七年级数学下册第九章《三角形》9.1三角形的边三角形三边关系性质的应用素材(新版)冀教版
华东师大版数学七年级下册课件:9.1.3 三角形的三边关系(共17张PPT)

解:设第三根木棒的长度为acm,则由三角形三 边长的关系可得
8-5 <a < 8+5 即 3<a<13
故第三根木棒的长度应大于3cm,小于13cm,才能 与5cm,8cm的木棒组成三角形?
及时巩固
1、判断下列各组线段中,哪些能组成三角形, 哪些不能组成三角形,并说明理由。 (1)a=2.5cm, b=3cm, c=5cm. (2)e=6.3cm, f=6.3cm, g=12.6cm. 2、已知等腰三角形的两边长分别是3cm和6cm,则
A
D
B
C
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。
冀教版数学七年级下册9.1《三角形的边》教学设计

冀教版数学七年级下册9.1《三角形的边》教学设计一. 教材分析冀教版数学七年级下册9.1《三角形的边》是初中的基础课程,主要让学生了解三角形的三条边之间的关系,掌握三角形的性质。
本节内容主要包括三角形的定义、三角形的边长关系、三角形的分类等。
通过本节课的学习,学生能够理解三角形的基本概念,掌握三角形边长之间的关系,并能运用这些知识解决实际问题。
二. 学情分析七年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。
但是,对于三角形这一概念,他们可能还存在着模糊的认识,需要通过实例来进一步明确。
此外,学生对于数学概念的理解往往停留在表面,需要通过大量的练习来加深对概念的理解。
三. 教学目标1.知识与技能:让学生理解三角形的基本概念,掌握三角形边长之间的关系,能运用这些知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生抽象概括的能力,发展空间观念。
3.情感态度与价值观:让学生在解决实际问题的过程中,体验数学的价值,增强学习的信心,培养合作精神。
四. 教学重难点重点:三角形的基本概念,三角形边长之间的关系。
难点:对三角形概念的理解,三角形边长关系的运用。
五. 教学方法1.情境教学法:通过生活情境,让学生在实际问题中感受三角形的存在,理解三角形的基本概念。
2.活动教学法:让学生通过实际操作,自主探索三角形的性质,培养学生的动手能力。
3.引导发现法:教师引导学生发现问题,分析问题,从而解决问题,培养学生的思维能力。
六. 教学准备1.教具准备:三角板、直尺、圆规等。
2.教学课件:制作课件,展示三角形的图片,动画等。
七. 教学过程1.导入(5分钟)通过展示生活中常见的三角形图片,如自行车的三角形车架、三角形的屋顶等,引导学生发现三角形的存在,激发学生的学习兴趣。
同时,让学生举例说明生活中见到的三角形,进一步理解三角形的概念。
2.呈现(10分钟)利用课件,展示三角形的基本概念,三角形的边长关系。
初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(8)

章节测试题1.【答题】三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是()A. 10或12B. 10或14C. 12或14D. 14或16【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:设三角形第三边的长为a,∵三角形的两边长分别为3和5,∴5﹣3<a<5+3,即2<a<8,∵a为偶数,∴a=4或a=6,当a=4时,这个三角形的周长=3+4+5=12;当a=6时,这个三角形的周长=3+5+6=14.综上所述,这个三角形的周长可能是12或14.选C.方法总结:本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,两边之差小于第三边.2.【答题】已知三角形两边长分别为7、11,那么第三边的长可以是()A. 2B. 3C. 4D. 5【答案】D【分析】根据三角形的三边关系进行判断.【解答】设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,选D.3.【答题】以下列各组数据为边长,能构成三角形的是()A. 4,4,8B. 2,4,7C. 4,8,8D. 2,2,7【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;选C.方法总结:在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.【答题】有3cm,3cm,6cm,6cm,12cm,12cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为()A. 1B. 2C. 3D. 4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据等腰三角形的性质和三边关系可得:3,6,6,和3,12,12,和6,12,12,三组可以构成等腰直角三角形,选C.5.【答题】已知是△ABC的三条边长,化简的结果为()A.B.C. 0D.【答案】C【分析】根据三角形的三边关系进行判断化简即可.【解答】∵a、b、c为△ABC的三条边长,∴a+b−c>0,c−a−b<0,∴原式=a+b−c+(c−a−b)=a+b−c+c−a−b=0.选C.6.【答题】已知三角形两边长分别为4和6,则该三角形第三边的长可能是()A. 2B. 9C. 10D. 12【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边的长为x,∵三角形两边的长分别是4和6,∴6−4<x<6+4,即2<x<10.选B.7.【答题】下列各组数中,不可能成为一个三角形三边长的是().A. ,,B. ,,C. ,,D. ,,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形任意两边的和大于第三边,可知A. 2+3=5>4,能组成三角形;B. 5+7>7,能组成三角形;C. 5+6=11<12,不能够组成三角形;D. 6+8=14>10,能组成三角形.选A.8.【答题】若一个三角形的两边长分别为3和7,且第三边长为整数,则这样的三角形共有()A. 2个B. 3个C. 4个D. 5个【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边为a,根据三角形的三边关系,得:7-3<a<3+7,即4<a<10,因为a为整数,所以a可取5、6、7、8、9,即符合条件的三角形关于5个,选D.9.【答题】一个等腰三角形的一边长为4cm,另一边长为8cm,则该等腰三角形的周长是()A. 16cmB. 20cmC. 16cm或20cmD. 不能确定【答案】B【分析】根据三角形的三边关系进行判断.【解答】解:∵4+4=8,0<4<8+8=16,∴腰长不能为4,只能为8,∴等腰三角形的周长=4+8+8=20cm.选B.10.【答题】以下列各组线段的长为边,能组成三角形的是()A. 2cm,4cm,10cmB. 2cm,2cm,4cmC. 2cm,3cm,4cmD. 1cm,2cm,3cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.∵2+4<10,故2cm,4cm,10cm不能构成三角形;B.∵2+2=4,故2cm,2cm,4cm不能构成三角形;C.∵2+3>4,故2cm,3cm,4cm能构成三角形;D.∵1+2=3,故1cm,2cm,3cm不能构成三角形;选C.11.【答题】下列长度的三条线段首尾连接不能组成三角形的是()A. 2,3,5B. 5,5,5C. 6,6,8D. 7,8,9【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.3+2=5,不能组成三角形;B.5+5>5,能组成三角形;C.6+6>8,能够组成三角形;D.7+8>9,能组成三角形.选A.方法总结:本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.12.【答题】下列长度的三条线段能组成三角形的是()A. 1,2,3B. 4,5,10C. 8,15,20D. 5,8,15【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:由1,2,3可得,1+2=3,故不能组成三角形;由4,5,10可得,4+5<10,故不能组成三角形;由8,15,20可得,8+15>20,故能组成三角形;由5,8,15可得,5+8<15,故不能组成三角形;选C.方法总结:本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边.13.【答题】长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】4个数里选出三个不同的数共有4种选法(①10,7,3;②10,7,5;③10,5,3;④7,5,3),其中10、7、3和10、5、3不能构成三角形,所以只有3、5、7和5、7、10两种选法能够构成三角形,选B.14.【答题】下列长度的三条线段能首尾顺次相接构成三角形的是()A. 4,2,2B. 6,3,2C. 5,3,9D. 3,6,6【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项:2+2=4,不能构成三角形;B选项2+3<6,不能构成三角形;C选项5+3<9,不能构成三角形;D选项三条边满足三角形三条边之间的关系.选D.方法总结:三角形三条边之间的关系:两边之和大于第三边,两边之差小于第三边.15.【答题】下列四组线段中,能组成三角形的是()A. 2cm,3 cm,4 cmB. 3 cm,4 cm,7 cmC. 4 cm,6 cm,2 cmD. 5cm,11 cm,5cm【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.2+3>4,能构成三角形,故本选项正确.B.3+4=7,不能构成三角形,故本选项错误.C.2+4=6,不能构成三角形,故本选项错误.D.5+5<11,不能构成三角形,故本选项错误.选A.方法总结:本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.16.【答题】下列长度的各组线段能组成三角形的是()A. 3、8、5;B. 12、5、6;C. 5、5、10;D. 15、10、7.【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形任意两边的和大于第三边,可知:A.3+5=8=8,不能组成三角形,故本选项错误;B.5+6=11<12,不能组成三角形,故本选项错误;C.5+5=10=10,不能够组成三角形,故本选项错误;D.10+7>15,能组成三角形,故本选项正确;选D.方法总结:本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.17.【答题】如图,图中共有三角形的个数是()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】不在同一直线上三点可以确定一个三角形,据此即可判断.【解答】图中的三角形有:△ADO、△ADB、△AOB、△ACB、△OCB,一共5个.选C.18.【答题】下列各组长度的线段能构成三角形的是()A. 1,4,2B. 3,6,3C. 6,1,6D. 4,10,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,∵1+2<4,∴不能构成三角形;选项B,∵3+3=6,∴不能构成三角形;选项C,∵1+6>6,∴能构成三角形;选项D,∵4+4<10,不能构成三角形.选C.19.【答题】一个等腰三角形两边长分别为20和10,则周长为()A. 40B. 50C. 40或50D. 不能确定【答案】B【分析】根据三角形的三边关系进行判断.【解答】当20为底边长时,则另两边长为10、10,由10+10=20,不符合三角形三边关系,故不能构成三角形;当10为底边长时,则另两边长为20、20,符合三角形三边关系,此时周长为10+20+20=50.选B.20.【答题】已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A. 16B. 5C. 6D. 11【答案】D【分析】根据三角形的三边关系进行判断.【解答】根据三角形的三边关系,得第三边长a的取值范围为10-4<a<10+4,即6<a<14.选项中只有11符合题意.选D.。
「初中数学」三角形三边关系的六种应用

三角形的三边关系为:三角形,任意两边的和大于第三边,任意两边的差小于第三边.由于是线段的不等量关系,我们在遇到求边或周长的范围以及一些不等量的习题时,就要想到利用这一性质,常见的应用如下:一.判断三条线段能否组成三角形(最直接的方法是,若两条短线段的和大于最长的线段,则此三线段可构成三角形)1.下列各组数中,不可能成为一个三角形三边长的是(____)A.2,3,4.B.5,6,7.C.5,6,12.D.6,8,10.2.下列长度的三条线段不能组成三角形的是(____)A.5,5,10.B.4,5,6.C.4,4,4.D.3,4,5.二.求三角形第三边的长或取值范围3.若a,b,c为三角形的三边长,且a,b满足|a2一9|+(b一2)2=0,则第三边长a的取值范围是______.4.若一个三角形的两边长分别为5和8,则第三边长可能是(______).A.14.B.10.C.3.D.2.5.若三角形的两边长分别为3和5,则周长L的取值范围是(_____).A.6<L<15.B.6<L<16.C.11<L<13.D.10<L<166.一个三角形的两边长分别为5㎝和3㎝,第三边的长是整数,且周长是偶数,则第三边的长是(_____).A.2㎝或4㎝.B4㎝或6㎝.C.4㎝.D.2㎝或6㎝.三.求等腰三角形的边长及周长7.已知实数x,y满足|x一4|+(y一8)2=0,则以x,y的值为两边长的等腰三角形的周长是(____).A.20或16.B.20.C.16.D.以上均不对.8.若等腰三角形的周长为10㎝,其中一边长为2㎝,则该等腰三角形的底边长为(_)A.2㎝,B.4㎝.,C.6㎝,D.8㎝.9.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.解:(1)∵AB=5,BC=2,∴3<AC<7,又∵AC的长为奇数,∴AC=5,∴△ABC的周长为5+5+2=12.(2)∵AB=AC=5,∴△ABC是等腰三角形四.化简含绝对值的式子10.已知a,b,c为三角形的三边长,化简:|b+c一a|+|b一c一a|一|c一a一b|一|a 一b+c|.【分析】化简绝对值,关键判断绝对值里边的代数式是正数、负数还是零.是正数或零,去掉绝对值,代数式保持不变;是负数,去掉绝对值后,代数式变为原来的相反数,之后,能合并的再合并同类项.本题通过三角形三边关系判断绝对值里边代数式的正、负情况.解:∵a,b,c为三角形的三边长,∴b+c>a,a+c>b,a+b>c,∴b+c一a>0,b一c一a<0,c一a一b<0,a一b+c>0,∴原式=(b+c一a)一(b一c一a)+(c一a一b)一(a一b+c)=2c 一2a.五.证明线段不等关系10.如图,已知P是△ABC内一点,求证:PA+PB+PC>(AB+BC+AC)【分析】AP,BP,CP把△ABC分为三个三角形,每个三角形两边和大于第三边,AP,BP,CP正好各用两次,也即2PA+2PB+2PC>AB+BC+AC,也即得证.证明:在△ABP中,PA+PB>AB,在△ACP中,PA+PC>AC,在△BPC中,PB+PC>BC,∴2(PA+PB+PC)>AB+BC+AC,即PA+PB+PC>(AB+BC+AC)/2.11.如图,P是正方形ABCD的边DC延长线上的一点,连结PA交BC于点E,求证:AP>AC.【分析】证明线段不等关系,想到三角形三边关系,可AC,AP,PC是在一个三角形中,但又引进了PC,那么就想到把AP折成两条线段和AC围成一个三角形,那么又怎样把AP分成两段呢?从图看∠ECP=90°,想到直角三角形斜边的中线,如图取PE的中点F,连结CF,则PF=CF,这样成功的把AP段分成AF,PF两段,CF等量代换PF,在△ACF中利用三边关系可证.证明:取PE的中点F,连接CF,∵四边形ABCD是正方形,∴BC⊥DP,∴CF=FP=PE/2,在△AFC中,有AF十FC>AC,∴AF十FP>AC,即AP>AC.12.如图,已知:D是△ABC的外角∠EAC的平分线上的一点.求证:DB+DC>AB+AC.【分析】要证DB+DC>AB+AC,可用三角形三边关系定理,但必须把BD、DC、AB+AC移到一个三角形中,可以从构造AB+AC入手,由于AD平分∠EAC,利用角平分线的对称性,将AC,AB移在一条线上,同时能将CD边进行转换,如图,在BA的延长线AE上截取AN=AC,连接DN则可构造出△DAN≌△DCA,则AC=AN,DC=DN,达到了所要的目的在△BDN中,BD+DN(DC)>AN(AB+AC).证明:在BA的延长线AE上截取AN=AC,连接DN,∵AD平分∠EAC,∴∠EAD=∠CAD,AD=AD,AN=AC,∴△ADN≌△ADC,∴DN=DC,在△BDN中,BD+DN>BN,∴BD+DC>AB+AC.13.如图,P为△ABC内一点,求证:AB+AC>PB+PC.【分析】直接运用图中的△ABC和△PBC得到的AB+AC>BC,PB+PC>BC,不能解决问题,为使PB和CP同时出现在大于号右侧,则应构造新的三角形,可延长BP交AC于点D,或过点P作一直线.证明:(一)如图,延长BP交AC于点D,在△ABD中,AB+AD>BD,即AB+AD>BP+PD,在△CDP中CD+PD>PC,∴AB+AD+CD+PD>BP+PD+PC,∴AB+AD+CD>BP+PC,即AB+AC>BP+PC.证明:(二)如图,过点P任作一直线交AB于E交AC于F在△AEF中,AE+AF>EP+PF,在△BEP中,BE+EP>PB,在△PFC中,FC+PF>PC,∴(AE+BE)十(AF+FC)十EP+PF>PB+PC+EP+PF,∴AB+AC>PB+PC.六.利用三角形三边关系求最值13.如图∠MON=90°,矩形ABCD的顶点A,B分别在OM,ON上,当点B在边ON上运动时,点A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,在运动过程中,点D 到点O的最大距离是多少?【分析】动点问题,总的方法是,以静制动,取AB的中点H,OH=AB/2不变,由勾股定理得AD2+AH2=DH2,∴DH=√2,也不变,在△DOH中,OH在变,有OH+DH≥DO,则点D、H、O 三点共线时取等号,所以点D到点O的最大距离为OH+DH=√2+1,如图.前八题答案如下:1.C,2.A,3.1<c<5,4.B,5.D,6.B,7.B,8.A.。
华东师大版数学七年级 下第9章多边形知识点复习讲解(全)

认识三角形三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.有关三角形的概念:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.④三角形的外角:三角形的角的一边与另一边的反向延长线组成的角叫做三角形的外角.注意:(1)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.三角形外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.注意:(1)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.三角形的分类:按角分⎩⎨⎧直角三角形斜三角形⎩⎨⎧锐角三角形钝角三角形按边分⎩⎨⎧不等边三角形(不规则三角形)等腰三角形⎩⎨⎧只有两条边相等的等腰三角形等边三角形锐角三角形 直角三角形 钝角三角形三个角都是锐角 有一个角为直角 有一个角是钝角不等边三角形 等腰三角形 等边三角形 三边不相等 有两条边相等 三条边都相等①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形; ③直角三角形:有一个角为90°的三角形。
①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形。
三角形的三线:三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.这个角的顶点与交点之间的线段.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫做三角形的高.注意:(1)三角形分别有三条高线,三条中线,三条角平分线;(2)任意三角形三条角平分线,三条中线,分别交于一点,且都在三角形的内部;(3)直角三角形的三条高线的交点就是直角顶点,钝角三角形的三条高线的交点在三角形的外部,锐角三角形的三条高线在三角形的内部。
《三角形三边之间的关系》课件(2024)

三角形的分类
4
2024/1/30
三角形的边
三角形内两条边所夹的角,分别记为∠A、∠B、∠C。
三角形的角
三角形的顶点
三角形三个内角的交点,分别记为A、B、C。
组成三角形的三条线段。
5
2024/1/30
验证测量的准确性
ห้องสมุดไป่ตู้20
2024/1/30
构造特定形状的三角形
在几何图形构造问题中,有时需要构造具有特定形状的三角形,如等边三角形、等腰三角形等。此时,可以利用三角形三边关系来确定所需边长,从而构造出满足条件的三角形。
判断三角形的形状
通过已知的三边长度,可以判断三角形的形状。例如,如果三边长度满足勾股定理,则三角形为直角三角形。
18
2024/1/30
05
CHAPTER
解决实际问题中的应用举例
19
2024/1/30
在实际测量中,有时由于条件限制,无法直接测量三角形的某一边。此时,可以通过测量其他两边,并利用三角形三边关系来间接求得第三边的长度。
无法直接测量的两边求第三边
在进行测量时,可以通过三角形三边关系来验证所测数据的准确性。如果三边长度不满足三角形三边关系,则说明测量数据存在误差。
《三角形三边之间的关系》课件
1
2024/1/30
目录
三角形基本概念回顾三角形三边关系探讨三角形不等式定理深入解析特殊类型三角形三边关系分析解决实际问题中的应用举例总结回顾与拓展思考
2
2024/1/30
01
CHAPTER
三角形基本概念回顾
3
《三角形三边之间的关系》优质课件

特殊三角形性质
等腰三角形性质
两腰相等,两底角相等; 三线合一(底边上的中线、 高线和顶角的平分线互相
重合)。
等边三角形性质
三边相等,三个内角都等 于60°;三线合一(任意一 边上的中线、高线和这边
所对角的平分线互相重 合)。
直角三角形性质
有一个角为90°的三角形; 勾股定理(直角三角形的 两条直角边的平方和等于
特殊性质
等腰三角形具有轴对称性,即关于底边上的高(也是中线)对称。
直角三角形三边关系
直角三角形的定义
有一个角为90度的三角形。
三边关系
在直角三角形中,最长的边称为斜边,其余两边称为直角边。斜边 的平方等于两直角边的平方和,即勾股定理。
特殊性质
直角三角形具有多种特殊性质和定理,如射影定理、正弦定理、余弦 定理等,这些性质和定理在解决三角形问题中具有重要的应用价值。
01
任意两边之差小于第三边。
几何意义
02
确保三条线段不仅可以围成一个封闭的图形,而且是一个合理
的三角形,避免出现过于扁平或拉长的形状。
验证方法
03
同样通过测量或计算三角形的三条边长,验证是否满足两边之
差小于第三边的条件。
等腰三角形三边关系
等腰三角形的定义
有两条边长度相等的三角形。
三边关系
在等腰三角形中,两条相等的边称为腰,第三条边称为底。腰与腰 之间的夹,两个内角相等。相对于等边 三角形,等腰三角形的稳定性稍差,但在一定范围内仍能 保持其形状和尺寸稳定。
不等边三角形 不等边三角形的三边长度均不相等,三个内角也不相等。 相对于等边三角形和等腰三角形,不等边三角形的稳定性 最差,容易受到外力作用而发生改变。
实际应用举例
人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册第九章《三角形》素材:
三角形三边关系性质的应用
“三角形任意两边的和总大于第三边”这个性质是三角形最基本的性质之一,它的应用十分广泛,下面举例说明.
例1 等腰三角形的两边为4,8,则它的周长为_______.
分析:从表面上看本题有两种可能,以4、4、8为边的等腰三角形和以8、8、4为边的等腰三角形,但前者不符合三角形的三边关系,所以周长为20.
例2 不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么最大边上的高与最小边上的高的比k的取值范围是 [ ]
(98年江苏省初中数学竞赛题)
解:如图1,设BC=a,AC=b(a>b),高AD.BE分别为ha,
说明:利用三角形的三边关系衡量能否组成三角形或已知三角形的三边确定某边的敢值范围时,要注意性质中“大于”二字,而不是相等,“任意”两边而不是其中两边.
例3 四边形ABCD中,O为对角线交点,
解:如图2,在△ABC中,由三边关系得
AB+BC>AC,①
同理可得:
BC+CD>BD,②
CD+DA>AC,③
DA+AB>BD.④
由①②③④得2(AB+BC+CD+DA)>2(BD+AC).
∴AB+BC+CD+DA>BD+AC
在△AOB中 OA+OB>AB,①
同理得OB+OC>BC,②
OC+OD>CD ③
OD+OA>AD ④
由①②③④得2(OA+OB+OC+OD)>AB+BC+CD+DA.
例4 若A.B.c为△ABC的三边,求证关于x的方程
b2x2+(b2+c2-a2)x+c2=0没有实数根.
证明:∵△=(b2+c2-a2)2-4b2c2=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
在△ABC中,∵b+c>a,∴b+c-a>0.
同理 b-c+a>0,b-c-a<0.
∴△<0.
∴关于x的方程b2x2+(b2+c2-a2)x+c2=0没有实数根.
说明:三角形的三边关系常常用来解决一些几何或代数证明题.
例5 如图3,D为△ABC的边AC上一点,分别在AB.BC上求作点E.F,使△DEF的周长最小.(96年江苏省扬州中学提前招生试题)
作法:分别以BC.AB所在的直线为对称轴,作出D点的对称点 D′、D″,连结 D′D″交AB于E.BC于F,∴△DEF为所求作的三角形.证明:由轴对称图形的性质可知ED=ED″,FD=FD′,∴D′D″代表
了△DEF的周长.
若E′点在AB上除E点外的一点,在△D″E′ D′中由三边关系的性质
可知,D″E′+E′ D′>D′ D″
同理若F′点在BC上除F点外的一点,也能说明 D′ D″最小.说明:利用三角形的三边关系解作图题是同学们解题时常忽略的方法.原几何教科书第二册91页中的例3就是个很好的说明.。