第六章高分子液体的流变性

合集下载

高分子的流变特性

高分子的流变特性
Polymer Physics
高分子物理
8 Polymer Rheology
高分子的流变特性
8.0 Introduction
前言
Rheology 流变学
当高聚物熔体和溶液(简称流体)在受外 力作用时,既表现粘性流动,又表现出弹 性形变,因此称为高聚物流体的流变性或 流变行为.
流变学是研究物质流动和变形的一门科学, 涉及自然界各种流动和变形过程。
弹性
粘性
8.1 Melt Flow
液体流动
Shear Flow and Viscosity
剪切流动与粘度
Shear stress
剪切应力
Shear strain
剪切应变
F
A
dx
dy
dx
A v+dv
F
F
v
dy
Shear rate d dv
切变速率
dt dy
Newton's law
取向观点的解释
在熔体流动过程中,高分子链沿流动方向取向,粘度反 比于取向度
低剪切区:分子链构象变化慢,分子链有足够时间进行松弛,高分 子链的构象实际上没有发生变化,因此粘度没有明显变化 第一 牛顿区
小分子液体的流动:分子向 “孔穴” 相继跃迁
small molecule hole
高分子熔体的流动:链段向 “孔穴” 相继跃迁 Reptation 蛇行
Flow curve
a
Kn
第一牛顿区
0零切粘度
第二牛顿区
无穷切粘度,极限粘度
假塑性区
流动曲线斜率n<1 随切变速率增加,ηa值变小 加工成型时,聚合物流体所经受的 切变速处于该范围内(100-103 s-1)

合成高分子密封材料的黏度与流变性能研究

合成高分子密封材料的黏度与流变性能研究

合成高分子密封材料的黏度与流变性能研究高分子密封材料是一种常用于填充、密封和粘合的材料,具有广泛的应用领域,包括建筑、航空航天、汽车、电子等。

在实际应用中,高分子密封材料的黏度和流变性能的研究对于材料的性能和使用效果有着重要的影响。

首先,黏度是指材料流动阻力的大小。

高分子材料的黏度与材料的化学结构、分子量、分子间相互作用力等因素相关。

在合成高分子密封材料的过程中,通过调整材料的化学配方、合成方法和工艺条件等,可以控制材料的黏度。

黏度的调控可以使材料具有良好的流动性,使其更易于施工和使用。

其次,流变性能是指材料在受力过程中的变形特性。

高分子材料的流变性能包括弹性、塑性、粘弹性等。

通过研究高分子密封材料的流变性能,可以了解材料的变形行为和性能变化规律。

根据流变性能的研究结果,可以优化材料的配方和工艺,提高密封材料的使用寿命和性能稳定性。

在研究高分子密封材料的黏度和流变性能时,常用的方法包括粘度测定、动态力学分析、拉伸试验等。

其中,粘度测定是衡量材料黏度的常用方法,通过测定材料在一定温度下的流动性来评估黏度。

动态力学分析可以研究材料的弹性和粘弹性等流变性能指标。

拉伸试验则可以了解材料的塑性变形特性和拉伸性能。

在实际应用中,高分子密封材料的黏度和流变性能直接影响着材料的施工性能和使用寿命。

过低的黏度会导致材料流动性差,不易施工和填充;过高的黏度会导致材料黏度大,不易涂敷和使用。

流变性能差的材料在受力过程中容易产生变形和破裂现象,降低了材料的使用寿命。

因此,合成高分子密封材料时需要综合考虑黏度和流变性能指标,以实现材料的优化设计和性能提升。

在研究中,可以通过调整高分子材料的配方,包括添加剂的种类和用量、溶剂的选择等来调控材料的黏度和流变性能。

同时,通过改变合成方法和工艺条件,例如温度、压力等,也可以对材料的性能进行调整。

通过系统的实验设计和数据分析,可以获得一系列不同黏度和流变性能的高分子密封材料,从而为实际应用提供选择和参考。

高分子材料的流变性能与动力学行为研究

高分子材料的流变性能与动力学行为研究

高分子材料的流变性能与动力学行为研究高分子材料是当代材料科学中的重要一环,其广泛应用于塑料、橡胶、纤维等多个领域。

了解高分子材料的流变性能以及其动力学行为,对于优化材料制备过程、提升材料性能具有重要意义。

本文将针对高分子材料的流变性能与动力学行为进行探讨。

一、高分子材料的流变性能研究方法1. 流变仪测量流变仪是研究高分子材料流变性能的重要工具,在实验室中得到广泛应用。

通过对高分子材料进行剪切或挤出等力学加载,流变仪可以实时监测和记录材料的变形过程。

从流变曲线中可以提取出粘弹性参数,如剪切模量、流变指数等,用于表征材料的形变特性。

2. 分子动力学模拟分子动力学模拟是一种基于物理力学原理,模拟高分子材料分子间相互作用和运动行为的计算方法。

通过分子动力学模拟,可以得到高分子材料的微观结构和动态特性,从而揭示材料在宏观层面上所表现出的流变性能。

二、高分子材料的流变性能研究结果与分析1. 高分子材料的流变行为在流变性能研究中,高分子材料常常表现出非线性和时变等特点。

例如,高分子材料的应力-应变曲线在低应变范围内呈现线性行为,但在较大应变下则会出现非线性变形。

此外,高分子材料还存在着时变性能,即随着加载时间的延长,材料的流变性能会发生变化。

2. 高分子材料的黏弹性行为高分子材料同时具有固体和液体的特性,呈现出黏弹性行为。

在小应变下,高分子材料表现出固体的弹性特性,而在大应变下,材料则表现出液体的流动行为。

这种固液相互转换导致了高分子材料的黏弹性,使其在应用中可以同时满足强度和变形需求。

3. 高分子材料的温度对流变性能的影响温度是影响高分子材料流变性能的重要因素之一。

随着温度的升高,高分子材料的粘度会降低,流动性能增加;而在低温下,材料可能会变得脆性。

因此,合理控制材料的温度可以调控其流变性能,提高其加工性能和应用性能。

三、高分子材料的动力学行为研究1. 高分子材料的分子间相互作用高分子材料的流变性能与其分子间的相互作用密切相关。

高分子流变学

高分子流变学

郝文涛,合肥工业大学化工学院
4
第一节 流是研究材料的流动和变形的科学, 它是一门介于力学、化学、物理与工程科学 之间的新兴交叉学科(这里说的材料既包括 流体形态,也包括固体形态的物质)。
郝文涛,合肥工业大学化工学院
5
流变学是研究材料的流动和变形的科学
一般情况下,实际材料往往表现出非理想 弹性,亦非理想粘性的力学性质。
如沥青、粘土、橡胶、石油、蛋清、血浆、食 品、化工原材料、泥石流、地壳,尤其是形形 色色高分子材料和制品。 它们既能流动,又能变形;既有粘性,又有弹 性;变形中会发生粘性损耗,流动时又有弹性 记忆效应,粘弹性结合,流变性并存。
郝文涛,合肥工业大学化工学院
6
流变学是研究材料的流动和变形的科学
对于这类材料,仅用牛顿流动定律或虎克 弹性定律已无法全面描述其复杂力学响应 规律,必须发展一门新学科——流变学对 其进行研究。
郝文涛,合肥工业大学化工学院 34
1. 结构流变学
稀溶液粘弹理论发展比较完备。RouseZimm-Lodge等人的贡献。已经能够根据分 子结构参数定量预测溶液的流变性质。 浓厚体系和亚浓体系粘弹理论。de Gennes 和Doi-Edwards的贡献。将多链体系简化为 一条受限制的单链体系,提出蛇行蠕动模 型。 结构流变学进展对高分子凝聚态物理基础 理论的研究具有重要价值。
郝文涛,合肥工业大学化工学院
29
3. 血液流变学
1948年Copley提出生物流变的概念,即血液、淋巴液其他 体液、玻璃体,软组织如血管、肌肉、晶体、甚至骨骼, 细胞质等均可发生流变。 到1951年,提出研究血液及其有形成分的流动性与形变规 律的流变叫血液流变学(hemorheology)。 这是生物、数学、化学及物理等学科交叉发展的边缘科 学,目前研究全血在各切变率下的表现粘度称为宏观流变 学;而研究血液有形成分的流变学特性,如红细胞的变 形、聚集、表面电荷等,称为血细胞流变学(cellular hemorheology)。 近年来,发展到从分子水平研究血液成分的流变特性,如 红细胞膜中骨架蛋白、膜磷脂对红细胞流变性的影响,血 浆分子成分对血浆粘度的影响等,这些属于分子血液流变 学(molecular hemorheology)。 /Article/xlb/200506/755.html

高分子熔体的流变性

高分子熔体的流变性
非牛顿流体定义
高分子熔体属于非牛顿流体的范畴, 其流动行为不符合牛顿流体的线性关 系。
流动曲线与粘度曲线
非牛顿流体的流动曲线和粘度曲线通 常呈现出非线性特征,可以通过流变 实验进行测定和分析。
弹性与塑性表现
高分子熔体的弹性
01
高分子熔体在流动过程中表现出一定的弹性,即在外力作用下
发生形变后能够部分恢复。
高分子熔体组成
由长链状大分子和少量添 加剂(如增塑剂、稳定剂 等)组成。
高分子熔体分类
根据来源和性质不同,高 分子熔体可分为热塑性熔 体和热固性熔体。
流变性研究意义及应用
研究意义
流变性是高分子熔体的重要物理性质,对其加工性能和产品质量具有重要影响。 通过研究高分子熔体的流变性,可以优化加工工艺、提高产品质量、降低生产 成本。
理论计算方法
结果分析与讨论
采用数值模拟方法对高分子熔体流动 行为进行理论计算,如有限元法、有 限差分法等。
对理论计算和实验结果进行分析和讨 论,探究高分子熔体流动行为的内在 规律和影响因素。
实验验证方法
通过实验手段对高分子熔体流动行为 进行验证,如流变仪测试、毛细管流 变实验等。
04 高分子熔体加工过程中的 流变性
现代流动理论发展
分子链缠结理论
高分子链之间的缠结作用对熔体 流动行为产生重要影响,缠结程 度与分子量、分子链结构等因素
密切相关。
蠕虫状链模型
该模型将高分子链视为由一系列蠕 虫状链段组成,可描述高分子熔体 的非线性粘弹性行为。
瞬态网络理论
高分子熔体在流动过程中形成瞬态 网络结构,该理论可解释高分子熔 体的触变性、震凝性等现象。
03 高分子熔体流动模型与理 论
经典流动模型介绍

高分子液体的流变性

高分子液体的流变性

表6-2 一些高分子材料体系的粘流活化能
聚合物 天然橡胶 Eη / kcal· mol-1 0.25 Eη / kJ· mol-1 1.04 聚合物 PS Eη / kcal· mol-1 22~23 Eη / kJ· mol-1 92~96
顺丁橡胶
丁苯橡胶
2.3
3.1
9.6
12.9
PC
PVC
26~30
高分子熔体和溶液具有流变性,是高分子材料可以加工成 型不同形状制品的依据。
流动 流变性 变形
粘性, 不可逆过程, 耗散能量 非线性粘弹性
弹性, 可逆过程, 储存能量
研究聚合物的流变规律性,对于聚合反应工程和聚合物加工 工艺的合理设计、正确操作,对于获得性能良好的制品,实 现高产、优质、低耗具有重要指导意义。
流动曲线的差异归根结底反映了分子链结构及流动机理的 差别。一般讲,分子量较大的柔性分子链,在剪切流场中易 发生解缠结和取向,粘-切依赖性较大。长链分子在强剪切场 中还可能发生断裂,分子量下降,也导致粘度降低。
(二)分子结构参数的影响
主要参数为超分子结构参数,即平均分子量、分子量 分布、长链支化度。 1、平均分子量的影响
35~40
108.3~125
147~168
丁腈橡胶
聚二甲基 硅 氧烷 HDPE LDPE PP PP(长支 链较多)
5.42
4.0 6.3~7.0 10~12.8 10~11 11~17
22.6
16.7 26.3 ~ 29.2 41.9~ 53.6 41.9~46 46~71.2 醋酸纤维素 ABS(20%橡胶) ABS(30%橡胶) ABS(40%橡胶) 70 26 24 21 293.3 108.3 100 87.5

第六章流变学

第六章流变学


从微观结构上来看,胀性体系的悬浮体是高浓度的,固含 量高达40%以上,润湿性能良好;震凝性体系的固含量很 低仅1-2%左右,而且粒子完全不是对称性的,因此形成凝 胶完全是粒子定向排列的结果。但震凝性体系并不很多。

触变性是指一些体系在搅动或其他机械作用下,能使凝胶 状的体系变成流动性较大的溶胶,静置一段时间后又恢复 原来的凝胶状态。超过一定浓度的Fe(OH)3、V2O5溶胶以 及粘土泥浆、油漆等均有这种性质。
8.2 粘度的测定

测定粘度是研究流变学的最基本方法,测定方法有多种, 如落球法、振动法、毛细管流动法和转筒法等。
8.2.1 毛细管粘度计---液体的管式流动

毛细管粘度计是测定粘度的最常用方法之一。其基本原理 是在一定压力下液体通过一定长度和半径的毛细管,测定 它的流速就能计算液体的粘度。

常见的毛细管粘度计有Ostwald型和Ubbelohde型两种。

只有悬浮体粒子浓度达到彼此可以相互接触时才会有塑性 现象。
8.5

假塑性体系 羧甲基纤维素、淀粉、橡胶等高分子溶液均为假塑性体 系。

特点是体系没有屈服值,流变曲线从原点开始,粘度不 是一个固定不变的常数。

与牛顿流体的差别在于有不对称取向,在高切速率下转 而定向,粘度不再变化。
8.6 胀性体系

达到新平衡所需的时间叫做松弛时间,此过程叫松弛过程。 在外力作用下,体系内部会有应力产生,开始时应力很大, 然后随时间应力逐渐松弛下来,这个过程叫应力松弛效应。
8.8.2 Weissenberg效应

Weissenberg效应是粘弹性的另一重要特征,1947年提出。 如果搅棒在粘弹性液体内搅动,液体会沿着棒向上爬, 爬的高度决定于液体的粘弹性和棒的旋转速率,这种能 克服地心引力和本身旋转离心力而又与切力方向无关的 现象,称为

高分子液体的奇异流变性能

高分子液体的奇异流变性能

这些现象都与高分子液体
的弹性行为有关,这种液 体的弹性性质使之容易产 生拉伸流动,而且拉伸液 体的自由表面相当稳定。 实验表明,高分子浓溶液 和熔体都具有这种性质, 因而能够产生稳定的连续 拉伸形变,具有良好的纺 丝和成膜能力。
各种次级流动
研究表明,高分子液体在均匀梯度下通过非圆形管道流动时, 往往在主要的纯轴向流动上,附加出现局部区域性的环流, 称为次级流动,或二级流动,在通过截面有变化的流道时, 有时也发生类似的现象,甚至更复杂的还有三次、四次流动 等。一般认为,牛顿型液体旋转时的次级流动是离心力造成 的,而高分子液体的次级流动方向往往与牛顿型液体相反, 是由粘弹力和惯性力综合形成的。这种反常的次级流动在流 道与模具设计中十分重要。
力的性质(剪切力或拉伸力)、大小及作用速
率等。下面介绍九种著名的高分子特征流变现 象。
高粘度与“剪切变稀”行为 Weissenberg效应 挤出胀大现象 不稳定流动和熔体破裂现象 无管虹吸,拉伸流动和可纺性 各种次级流动 孔压误差和弯流压差 湍流减阻效应 触变性和震凝性
高粘度与“剪切变稀”行为
孔压误差和弯流压差
测量流体内压力时,若压力传感器端面安装得低于流道壁面,形成凹 槽,则测得的高分子液体的内压力将低于压力传感器端面与流道壁面 相平时测得的压力,如图中有Ph< P,这种压力测量误差称孔压误差。 牛顿型流体不存在孔压误差,无论压力传感器端面安装得与流道壁面 是否相平,测得压力值相等。高分子液体有孔压误差现象,其产生原 因被认为在凹槽附近,流线发生弯曲,但法向应力差效应有使流线伸 直的作用,于是产生背向凹槽的力,使凹置的压力传感器测得的液体
与剪切变稀效应相对的是剪切变稠相应,
高分子即液体在流动过程变现出粘度随剪切速 率增大而升高的反常现象,如高浓度的聚氯乙 烯塑料溶胶。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子熔体
高分子材料熔融后 (T 大于粘流温度T f 或 熔点Tm)的凝聚状态
高分子液体
高分子溶液
本章中多指 高分子浓溶液
高分子熔体和溶液具有流变性,是高分子材料可以 加工成型不同形状制品的依据。
6.1 高分子材料粘流态特征及流动机理
粘流态是指高分子材料处于流动温度(T f)和分解温 度(Td)之间的一种凝聚态 。 绝大多数线型高分子材料具有粘流态。 对非晶的无定型聚合物而言,温度高于流动温度即进入粘 流态(参看图6-1)。 对结晶型聚合物而言,分子量低时,温度高于熔点(Tm) 即进入粘流态;分子量高时,熔融后可能存在高弹态,需继续 升温,高于流动温度才进入粘流态(参看图6-2)。
塑料加工
橡胶加工
纤维加工
粘流态 聚合物的结构(特别是聚集态),粘流温度, 粘性流动性质 研究之间的规律,对加工具有重要的意义 规律的复杂性,研究的重要性 高聚物流变学:研究聚合物的流动和变形
流动
粘性, 不可逆过程, 耗散能量 非线性粘弹性 弹性, 可逆过程, 储存能量
流变性
变形
研究聚合物的流变规律性,对于聚合反应工程和聚合物加 工工艺的合理设计、正确操作,对于获得性能良好的制品, 实现高产、优质、低耗具有重要指导意义。
P
N
P N d d
各种流体的流动曲线
各种流体表观度与剪切速率的关系
B为宾汉流体;p为假塑性流体;N为牛顿流体;d为膨胀性流体
高分子液体不完全服从牛顿流动定律,属于非牛顿型流体 。
→0)近似遵循牛顿流动定 对大多数高分子熔体而言,低速流动时( 律,其粘度称零剪切粘度,也记为 0 ;流速较高时,剪切应力与剪 切速率之间不再呈直线关系(图6-3)。
非晶与结晶聚合物的温度-形变曲线
图6-1 非晶态线型聚合物 的温度-形变曲线 对非晶的无定型聚合物而言,温度 高于流动温度Tf即进入粘流态。
图6-2 结晶聚合物的温度-形变曲线 分子量低时,温度高于T m 即进入粘流态; 分子量高时,温度高于Tf 才进入粘流态
表6-1 部分聚合物的流动温度
聚合物 天然橡胶 NR 低压聚乙烯 HDPE 聚氯乙烯 PVC 聚苯乙烯 PS 流动温度 /℃ 126-160 170-200 165-190 ~170 聚合物 聚丙烯 PP
聚甲基丙烯酸甲酯 PMMA
流动温度 / ℃ 200-220 190-250 250-270 170-190
尼龙66 PA66 聚甲醛 POE
粘流态主要特征
从宏观看是在外力场作用下,熔体产生 不可逆永久变形(塑性形变和流动)
从微观看,处于粘流态的大分子链产 生了重心相对位移的整链运动
大空穴 流动活化能
表观粘度 a ——定义曲线上一点到坐 标原点的割线斜率为流体的表观粘度
a /
(6-3)
可以看出,表观粘度是剪切速率(或剪切应力)的函数。 剪切速率增大,表观粘度降低,呈剪切变稀效应。 我们称这类流体为假塑性流体(大多数高分子熔体和浓溶液)。 表观粘度单位与牛顿粘度相同。
图6-4 假塑性高分子液体的流动曲线 a -剪切速率曲线 左图:剪切应力-剪切速率曲线; 右图:表观粘度
膨胀性流体(或称胀流体)与假塑性流体相反,随着剪切 速率或剪切应力的增加,粘度升高,即发生剪切变稠。 如高聚物悬浮液、胶乳和高聚物-填料体系等。
s K
n
K是常数,n是表征偏离牛顿流动的程度的指数,称为非牛 顿指数。假塑性流体n<1,而胀流体n>1。牛顿流体可以 看成是n=1的特殊情况,此时K= 0
0
(6-2)
牛顿流体的流动曲线是一条通过原点的直线(见图6-3)。 -- 低分子液体和高分子稀溶液
图6-3 牛顿流体与假塑性流体的流动曲线 直线斜率即剪切粘度 0 ,显然 0 是与剪切速率和剪切应力无关的材料常数。
凡是不符合牛顿流体公式的流体,统称为非牛顿流体,其 中流变行为与时间无关的有假塑性流体、胀塑性流体和宾 汉(Bingham)流体。他们的流动曲线如图所示。 B B
n K

a K n1
(6-4)
s G
s y p

s< y
s≥ y
式中 y又称屈服应力, p 称宾汉粘度或塑性粘度, G是剪切模量
2、幂律方程 实验发现,许多高分子熔体和浓溶液,在通常加 工过程剪切速率范围内(大约 =100-103 s-1),剪切 应力与剪切速率满足如下经验公式:
另一种非牛顿流体是宾汉流体(或称塑性流体),具有名 符其实的塑性行为,即在受到的剪切应力小于某一临界值 时不发生流动,相当于虎克固体,而超过临界值后,则可 像牛顿液体一样流动。
宾汉流体的假塑性行为或流动临界应力的存在,一般解释 为与分子缔合或某种有序结构的破坏有关。 如泥浆、牙膏和油脂,涂料特别需要这种塑性。
流动机理
流动单元:粘流态下大分子运动的基本 结构单元不是分子整链,而是链段
所谓大分子的整链运动,是通过链段 相继跃迁,分段位移实现的
分子整链
链段
分子整链的运动如同一条蛇的蠕动
几点说明
(1)交联和体型高分子材料不具有粘流态,如硫化橡胶 及酚醛树脂,环氧树脂,聚酯等热固性树脂。 (2)某些刚性分子链和分子链间有强相互作用的聚合物, 如纤维素酯类、聚四氟乙烯、聚丙烯腈、聚乙烯醇等,其 分解温度低于流动温度,因而也不存在粘流态。 (3)在粘流态下,材料的形变除有不可逆的流动成份外, 还有部分可逆的弹性形变成份,因此这种流动称为流变性, 或称为“弹性流动”或“类橡胶液体流动”。
6.2 高分子液体的流动曲线和流动规律
1、定义物理量
剪切应力 ——单位层面上的剪切力称剪切应力,单位为Pa; 剪切速率 ——单位时间内发生的剪切形变称剪切速率,单位为s-1。 d / dt (6-1)
牛顿流动定律——大多数小分子液体流动时,剪切应力 与剪切速率成正比,遵循牛顿流动定律。 剪切粘度——比例系数 0为常数剪切粘度,又称牛顿粘度, 单位为 Pa· s 或泊。1 Pa· s =10泊 液体速度梯度(剪切速率)为1秒-1时, 单位面积上所受的阻力
相关文档
最新文档