误差修正模型实例.
DLCM和DLhs300的误差修正模型

DLCM和DLhs300的误差修正模型建立误差修正模型的目的:通过做当月连续以及hs300的误差修正模型,使得短期非均衡的情况在进行误差修正后,能够不断自我调整以逼近长期均衡过程。
1.对CM 和hs300做OLS估计得f t = -58.4476 + 1.023049 s t +μt。
再将hs300的数据代入f t中,估计出f’t。
f’t=α’+β’s t = -58.4476 + 1.023049 s tECM= f t - f’t2.做当月连续的误差修正模型。
Δf t = c +αΔs t-1 + βΔf t-1 + θECM t-1 +μt。
在Eviews中将LCM(Δf t),DLCM(Δf t-1),ECM(ECM t-1)和DLhs300(Δs t-1)作为一个组打开,进行OLS估计3.做沪深300的误差修正模型。
Δs t = c +αΔs t-1 + βΔf t-1 + θECM t-1 + μt。
在Eviews中将Lhs300(Δs t),DLCM(Δf t-1),ECM(ECM t-1)和DLhs300(Δs t-1)作为一个组打开,进行OLS估计,所得结果如下:DLCM的误差修正系数为-0.361657,其绝对值大于DLhs300的误差修正系数-0.036316,说明当出现一个正的ECM时,DLCM会减少的更多,所以会使得一个时刻的ECM值变小。
同时,DLCM的误差修正系数P值为0.0036,DLhs300的误差修正系数的P值为0.7765。
所以在5%的显著水平下,DLCM的误差修正项是显著的,误差修正机制存在。
结论:对于当月连续,存在误差修正机制。
当出现误差项时,当月连续是向着沪深300的方向进行调整,因此沪深300起着主导作用,即股指期货的价格会依现货的变动而变动,股指期货会自我调整以实现与现货之间的某种均衡。
误差修正(1)

模型2:
i1 p
模型3:
xt ( 1)xt1 ixti t
i1 p
xt t ( 1)xt1 ixti t
i 1
3 ADF检验步骤 (1)估计和检验模型3。估计模型3,并得到参数的t统计
量,参数包括:,,。 • 第否一则步进:入检 下验 一步H0。:=1,t<,拒绝=1,则不存在单位根, • 第拒二绝步=:0 给,定则存=在1(单接位受根第进一入步下的一假步设,)否检则验进入=0模。型t>2检,
• 两个变量虽然它们具有各自的长期波动规律,但是如 果它们是协整的,则它们之间存在着一个长期稳定的 比例关系。
• 例单如整居,民 并收 且入 它们Yt和是居(1民,1)消阶费协C整t,,如则果说它明们它各们自之都间是存1在阶 着一个长期稳定的比例关系,而这个比例关系就是消 费倾向,也就是说明 消费倾向是不变的,从计量经济 学模型的意义上讲,建立如下消费函数模型
②③记为检检验验eeˆˆeˆtt t
的单整性。。如如,果果以eˆt 此为类Y为t ,稳推X1阶t定。~单的CI整序(2,列,1)则,Y记t , X t ~ CI (1,1) 的单整性的方法即是上述的DF检验或者ADF
检验。
(2)多变量协整关系的检验
• Johansen于1988年,以及Juselius于1990年提出了用 向量自回归模型进行检验的方法,通常称Johansen检 验或JJ检验,参见李子奈《高等计量经济学》6-4节。
Ct = 0+ 1 Yt +t 则变量选择是合理的,随机误差项一定是“白噪声”, 模型参数有合理的经济解释。
反过来如果两个变量具有各自的长期波动规律,但它们 不是协整的,则它们之间就不存在一个长期稳定的关系, 如居民消费Ct和居民储蓄St
stata误差修正模型命令

stata误差修正模型命令(原创版)目录1.引言2.Stata 误差修正模型的基本概念3.Stata 误差修正模型的命令格式4.示例:使用 Stata 误差修正模型命令进行分析5.总结正文1.引言在实证研究中,由于数据的局限性,我们常常需要对数据进行误差修正。
Stata 作为一种广泛应用于社会科学、经济学、统计学等领域的数据分析软件,提供了丰富的误差修正模型命令,以帮助研究者更准确地分析数据。
本文将介绍 Stata 误差修正模型的基本概念以及命令格式,并通过示例演示如何使用 Stata 误差修正模型命令进行分析。
2.Stata 误差修正模型的基本概念Stata 误差修正模型主要包括两种类型:内生性误差和选择性误差。
(1)内生性误差:当一个或多个解释变量与误差项相关时,就存在内生性误差。
内生性误差可能导致估计系数的偏误,从而影响研究结论的有效性。
(2)选择性误差:当样本的选择不是随机的,而是基于某些观测到的或未观测到的变量时,就存在选择性误差。
选择性误差可能导致估计系数的偏误,从而影响研究结论的有效性。
3.Stata 误差修正模型的命令格式Stata 误差修正模型的命令格式主要包括以下两个部分:(1)模型设定部分:这部分主要包括被解释变量、解释变量和误差项的定义。
(2)修正部分:这部分主要包括使用哪种误差修正方法,如两阶段最小二乘法(2SLS)、三阶段最小二乘法(3SLS)等。
4.示例:使用 Stata 误差修正模型命令进行分析假设我们有一个数据集,其中包括个体的收入、教育水平和是否失业等变量。
我们希望研究教育水平对收入的影响,但由于教育水平可能是内生变量(例如,家庭背景可能同时影响教育水平和收入),因此需要使用误差修正模型进行分析。
以下是使用 Stata 进行两阶段最小二乘法分析的命令示例:```* 导入数据* insheet using "data.csv", clear* 定义变量local income "收入"local education "教育水平"local unemployed "是否失业"* 模型设定部分reg income education unemployed* 修正部分estimates store olstwostage, none```在这个示例中,我们首先导入数据并定义变量,然后使用回归模型(reg)进行基本分析。
时间序列与误差修正模型

2
GDP ---→ C
4.279
0.032
拒绝
C ---→GDP
1.823
0.194
不拒绝
3
GDP ---→ C
10.219
0.001
拒绝
C ---→GDP
0.496
0.691
不拒绝
4
GDP ---→ C
19.643
0.001
拒绝
C ---→GDP
5.247
0.015
拒绝
5
GDP ---→ C
当影响Xt的主要因素难以确定,或虽然知晓影响因素但因素水平很难给以确切表征(如消费偏好、宏观环境等)时,结构模型分析法实际上是难以操作的。 而时间序列模型只使用该序列的过去水平来预测未来值,较好地克服了结构模型分析中的上述问题
例:线性时间序列模型的一般形式ARMA(p, q)
例:检验1978—2000年中国人均GDP序列(Y)的平稳性
冲击经济波动与政策
时间序列数据的平稳性及其检验
财政政策对劳动力市场的影响分析
模型3:
模型2:
模型1:
结论:人均GDP序列是非平稳的
时间序列数据的平稳性及其检验
滞后阶数的确定
4、时间序列平稳性的运用
(1)构建一平稳时间序列模型而不是结构模型进行预测及其它应用
3、时间序列平稳性的判断 (1)图示判断 依据序列水平判断:
t
Xt
t
Xt
平稳序列分布
非平稳序列分布
时间序列数据的平稳性及其检验
3、时间序列平稳性的判断 (1)图示判断 依据自相关函数判断:
k
rk
0
1
k
rk
向量误差修正模型

1)两个变量的VAR(1)模型的VECM
y1t y2t
0.4 0.2
1.5 1.5
y1,t 1 y2,t 1
1t 2t
在这个例子中,
0.6 1.5 0.2 0.5 使y1t的系数为1。这样,就可以定义 Zt y1t 2.5 y2t 为平稳的协整变量。
以写成:
y1t
Zt Byt 1
b2
b3
Hale Waihona Puke y2t y1t
b2
y2t
b3
y3t
y3t
(10.51)
根据定义,Z t 就是一个一维的随机
变量,协整向量 B 1 b2 b3(标准化了
的形式)。
调整系数矩阵A就是一个 31的向 量,从而对应的VECM形式可以写成:
增加或者减小的变化,实际上是一种
调整,所以称为误差修正。因为这里
我们研究的对象是VAR模型,所以VECM
的名字由此而来。
根据定义,矩阵A衡量了 Yt中每个 变量是如何调整,从而回复到长期的
均衡关系的水平上。所以,矩阵A经常
被称为调整系数。另外,在实践中,
经常对协整向量B进行标准化。
10.4.2 VECM模型的演示
从长期来看,即所谓的均衡状态或 者静止状态,这样的关系精确地存在, 所以在长期,我们有:
Zt BYt 0
然而,从短期来看,例如对于每个 确定的时刻t,都存在偏离协整关系 BYt 的成分。这种偏离代表了这些长期关系 在短期内的一定程度的非均衡状态,所 以偏离成分一般被称为误差。
因此,AZt1 ABYt1 促使Yt 增加或者 减少,从而使得 BYt朝着它的长期均值 移动(长期均值为0,为什么?)。这种
实验报告二——误差修正模型的建立与分析

实验报告(二)——误差修正模型(ECM)的建立与分析一、单位根检验:1、绘制cons与GDP的时间序列图:从时间序列图中可以看出,cons与GDP随时间增加都呈上升趋势,表现出非平稳性。
2、对cons进行单位根检验:先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为0.9888,大于0.05的显著性水平,说明原序列是非平稳的。
选择cons的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5099)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。
再试用ADF检验,在滞后期(maximum lags)中填入8,选择一阶差分和trend and intercept,得出上表,可以看出P值=0.0801,大于0.05,没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。
再试用ADF检验,在滞后期(maximum lags)中填入6,选择二阶差分和trend and intercept,得出上表,可以看出P值=0.0137,小于0.05,通过0.05的置信水平检验,说明是平稳的。
3、对GDP进行单位根检验:先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为1.0000,大于0.05的显著性水平,说明原序列是非平稳的。
选择GDP的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5574)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。
二阶误差修正模型的推导

二阶误差修正模型的推导误差修正模型(Error Correction Model, ECM)协整(cointegration)反映的是序列中变量之间的长期均衡关系,用网上的一个例子来描述协整就是一个醉汉牵着一只狗,他们之间的距离虽然会时远时近,但是由于绳子的存在,当达到绳子的长度时,他们的距离又会拉近,这样他们之间就存在着协整关系。
通过协整建立的模型是静态模型,而误差修正模型的使用就是为了建立短期的动态模型来弥补长期静态模型的不足,通过误差修正模型,可以判断出变量在短期波动中偏离其长期均衡关系的程度。
假设序列 X t X_{t} Xt和 Y t Y_{t} Yt存在这种长期的均衡关系,也就是协整关系,表现形式就是: Y t = a 0 + a 1 X t + u t Y_{t} = a_{0} + a_{1}X_{t} + u_{t} Yt=a0+a1 Xt+ut由于他们之间存在着长期的均衡关系,那就是说当 Y t Y_{t} Yt出现偏离均衡点时,这种现象只是暂时的。
而这种均衡关系建立的前提就是随机项 u t u_{t} ut是平稳的,这也是检验两个序列之间协整关系的一种方法,就是通过检验随机项的平稳性来判断是否存在协整关系。
试想一下,如果随机项不是平稳的,也就是它具有上升或者下降的趋势,那么 Y t Y_{t} Yt的偏离就会被长期累积下来而不能被消除。
因此,随机项也称作长期均衡误差,或者非均衡误差项,它将在误差修正模型中作为自变量。
误差修正模型的建立通过上面的分析,我们知道,如果要建立一个误差修正模型,首先要做的就是对序列进行检验,找出它们之间的协整关系,然后根据这种关系建立误差修正项,再将误差修正项作为解释变量,与其他反映短期波动的解释变量一起,建立一个短期模型,也就是误差修正模型。
从上面的例子知道长期均衡 Y t = a 0 + a 1 X t + u tY_{t} = a_{0} + a_{1}X_{t} + u_{t} Yt=a0+a1Xt+ut,而误差修正模型的具体形式是:Δ Y t = b 0 + b 1 Δ X t + γ e c m t − 1 + u t \Delta Y_{t} = b_{0} +b_{1}\Delta X_{t} + \gamma ecm_{t-1} + u_{t} ΔYt=b0+b1ΔXt+γecm t−1+ut Δ X t \Delta X_{t} ΔXt 和Δ Y t \Delta Y_{t} ΔYt 分别是一阶差分后的结果,除此之外,其中γ < 0 \gamma < 0 γ<0, e c m t − 1ecm_{t-1} ecmt−1表示误差修正项,可以表示为 e c m t − 1 = Y t − 1 − a 0 − a 1 X t − 1 ecm_{t-1} =Y_{t-1} - a_{0} - a_{1}X_{t-1} ecmt−1=Yt−1−a0−a1Xt−1,这也是为什么上面提到的随机项将在误差修正模型中作为自变量的解释。
误差修正模型课件

单方程误差修正模型是针对单个经济变量进行建模的方法,主要目的是检验和估计长期均衡关系及其短期调整机 制。
详细描述
单方程误差修正模型基于经济理论,通过一个经济变量对它的长期均衡关系及其短期调整机制进行建模。它通常 采用一阶差分法或协整法来处理非平稳时间序列数据,以识别和估计变量的长期均衡关系及其短期调整机制。
通常用长期均衡方程来描述。
在长期均衡方程中,变量的系数 映了其在长期均衡关系中的贡
献程度。
长期均衡关系通常是在市场机制 的作用下,通过供求关系自发调
节而形成的。
短期调整机制
短期调整机制是指当经济变量受到外 部冲击或其他因素的影响,导致其偏 离长期均衡状态时,系统会自动调整 以重新回到均衡状态的过程。
与
06
误差修正模型在经济学中的地位与作用
经济学的核心工具
误差修正模型(ECM)是现代经 济学中用于研究长期均衡关系和 短期调整机制的重要工具,尤其 在宏观和微观经济学中占据核心 地位。
揭示经济规律
通过ECM,研究者可以深入探究 经济变量之间的内在关系,揭示 其背后的经济规律和动态机制, 为政策制定提供科学依据。
外汇市场汇率调整的误差修正模型
总结词
该模型用于研究外汇市场汇率的调整机制, 通过分析汇率的短期波动和长期均衡趋势来 预测汇率变化。
详细描述
外汇市场汇率调整的误差修正模型关注汇率 的动态变化,并考虑国内外经济基本面的差 异对汇率的影响。它利用误差项来衡量短期 非均衡程度,并通过调整机制预测长期均衡 汇率的回归,有助于分析汇率的稳定性和波 动性。
短期调整机制通常是通过误差修正机 制来实现的,即系统会根据误差的大 小和方向,自动调整变量的取值,以 使其重新回到长期均衡状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、误差修正模型的构造对于yt的(1,1阶自回归分布滞后模型:在模型两端同时减yt-1,在模型右端,得:其中,,,。
记(5-5)则(5-6)称模型(5-6)为“误差修正模型”,简称ECM。
二、误差修正模型的含义如果yt ~ I(1,x t ~ I(1,则模型(5-6)左端,右端,所以只有当yt和x t协整、即yt和x t之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。
当yt和x t协整时,设协整回归方程为:它反映了yt与x t的长期均衡关系,所以称式(5-5)中的ecm t-1是前一期的“非均衡误差”,称误差修正模型(5-6)中的是误差修正项,是修正系数,由于通常,这样;当ecm t-1 >0时(即出现正误差),误差修正项< 0,而ecm t-1 < 0时(即出现负误差),> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。
误差修正模型有以下几个明确的含义:1.均衡的偏差调整机制2.协整与长期均衡的关系3.经济变量的长期与短期变化模型长期趋势模型:短期波动模型:三、误差修正模型的估计建立ECM的具体步骤为:1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性;2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:3.将e t-1作为一个解释变量,估计误差修正模型:说明:(1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量;(2)第2步可以估计动态自回归分布滞后模型:此时,长期参数为:协整回归方程和残差也相应取成:,(3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。
如果存在长期趋势,则在ECM中加入趋势变量。
如果存在自相关性,则在ECM的右端加入误差修正项的滞后期一般也要作相应的滞后项来消除自相关性,调整。
如取成以下形式:由于模型中的各项都是平稳变量,所以可以用t检验判断各项的显著性,逐个剔除其中不显著的变量,当然误差修正项要尽可能保留。
【例5-3】建立例5-2中我国货币供应量与国民收入的误差修正模型。
协整关系。
在例5-2中已经得到我国货币供应量和国民收入的对数都是一阶单整变量,而且是协整的;所以,直接估计误差修正模型(设残差序列是):LS D(LX D(LX E(-1估计结果如图5-9所示,误差修正项的符号是负的,但是t检验不显著。
对模型的残差序列进行自相关检验,DW 检验和BG检验结果都说明存在一阶自相关;所以,点击方程窗口的Estimate按钮,在方程描述框中重新定义待估方程:D(LX D(LX E(-1 D(LX(-1 D(LY(-1根据输出结果,剔除其中不显著的,得到图5-10的估计结果。
模型中误差修正项的符号是负的,而且各项的t检验显著,所以,我国货币供应量的误差修正模型为:(4.87)(-2.92)(-2.58)R2=0.4693 SE=0.0603 DW=0.9649图5-9 ECM的最初估计结果图5-10 ECM的最终估计结果案例分析:我国金融发展与经济增长的协整分析表5-4中列出了1989~2006年期间我国国内生产总值指数(1978=100)、货币供应量M2(亿元)、金融机构年末贷款余额(亿元)和商品零售价格指数(1978=100)的统计资料。
现以货币供应量和贷款余额反映金融的发展情况,分析金融发展与经济增长的协整关系,以及相应的误差修正模型。
表5-4 我国1989~2006年统计资料年份国内生广义货贷款余商品零产总值Y 币M2额L 售价格指数P1 989271.312716.914360.123.41 99281.715293.417680.727.71 991307.619349.921337.8213.71 992351.425402.226322.9225.21 993400.434879.832943.1254.91 994452.846923.539976.0310.21 995502.360750.550544.1356.11 996552.676094.961156.6377.81 997603.990995.374914.1380.8165110448379 9 8.2 98.5 6524.10.9 19 9 9700.9119897.993734.3359.8 20 0 0759.9134610.499371.1354.4 20 0 1823.0158301.9112314.7351.6 20 0 2897.8185007.0131293.9347.0 20 0987.8221222.815899346.3 6.2 72 041087.4254107.0178197.8356.42 051200.8298755.7194690.0359.32 061334.345603.6225347.0362.91.数据处理与单整性检验为消除价格因素的影响,将货币供应量M2和贷款余额L 都除以物价指数P,得到实际货币量;同时为了将各项指标的变化趋势转变成线性趋势,对所有变量都取对数。
变量的处理过程为:GENR LY=LOG(YGENR LMP=LOG(M2/PGENR LLP=LOG(L/P模型形式为:对模型中的变量进行单位根检验,表5-5列出了有关检验结果。
该表是另外一种常用的检验结果表现形式,其中,p表示麦金农单侧概率值,即ADF统计量对应的伴随概率;在ADF统计量值上的*号,表示检验的显著情况:无*号表示不显著,***、**、*分别表示在1%、5%、10%的显著水平下显著。
表5-5的检验结果表明,所有变量都是确定趋势过程,此时不需要再对各个变量的一阶差分进行单位根检验了,即都~I(1。
表5-5 单位根检验输出结果变量(c,t,m)ADF检验值pLY (c,t,3)-3.6044*0.0582LMP (c,t,2)-8.1469***0.0000LLP (c,t,1)-3.9926**0.02912.协整性检验估计协整回归方程,由于模型中变量都含有长期趋势,所以在原模型中再加上取食变量T,键入命令:LS LY C LMP LLP T,估计结果如图5-11所示。
图5-11 协整回归方程估计结果(1)由于模型中LMP与LLP高度相关,多重共线性的影响使得贷款变量的系数符号为负,经济意义不合理。
经过多个模型的测算,最终将LMP与LLP合并成一个变量表示金融的发展规模,得到如图5-12所示的估计结果。
图5-12 协整回归方程估计结果(2)在方程窗口中点击Proc \Make Residual Series,生成残差序列(设变量名为E);进一步检验残差序列的平稳性(检验结果见图5-13),在1%的显著水平下,残差序列是平稳的。
所以,根据EG两步检验法,lnGDP与实际货币和实际贷款(的对数)之间存在着协整关系。
协整回归方程为:图5-13 残差序列E的平稳性检验结果3.建立误差修正模型为表示简单起见,设:LX=LMP+LLP;键入命令:GENR LX=LMP+LLPLS D(LY E(-1输出结果显示E t-1的系数不显著,对模型进行残差检验,发现存在一阶自相关性;所以,在模型中再加入LY和LX的滞后项,利用t检验剔除不显著变量后,得到ECM的最后估计结果(见图5-14)。
图5-14 ECM的最终估计结果所以,我国经济增长与金融发展的关系模型可以表述成:长期均衡关系:短期波动模型:。