一般形式的柯西不等式-高中数学知识点讲解

合集下载

人教A版数必修课件一般形式的柯西不等式

人教A版数必修课件一般形式的柯西不等式

=94(64+36+4×144)=392,
又(-8x+6y-24y)2=392,
∴(x2+y2+z2)[(-8)2+62+(-24)2]
=(-8x+6y-24z)2,
即不等式①中只有等号成立时满足条件. 从而由柯西不等式中等号成立的条件,得 -x8=6y=-z24. 它与-8x+6y-24z=39 联立,可得 x=-163,y=296,z=-1183.
探究三 柯西不等式其他形式的应用 [例 3] 已知实数 a,b,c,d 满足 a+b+c+d=3,a2+2b2+3c2+6d2=5,试求 a 的范围. [解析] 由柯西不等式得,有 (2b2+3c2+6d2)12+13+16≥(b+c+d)2, 即 2b2+3c2+6d2≥(b+c+d)2. 由条件可得,5-a2≥(3-a)2, 解得 1≤a≤2.
3.设 a、b、c 是正实数,且 a+b+c=9,则2a+2b+2c的最小值是________. 解析:∵(a+b+c)2a+2b+2c
=[( a)2+( b)2+( c)2]
2a2+
2b2+
22 c
≥ a· 2a+ b· 2b+ c· 2c2=18.
∴2a+2b+2c≥2.
答案:2
4.边长为 a,b,c 的三角形,其面积为14,外接圆半径为 1,若 s= a+ b+ c, t=1a+1b+1c,则 s 与 t 的大小关系是________. 解析:S△=a4bRc=a4bc=14,即 abc=1, ∴t=ab+bc+ca, t2=(ab+bc+ca)1a+1b+1c ≥( a+ b+ c)2=s2, 又 a,b,c>0,∴s≤t. 答案:s≤t
二 一般形式的柯西不等式
考纲定位
重难突破
1.理解三维形式的柯西不等式,在此基础上, 重点:一般形式的柯西不等式的几何意

高中数学第二章几何重要的不等式212一般形式的柯西不等式课件北师大版选修4

高中数学第二章几何重要的不等式212一般形式的柯西不等式课件北师大版选修4

取到.
第23页
题型三 柯西不等式的综合应用 例 4 (2015·福建)已知 a>0,b>0,c>0,函数 f(x)=|x+a|+|x -b|+c 的最小值为 4. (1)求 a+b+c 的值; (2)求14a2+19b2+c2 的最小值.
第24页
【解析】 (1)因为 f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)| +c=|a+b|+c,
第11页
思考题 1 若 x,y,z∈R+,且 x2+y2+z2=1,求证:0<xy +yz+zx≤1.
【证明】 (x2+y2+z2)(y2+z2+x2)≥(xy+yz+zx)2,即 1≥(xy +yz+zx)2,又 x,y,z∈R+,∴0<xy+yz+zx≤1.
第12页
题型二 利用柯西不等式求最值 例 2 设 2x+3y+5z=29,求函数 u= 2x+1+ 3y+4+ 5z+6的最大值. 【思路】 由题目可获取以下主要信息:①已知变量 x,y,z 之间的关系符合特定条件;②所求式子中含有根式.解答本题的关 键是去掉根号,并且利用好特定条件.
第6页
3.柯西不等式的两个变式 (1)当 ai∈R,bi>0(i=1,2,…,n),∑i=n1 abi2i ≥(∑i∑i=n=n11abi)i 2,当且 仅当 bi=λai 时等号成立. (2)设 ai,bi 同号且不为 0(i=1,2,…,n),则i∑=n1 baii≥(∑i∑=in=n11aaibi)i 2, 当且仅当 bi=λai 时,等号成立.
第9页
≥(
a· b
b+
b· c
c+
c· a
a)2
=(a+b+c)2,
即(ab2+bc2+ca2)(a+b+c)≥(a+b+c)2.

课件2:二 一般形式的柯西不等式

课件2:二 一般形式的柯西不等式

方法二:令 m=( 4a+1, 4b+1, 4c+1).n=(1,1,1), 则|m|= 4a+1+4b+1+4c+1= 4(a+b+c)+3= 7, |n|= 12+12+12= 3. m·n= 4a+1+ 4b+1+ 4c+1, 由|m·n|≤|m||n|,得 4a+1+ 4b+1+ 4c+1≤ 21. 故 4a+1+ 4b+1+ 4c+1的最大值为 21,当且仅当 a= b=c=13时,取等号.
证法二:(利用柯西不等式) (x+y+z)1x+4y+9z ≥ x· 1x+ y· 4y+ z· 9z2=(1+2+3)2=36, 当且仅当 x2=14y2=19z2, 即 x=16,y=13,z=12时等号成立.
【例 2】设 a,b,c 为正实数,且 a+b+c=3,求证: 2a+1+ 2b+1+ 2c+1≤3 3.
典例剖析
【例 1】 已知 a,b,c∈R+, 求证:ab+bc+acba+bc+ac≥9. 【分析】利用柯西不等式证明其他不等式时,关键是构造两
组数,向着柯西不等式的形式转化.本例中对应三维柯西不等式,
记 a1=
ab,a2=
bc,a3=
ac,b1=
b a,
b2= bc,b3= ac,而 a1b1=a2b2=a3b3=1,因而得证.
思考探究
三维形式的柯西不等式中等号成立的条件写成
ab11=ba22=
a3 b3
可以吗?
提示 不可以.因为若出现 bi=0(i=1,2,3)的情况,则分式
不成立了,但是,可以利用分式的形式来形象地记忆.
名师点拨 1.三维形式的柯西不等式 三维形式的柯西不等式可以对比二维形式的柯西不等式来 理解和记忆,一般形式的柯西不等式又可以参照三维形式的柯 西不等式来理解和推广,这样易于记忆不等式的结构特征,对 不等式等号成立的条件加深理解.

数学课件:2.1.2 柯西不等式的一般形式及其参数配方法的证明

数学课件:2.1.2 柯西不等式的一般形式及其参数配方法的证明


(
������

������������)2
������=1
������
∑ ������������
,
当且仅当ai=λbi(i=1,2,…,n)时,等号成立.
变形(2)
������=1

������
ai,bi(i=1,2,…,n)同号且不为零,则 ∑
������=1
������������ ������������
名师点拨记忆柯西不等式的一般形式,一是抓住其结构特点:左
边是平方和再开方的积,右边是积的和的绝对值;二是与二维形式
的柯西不等式类比记忆.
知识拓展柯西不等式的变形和推广:
变形(1) 设 ai,bi∈R,bi>0(i=1,2,…,n),
������
则∑
������=1
���������2��� ������������
=
������2 ������2
=

=
������������ ������������
时等号成立.
∴(a1b1+a2b2+…+anbn)2≤4. ∴-2≤a1b1+…+anbn≤2. ∴所求的最大值为2.
答案:C
1.一般形式的柯西不等式如何应用? 剖析:我们主要利用柯西不等式来证明一些不等式或求值等问题, 但往往不能直接应用,需要对数学式子的形式进行变形,拼凑出与 一般形式的柯西不等式相似的结构,才能应用,因而适当变形是我 们应用一般形式的柯西不等式的关键,也是难点.我们要注意在应 用柯西不等式时,对于数学式子中数或字母的顺序要对比柯西不等 式中的数或字母的顺序,以便能使其形式一致,然后应用解题. 2.如何利用“1”? 剖析:数字“1”的利用非常重要,为了利用柯西不等式,除了拼凑应 该有的结构形式外,对数字、系数的处理往往起到某些用字母所代 表的数或式子所不能起的作用.这要求在理论上认识柯西不等式与 实际应用时二者达到一种默契,即不因为“形式”与“面貌”的影响而 不会用柯西不等式.

一般形式的柯西不等式

一般形式的柯西不等式

柯西不等式的证明
数学归纳法证明
首先证明 n=2 的情况,然后假设 n=k 时成立,推导出 n=k+1 时也成 立。
二次型的方法证明
将柯西不等式转化为二次型的形式, 利用二次型的基本性质进行证明。
02
柯西不等式的应用
在数学中的应用
证明不等式
柯西不等式是证明各种数学不等式的重要工 具,如均值不等式、几何均值-算术均值不 等式等。
广义形式的柯西不等式
总结词
广义形式的柯西不等式是在更广泛的函数空间中推广的柯西不等式,它适用于连 续函数和可积函数。
详细描述
广义形式的柯西不等式表述为,对于任意的非负可积函数$f(x)$和$g(x)$,有$int f(x) g(x) dx leq left( int f(x)^2 dx right)^{1/2} left( int g(x)^2 dx right)^{1/2}$。
用范围。
柯西不等式与其他数学知识的结合
柯西不等式与线性代数
柯西不等式在向量内积和矩阵运算中有 重要应用,研究其与线性代数的结合有 助于更深入理解线性代数的基本概念。
VS
柯西不等式与微积分
柯西不等式在微积分中也有广泛应用,如 函数极值、积分等,研究其与微积分的结 合有助于更深入理解微积分的基本思想。
一般形式的柯西不等式
目录
• 柯西不等式的定义 • 柯西不等式的应用 • 柯西不等式的推广 • 柯西不等式的局限 • 柯西不等式的进一步研究
01
柯西不等式的定义任意 的正实数序列 a1, a2, ..., an 和 b1, b2, ..., bn,有 (∑(ai^2)) * (∑(bi^2)) ≥ (∑(ai * bi))^2。
04

5.4一般形式的柯西不等式 课件(人教A版选修4-5)(2)

5.4一般形式的柯西不等式 课件(人教A版选修4-5)(2)

9 z
( x y z)
14 (
) (
)
14 4 6 12 36 当且仅当 y 2 x , z 3 x , 即 x 1 6 ,y 1 3 ,z 1 2 时 , 等号成立 .
课外练习:
1 在 ABC 中 , 设其各边长为 求证 : ( a b c )(
2 2 2
a , b , c , 外接圆半径为 1
2
R,
2
1
2
B sin
1
2
) 36 R C
sin A sin 2 .设 a , b , c 为正数 , 且 a b c 1 ,
求证 : ( a
1 a
) (b
2
1 b
) (c
2
1 c
)
2
100 3
3 .若 n 是不小于 2的正整数 , 试证 : 4 7 1 1 2 1 3 1 4 1 2n 1 1 2n 2 2
根据上面结果,你能猜想出一般形式的柯西不 等式吗?
猜想并证明 结论
猜想柯西不等式的一般形式
2 2 2 2 2 2 2
(a1 a2 an )(b1 b2 bn ) ≥ (a1b1 a2 b2 anbb ) ②
2 2 分析: A a 12 a 2 a n , B a b a b a b 设 1 1 2 2 n n 2 2 2 C b1 b 2 b n , 不 等 式 ② 就 是 A C ≥ B 2
构造二次函数 f ( x ) ( a 1 a 2 a n ) x 2 ( a 1 b1 a 2 b 2 a n b n ) x

一般形式的柯西不等式及排序不等式

一般形式的柯西不等式及排序不等式

巩固练习一、
[ 例 1] 1 1 设 x1,x2,„,xn 都是正数,求证: + +„ x1 x2
1 n2 +x ≥ . n x1+x2+„+xn
已知 a,b,c,d 为不全相等的正数,求证: 1 1 1 1 1 1 1 1 + + + > + + + . a2 b2 c2 d2 ab bc cd da
[例 2]
π aA+bB+cC 在△ABC 中,试证: ≤ 3 a+b+c
[证明]
1 1 ∵a≥b>0,于是a≤b,
1 1 又 c>0,从而 ≥ , bc ca 1 1 1 1 1 同理ca≥ab,从而bc≥ca≥ab. 又由于顺序和不小于乱序和,故可得 a5 b5 c5 b5 c5 a5 + + ≥ + + b3c3 c3a3 a3b3 b3c3 c3a3 a3b3 b2 c2 a2 1 1 1 = 3+ 3+ 3(∵a2≥b2≥c2, 3≥ 3≥ 3) c a b c b a c2 a2 b2 1 1 1 ≥ 3+ 3+ 3= + + c a b c a b 1 1 1 = + + . a b c 所以原不等式成立.
和 S4=a1b2+a2b3+a3b1=195
备注 乱序和
S5=a1b3+a2b1+a3b2=185 S6=a1b3+a2b2+a3b1=180 (最小值)
乱序和
反序和
答案:220 180
知识总结点拨
1.对排序不等式的证明的理解 对排序不等式的证明中,用到了“探究——猜想——检验—— 证明”的思维方法,这是探索新知识、新问题常用到的基本方 法,对于数组涉及的“排序”及“乘积”的问题,又使用了 “一一搭配”这样的描述,这实质上也是使用最接近生活常识

一般形式的柯西不等式

一般形式的柯西不等式
2 2 2 2 2 2
∴( a b ) ≥ (2ab)
2 2
2
2
2
2
∴ a b ≥ 2ab ≥ 2ab,
∴ a b ≥ 2ab
等号成立时当且仅当a b
2
2
( 2 )证 明 : ∵ ( a b )( 1 1 ) ≥ ( a b ) ,
2 2 2 2 2
∴ 2(a b ) (a b)
2 2
∴a b c d
ab bc cd da
例 2:已知 a , b , c , d 是不全相等的实数, 2 2 2 2 证明: a b c d ≥ a b b c c d d a .
证明 ( a b c d )( b c d (ab bc cd da )
2 2 2 2 2 2 2
解疑:
令 ( x1 , x 2 , x 3 ), ( y 1 , y 2 , y 3 ) ,
由于空间向量中 ≥ 也成立 .所以
( x1 x 2 x 3 )
2 2 2
2
2
2
( y 1 y 2 y 3 ) ≥ x1 y 1 x 2 y 2 x 3 y 3 ,
定理 4: (一般形式的柯西不等式) : 设 n 为大于 1 的自然数, x i , y i R ( i 1, 2 , 3,
( x1 x 2
2 2
, n ) ,则:
xn yn )
2
x n )( y 1 y 2
2
2
2
y n ) ( x1 y 1 x 2 y 2
2 2 2
2
2
2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档