误差修正模型实例(精)

合集下载

误差修正模型实例

误差修正模型实例

一、误差修正模型的构造对于y t 的(1,1)阶自回归分布滞后模型:t t t t t y x x y εβββα++++=--12110在模型两端同时减y t-1,在模型右端10-±t x β,得:tt t t t t t t tt t t t x y x x y x y x x y εααγβεββββαββεββββα+--+∆=+---+--+∆=+-+++∆+=∆------)(])1()1()[1()1()(1101012120120121100其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。

记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++∆=∆-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。

二、误差修正模型的含义如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ∆,右端)0(~I x t ∆,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。

当y t 和x t 协整时,设协整回归方程为:t t t x y εαα++=10它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样0<γ;当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。

误差修正模型有以下几个明确的含义:1.均衡的偏差调整机制2.协整与长期均衡的关系3.经济变量的长期与短期变化模型长期趋势模型:t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++∆=∆-10三、误差修正模型的估计建立ECM 的具体步骤为:1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性;2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t :t t t x y εβα++=0 tt t x y e 0ˆˆβα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++∆=∆-10γβ说明:(1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量;(2)第2步可以估计动态自回归分布滞后模型:t i t i i t i t y x y εβαα∑∑+++=--此时,长期参数为:∑∑-=)1(i i βαθ协整回归方程和残差也相应取成:t t x y θ=, tt t x y e θˆ-= (3)第2步估计出ECM 之后,可以检验模型的残差是否存在长期趋势和自相关性。

计量经济学第五章协整与误差修正模型

计量经济学第五章协整与误差修正模型
数据变换
根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质

第5章 动态回归与误差修正模型(案例)汇总

第5章 动态回归与误差修正模型(案例)汇总

例:(file: break2)东北、华北、华东、华中21省市1993和1998年耕地面积(land ,百万公顷)和农业产值(Y , 百亿元)数据见图(已取对数)。

用圆圈表示的观测点为1993年数据,用三角表示的观测点为1998年数据。

大体看各省市1998年耕地面积比1993年耕地面积略有减少,产值却都有增加。

以1993和1998年数据为两个子样本,以42个数据为总样本,求得残差平方和见下表-10123-2-1123LOG(LAND)LOG(Y93)LOG(Y98)-10123-2-1123LOG(LAND)LOG(Y93)LOG(Y98)样本容量 残差平方和相应自由度回归系数 1 T = 42 SSE T = 14.26 T - k = 402 n 1= 21 SSE 1 = 4.37 n 1 - k = 19 α1 3n 2= 21SSE 2 = 3.76n 2 - k = 19β1注:三次回归的模型形式Lnout t = β0 +β1 Lnland t + u t 。

因为,F =)2/()(/)]([2121k T SSE SSE k SSE SSE SSE T -++-=38/)76.337.4(2/)]76.337.4(26.14[++-= 14.33 > F (1, 40) = 7.31所以两个年度21省市的农业生产发生了很大变化。

案例1:开滦煤矿利润影响因素的实证分析(1903-1940,动态分布滞后模型,file:LH1)(发表在《学术论坛》,2003.1, p. 88-90)1000200030004000500060000510152025303540销煤量 x1图 1 开滦煤矿销煤量变化曲线(x 1, 1903-1940)2468101214160510152025303540吨煤售价 X2图2 开滦煤矿吨煤售价变化曲线(x 2, 1903-1940)100002000030000400000510152025303540利润 Y图3 开滦煤矿利润变化曲线(1903-1940)78910116.57.07.58.08.59.0LNX 1LNY图4 开滦煤矿利润对销煤量散点图78910111.01.52.02.53.0LN X 2LN Y图5 开滦煤矿利润对吨煤售价散点图1)建立ADL(2,2,2)Y t =0.2937Y t -1+0.2038 Y t -2+4.2469 X 1t –3.5106 X 1t -1(2.5) (2.4) (7.3) (-5.5)+2964.25 X 2t –1390.66 X 2t –1-1433.01 X 2t –2 (1) (7.3) (-1.7) (-2.3)R 2 = 0.96, s.e.=1504.7, LM (2) = 4.10, DW=2.16, F=128.7, Q (15) = 8.1 (1905-1940)用上式求长期关系,Y t = 1.4653 X 1t + 278.6X 2t (2)*()()j jjj s X s Y ββ=, j = 1, 2β1* = 1.4653 (1453.8 / 7134.1) = 0.2986 β2* = 278.6 (2.2067 / 7134.1) = 0.0862无量纲长期参数估计结果是Y = 0.2986 X 1 + 0.0862X 2 (3)这说明实际上X 1 对Y 的影响大于X 2对Y 的影响。

误差修正模型

误差修正模型

样本容量 25 50 100 ∝
表 9.3.1 双变量协整 ADF 检验临界值
显著性水平
0.01
0.05
-4.37
-3.59
-4.12
-3.46
-4.01
-3.39
-3.90
-3.33
0.10 -3.22 -3.13 -3.09 -3.05
Page 15
例9.3.1 检验中国居民人均消费水平CPC与人均国内生 产总值GDPPC的协整关系。
在前文已知CPC与GDPPC都是I(2)序列,而§2.10中已 给出了它们的回归式
CPCt 49.764106 0.45831 GDPPC t
R2=0.9981
通过对该式计算的残差序列作ADF检验,得适当检验
模型
eˆt 1.55eˆt1 1.49eˆt1 2.27eˆt3
反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。
可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。
因此,一个重要的假设就是:随机扰动项t必须是平稳 序列。
显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
从这里已看到,非稳定的时间序列,它们的线性组合也可 能成为平稳的。
例如:假设Yt=0+1Xt+t式中的X与Y是I(1)序列,如果
该式所表述的它们间的长期均衡关系成立的话,则意味着由 非均衡误差(*)式给出的线性组合是I(0)序列。这时我们称 变量X与Y是协整的(cointegrated)。
Page 7

误差修正模型ECM

误差修正模型ECM

Error Correction Model 用EVIEWS怎么做一、利用EG两步法做协整检验。

在两个变量情况下(设为Y、X),包括两序列单整检验、两变量最小二乘法回归并得到残差序列并命名为e、对e作单位根检验。

二、在证明Y、X两序列间存在协整后,才可以建立ECM。

其中,误差修正项ecm的值就是之前的回归模型的残差序列e。

三、直接输入以下命令:ls y c y(-1) x x(-1)得到的估计结果在实际预测时比较方便,不过需要计算得到ecm项的系数。

四、也可以直接输入以下命令:ls y c x e(-1)其中,e(-1)项的系数就是ecm项的系数。

这个模型的优点是直观,但是不便于预测。

五、两种估计是等价的。

六、建议参考阅读易丹辉:《数据分析与EViews应用》,中国统计出版社2002年版。

(也许有新版也不一定)对于误差修正模型,需要先建立一个模型,然后进行回归分析,分析它的短期均衡关系。

操作:举个例子说,比如试图建立y对y(-1)和x的误差修正模型。

STEP1 建立长期关系ls y c y(-1) xSTEP2 对残差进行单位根检验来检验协整关系ecm=residuroot(10,h) ecmSTEP3 建立误差修正模型ls d(y) c d(y(-1)) d(x) ecm(-1)教程:案例1上面的分析可以证明序列lconsume、lincome及lconsme(-1)之间存在协整关系,故可以建立ecm(误差修正模型)。

先分别对序列lconsume、lincome及lconsme(-1)进行一阶差分,然后对误差修正模型进行估计。

在主窗口命令行中输入:ls d(lconsume) c d(lincome) d(lconsume(-1)) ecm(-1)此时的常数项系数不明显,我们去掉常数项后再进行回归,结果如下图8.6所示图8.6从上式可以看出上式中的T检验值均显著,误差修正项的系数为-0.252,这说明长期均衡对短期波动的影响不大。

(精选)ECM误差修正模型

(精选)ECM误差修正模型

协整与误差修正模型在处理时间序列数据时,我们还得考虑序列的平稳性。

如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。

对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。

若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。

对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。

对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。

建立误差修正模型。

建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF( Augument Dickey-Fuller )和DF(Dickey-Fuller) 检验法。

若序列都是同阶单整,我们就可以对其进行协整分析。

在此我们只介绍单个方程的检验方法。

对于多向量的检验参见Johensen 协整检验。

我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。

补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。

下面我们给出案例分析。

案例分析在此,我们考虑从1978 年到2002 年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1 所示。

根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。

从这个理论出发,我们可以建立如下 ( 8.1 ) 式的模型。

同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。

从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。

误差修正模型课件

误差修正模型课件
总结词
单方程误差修正模型是针对单个经济变量进行建模的方法,主要目的是检验和估计长期均衡关系及其短期调整机 制。
详细描述
单方程误差修正模型基于经济理论,通过一个经济变量对它的长期均衡关系及其短期调整机制进行建模。它通常 采用一阶差分法或协整法来处理非平稳时间序列数据,以识别和估计变量的长期均衡关系及其短期调整机制。
通常用长期均衡方程来描述。
在长期均衡方程中,变量的系数 映了其在长期均衡关系中的贡
献程度。
长期均衡关系通常是在市场机制 的作用下,通过供求关系自发调
节而形成的。
短期调整机制
短期调整机制是指当经济变量受到外 部冲击或其他因素的影响,导致其偏 离长期均衡状态时,系统会自动调整 以重新回到均衡状态的过程。

06
误差修正模型在经济学中的地位与作用
经济学的核心工具
误差修正模型(ECM)是现代经 济学中用于研究长期均衡关系和 短期调整机制的重要工具,尤其 在宏观和微观经济学中占据核心 地位。
揭示经济规律
通过ECM,研究者可以深入探究 经济变量之间的内在关系,揭示 其背后的经济规律和动态机制, 为政策制定提供科学依据。
外汇市场汇率调整的误差修正模型
总结词
该模型用于研究外汇市场汇率的调整机制, 通过分析汇率的短期波动和长期均衡趋势来 预测汇率变化。
详细描述
外汇市场汇率调整的误差修正模型关注汇率 的动态变化,并考虑国内外经济基本面的差 异对汇率的影响。它利用误差项来衡量短期 非均衡程度,并通过调整机制预测长期均衡 汇率的回归,有助于分析汇率的稳定性和波 动性。
短期调整机制通常是通过误差修正机 制来实现的,即系统会根据误差的大 小和方向,自动调整变量的取值,以 使其重新回到长期均衡状态。

误差修正模型

误差修正模型

误差修正模型(Error Correction Model)误差修正模型的产生原因对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析模型。

如:建立人均消费水平(Y)与人均可支配收入(X)之间的回归模型:Y t = α0 + α1X t + μt如果Y与X具有共同的向上或向下的变化趋势,进行差分,X,Y成为平稳序列,建立差分回归模型得:ΔY t = α1ΔX t + v t式中,v t = μt−μt− 1然而,这种做法会引起两个问题:(1)如果X与Y间存在着长期稳定的均衡关系Y t = α0 + α1X t + μt且误差项μt不存在序列相关,则差分式ΔY t = α1ΔX t + v t中的v t是一个一阶移动平均时间序列,因而是序列相关的;(2)如果采用差分形式进行估计,则关于变量水平值的重要信息将被忽略,这时模型只表达了X与Y间的短期关系,而没有揭示它们间的长期关系。

因为,从长期均衡的观点看,Y在第t期的变化不仅取决于X本身的变化,还取决于X 与Y在t-1期末的状态,尤其是X与Y在t-1期的不平衡程度。

另外,使用差分变量也往往会得出不能令人满意回归方程。

例如,使用ΔY1 = ΔX t + v t回归时,很少出现截距项显著为零的情况,即我们常常会得到如下形式的方程:式中,(*)在X保持不变时,如果模型存在静态均衡(static equilibrium),Y也会保持它的长期均衡值不变。

但如果使用(*)式,即使X保持不变,Y也会处于长期上升或下降的过程中,这意味着X与Y间不存在静态均衡。

这与大多数具有静态均衡的经济理论假说不相符。

可见,简单差分不一定能解决非平稳时间序列所遇到的全部问题,因此,误差修正模型便应运而生。

误差修正模型的概述误差修正模型(Error Correction Model,简记为ECM)是一种具有特定形式的计量经济学模型,它的主要形式是由Davidson、Hendry、Srba和Yeo于1978年提出的,称为DHSY 模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、误差修正模型的构造对于yt的(1,1阶自回归分布滞后模型:在模型两端同时减yt-1,在模型右端,得:其中,,,。

记(5-5)则(5-6)称模型(5-6)为“误差修正模型”,简称ECM。

二、误差修正模型的含义如果yt ~ I(1,x t ~ I(1,则模型(5-6)左端,右端,所以只有当yt和x t协整、即yt和x t之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。

当yt和x t协整时,设协整回归方程为:它反映了yt与x t的长期均衡关系,所以称式(5-5)中的ecm t-1是前一期的“非均衡误差”,称误差修正模型(5-6)中的是误差修正项,是修正系数,由于通常,这样;当ecm t-1 >0时(即出现正误差),误差修正项< 0,而ecm t-1 < 0时(即出现负误差),> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。

误差修正模型有以下几个明确的含义:1.均衡的偏差调整机制2.协整与长期均衡的关系3.经济变量的长期与短期变化模型长期趋势模型:短期波动模型:三、误差修正模型的估计建立ECM的具体步骤为:1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性;2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:3.将e t-1作为一个解释变量,估计误差修正模型:说明:(1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量;(2)第2步可以估计动态自回归分布滞后模型:此时,长期参数为:协整回归方程和残差也相应取成:,(3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。

如果存在长期趋势,则在ECM中加入趋势变量。

如果存在自相关性,则在ECM的右端加入误差修正项的滞后期一般也要作相应的滞后项来消除自相关性,调整。

如取成以下形式:由于模型中的各项都是平稳变量,所以可以用t检验判断各项的显著性,逐个剔除其中不显著的变量,当然误差修正项要尽可能保留。

【例5-3】建立例5-2中我国货币供应量与国民收入的误差修正模型。

协整关系。

在例5-2中已经得到我国货币供应量和国民收入的对数都是一阶单整变量,而且是协整的;所以,直接估计误差修正模型(设残差序列是):LS D(LX D(LX E(-1估计结果如图5-9所示,误差修正项的符号是负的,但是t检验不显著。

对模型的残差序列进行自相关检验,DW 检验和BG检验结果都说明存在一阶自相关;所以,点击方程窗口的Estimate按钮,在方程描述框中重新定义待估方程:D(LX D(LX E(-1 D(LX(-1 D(LY(-1根据输出结果,剔除其中不显著的,得到图5-10的估计结果。

模型中误差修正项的符号是负的,而且各项的t检验显著,所以,我国货币供应量的误差修正模型为:(4.87)(-2.92)(-2.58)R2=0.4693 SE=0.0603 DW=0.9649图5-9 ECM的最初估计结果图5-10 ECM的最终估计结果案例分析:我国金融发展与经济增长的协整分析表5-4中列出了1989~2006年期间我国国内生产总值指数(1978=100)、货币供应量M2(亿元)、金融机构年末贷款余额(亿元)和商品零售价格指数(1978=100)的统计资料。

现以货币供应量和贷款余额反映金融的发展情况,分析金融发展与经济增长的协整关系,以及相应的误差修正模型。

表5-4 我国1989~2006年统计资料年份国内生广义货贷款余商品零产总值Y 币M2额L 售价格指数P1 989271.312716.914360.123.41 99281.715293.417680.727.71 991307.619349.921337.8213.71 992351.425402.226322.9225.21 993400.434879.832943.1254.91 994452.846923.539976.0310.21 995502.360750.550544.1356.11 996552.676094.961156.6377.81 997603.990995.374914.1380.8165110448379 9 8.2 98.5 6524.10.9 19 9 9700.9119897.993734.3359.8 20 0 0759.9134610.499371.1354.4 20 0 1823.0158301.9112314.7351.6 20 0 2897.8185007.0131293.9347.0 20 0987.8221222.815899346.3 6.2 72 041087.4254107.0178197.8356.42 051200.8298755.7194690.0359.32 061334.345603.6225347.0362.91.数据处理与单整性检验为消除价格因素的影响,将货币供应量M2和贷款余额L 都除以物价指数P,得到实际货币量;同时为了将各项指标的变化趋势转变成线性趋势,对所有变量都取对数。

变量的处理过程为:GENR LY=LOG(YGENR LMP=LOG(M2/PGENR LLP=LOG(L/P模型形式为:对模型中的变量进行单位根检验,表5-5列出了有关检验结果。

该表是另外一种常用的检验结果表现形式,其中,p表示麦金农单侧概率值,即ADF统计量对应的伴随概率;在ADF统计量值上的*号,表示检验的显著情况:无*号表示不显著,***、**、*分别表示在1%、5%、10%的显著水平下显著。

表5-5的检验结果表明,所有变量都是确定趋势过程,此时不需要再对各个变量的一阶差分进行单位根检验了,即都~I(1。

表5-5 单位根检验输出结果变量(c,t,m)ADF检验值pLY (c,t,3)-3.6044*0.0582LMP (c,t,2)-8.1469***0.0000LLP (c,t,1)-3.9926**0.02912.协整性检验估计协整回归方程,由于模型中变量都含有长期趋势,所以在原模型中再加上取食变量T,键入命令:LS LY C LMP LLP T,估计结果如图5-11所示。

图5-11 协整回归方程估计结果(1)由于模型中LMP与LLP高度相关,多重共线性的影响使得贷款变量的系数符号为负,经济意义不合理。

经过多个模型的测算,最终将LMP与LLP合并成一个变量表示金融的发展规模,得到如图5-12所示的估计结果。

图5-12 协整回归方程估计结果(2)在方程窗口中点击Proc \Make Residual Series,生成残差序列(设变量名为E);进一步检验残差序列的平稳性(检验结果见图5-13),在1%的显著水平下,残差序列是平稳的。

所以,根据EG两步检验法,lnGDP与实际货币和实际贷款(的对数)之间存在着协整关系。

协整回归方程为:图5-13 残差序列E的平稳性检验结果3.建立误差修正模型为表示简单起见,设:LX=LMP+LLP;键入命令:GENR LX=LMP+LLPLS D(LY E(-1输出结果显示E t-1的系数不显著,对模型进行残差检验,发现存在一阶自相关性;所以,在模型中再加入LY和LX的滞后项,利用t检验剔除不显著变量后,得到ECM的最后估计结果(见图5-14)。

图5-14 ECM的最终估计结果所以,我国经济增长与金融发展的关系模型可以表述成:长期均衡关系:短期波动模型:。

相关文档
最新文档