137,小于0.05,通过0.05的置信水平检验,说明是平稳的。
3、对GDP进行单位根检验:先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为1.0000,大于0.05的显著性水平,说明原序列是非平稳的。
选择GDP的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5574)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。
stata误差修正模型命令

stata误差修正模型命令(原创实用版)目录1.介绍 stata 误差修正模型2.阐述 stata 误差修正模型的优点3.提供 stata 误差修正模型的命令示例4.总结正文1.介绍 stata 误差修正模型stata 是一种广泛使用的数据分析软件,它提供了各种先进的统计分析方法,误差修正模型就是其中的一种。
误差修正模型是一种用于解决因变量和自变量之间的内生性问题而设计的统计模型。
内生性问题是指模型中的因变量对自变量产生影响,这可能会导致估计出的参数偏误。
而误差修正模型则可以通过引入额外的工具变量来解决这个问题,从而得到更准确的参数估计。
2.阐述 stata 误差修正模型的优点stata 误差修正模型具有以下几个优点:(1)它可以有效地解决内生性问题。
通过引入工具变量,可以消除因变量对自变量的影响,从而得到更准确的参数估计。
(2)它具有较强的实用性。
stata 误差修正模型可以应用于各种领域,如经济学、社会学、医学等,可以解决各种实际问题。
(3)它操作简便。
stata 提供了一系列的命令,用户只需按照命令的格式输入相应的参数,就可以轻松地完成误差修正模型的估计。
3.提供 stata 误差修正模型的命令示例以下是一个 stata 误差修正模型的命令示例:```sysuse "data.dta", clearreg dep_var ind_var [if]est store err_modelerroreq```在这个命令中,`sysuse`命令用于读取数据,`reg`命令用于进行回归分析,`dep_var`和`ind_var`分别表示因变量和自变量,`[if]`表示在满足特定条件时才将样本纳入模型,`est store`命令用于将模型结果存储为临时变量,`err_model`表示模型名称,`estoreq`命令用于进行误差修正模型的估计。
4.总结总的来说,stata 误差修正模型是一种有效的解决内生性问题的方法,它具有操作简便、实用性强等优点。
第二讲 协整理论与误差修正模型

其残差序列是平稳序列,以它为误差修正项,可建立如下误差修正模型 表7 ECM模型回归结果
中变量的符号与长期均衡关系的符号一致,误差修正系数为负,符合反
向修正机制。回归结果表明,城镇居民人均可支配收入的短期变动对人
均消费支出存在正向影响,本期可支配收入每增加1%,本期人均消费将 增加0.884%;上期可支配收入每增加1%,本期人均消费将增加0.241%;
2.协整理论的重要意义
(1)避免伪回归。 (2) 估计量的“超一致性”。如果一组非平稳时间序列之间存在 协整关系,可以直接建立回归模型,而且,其参数的最小二乘估计量 具有超一致性,即以更快的速度收敛于参数的真实值。 (3) 区分变量之间的长期均衡关系和短期动态关系。 格兰杰和恩
格尔已证明,如果变量之间存在长期均衡关系,则均衡误差将显著影
当N>1时,意味着有N-1个协整参数需要估计。如果某些协整参数已事先 知道,那么计算临界值时,应相应减少N的值。作为一个极端情形,当全 部协整参数都已知时,应在附表8中N=1一栏中查找参数,计算临界值。 当N=1时,所涉及的变量只有一个。所以协整检验退化成为单整检验。 这时实际是做 ADF 检验。由此可见麦金农( Mackinnon )协整检验临界值 表实际上是协整检验和单整检验结合在一起,即把ADF 检验和 AEG 检验结 合在一起。所以N = 1对应的是ADF检验。N 2时,对应的是AEG 检验, 即协整检验。
(1)两变量的Engle-Granger检验
表2
双变量协整检验AEG临界值
例2
检验中国城镇居民人均消费性支出与人均可支配收入
(见表3.3与图3.1)时间序列的协整关系。
表3
中国城镇居民人均收入、人均消费(单位:元)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 一、误差修正模型的构造
对于y t 的(1,1)阶自回归分布滞后模型:
t t t t t y x x y εβββα++++=--12110
在模型两端同时减y t-1,在模型右端10-±t x β,得:
t
t t t t t t t t
t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+∆=+---+--+∆=+-+++∆+=∆------)(])
1()1()[1()1()(1101012120120121100
其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。
记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++∆=∆-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。
二、误差修正模型的含义
如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ∆,右端)0(~I x t ∆,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。
当y t 和x t 协整时,设协整回归方程为:
t t t x y εαα++=10
它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样。