汽车外流场fluent仿真设计与分析
轿车尾流fluent仿真分析与设计

轿车尾流fluent仿真分析与设计1.1空气动力学在汽车中的应用空气动力学特性是汽车的重要特性之一,它直接影响汽车的动力性、燃油经济性、操纵稳定性、舒适性与安全性。
其中,空气动力学中的空气阻力(风阻)是影响油耗的首要因素,降低风阻系数则是提高汽车燃油经济性的重要途径之一。
汽车空气动力学性能对汽车的安全性、经济性和舒适性具有重要影响。
汽车空气动力学的首要研究任务是通过试验或者数值模拟研究获得汽车行驶时汽车本身所受到的气动力的变化,改善汽车的行驶性能,评价汽车的节能水平。
1.2阶背式轿车与直背式轿车简述阶背式轿车国际上简称L型车,也称为三厢式轿车,具有后备箱。
它通常是中高档轿车的款式,涵盖的车型最多,从夏利三厢、富康988、捷达、奥迪一直到凯迪拉克、劳斯莱斯。
在一般人的眼中,这车型是引擎置在车头,中间省几个座位,四扇车门,车尾有个分隔的行李厢,即三厢式设计。
缺点是扁阔的尾厢放不下较大件的行李,而且乘客在行车时,也照顾不到放在后备厢的东西。
在驾驶方面,由于车身重心是在前方偏中位置,所以有中性转向的特性。
随着生活水平的日益提高, 外出旅行成了人们休闲的新时尚, 直背式旅行轿车(简称直背式轿车)在人们旅行时起着非常重要的作用, 既能载人又能载物.但缺点是后行李仓空间不足以简化的直背式轿车模型为研究对象。
1.3国内外研究现状当前国内外对汽车外流场的研究已经比较深入,已经有大量的相关文献发表,北航的康宁、李光辉教授借助商用计算流体力学软件STAR-CD,利用移动边界条件进行三维数值模拟,计算加装行李架前后的轿车在不同车速下的车身气动阻力系数和升力系数,并通过与试验结果的对比,验证数值计算结果的正确性。
计算结果表明,不同剖面形状的行李架对直背式轿车外流场有不同程度的影响.研究结果为合理选择行李架的剖面形状,改善轿车的气动特性提供了依据。
西华大学杨海波应用国内外广泛采用的合成风的方法模拟侧风作用下的汽车外流场。
根据模拟结果对车身周围流场进行了分析,并根据车身外流场不同位置截面上的速度和压力等物理量的分布与变化情况,定性的分析了轿车受到侧风作用时侧向力和升力发生相应变化的原因,并重点结合GB7258标准,从气动升力入手,对模型车高速行驶时的行驶安全性进行了定量分析。
汽车外流场CFD模拟

第30卷增刊 2007年12月合肥工业大学学报(自然科学版)J OURNAL OF HEF EI UNIV ERSI TY O F TECHNOLO GYVol.30Sup Dec.2007 收稿日期22作者简介许志宝(6),男,山西大同人,安徽江淮汽车股份有限公司工程师汽车外流场CFD 模拟许志宝(安徽江淮汽车股份有限公司技术中心,安徽合肥 230022)摘 要:汽车的空气动力学特性很大程度影响着汽车的经济性、动力性以及稳定性。
该文利用C FD 方法对某款汽车的外流场进行模拟,模型模仿风洞实验,计算出该汽车的风阻系数和升力系数,并对尾部扰流板进行了改进,最终得到了满足设计要求的流场性能。
关键词:汽车空气动力学;CFD ;涡流;风阻系数中图分类号:U46111 文献标识码:A 文章编号:100325060(2007)(Sup )20162203The CFD simula tion of exter ior flow f ield ar oun d a ca rXU Zhi 2bao(Technological Cent er ,A nhui Ji anghuai Auto m o bil e Co.,Lt d ,Hefei 230022,China)Abstract :The ae rodynamics infl uences great ly t he dynamics properties ,t he f uel economy and t he oper 2ati ng performance of car s.This paper di sc usses t he application of t he CFD met hod in our automobile in exterior flowfield ,si mulat es t he model of t he experi ment of wi nd t unnel ,cal culat es t he dra g coeffi 2cient and lif t coefficie nt ,and int roduce s how we modif y t he empennage and get a good resul t.K ey w or ds :aerodyna mics ;C FD ;t urbulence ;drag coefficient0 引 言随着汽车行驶速度的提高,作用在汽车上的气动力也越来越大。
基于CFD的某汽车外流场数值模拟与分析

基于CFD的某汽车外流场数值模拟与分析雷荣华【摘要】运用流体力学STAR-CCM+分析软件,对某自主品牌车型外流场进行了阻力系数的数值模拟,通过试验和模拟数据的对比,得到了比较合理的结果。
并计算出了压力分布图和声功率图,根据模拟结果提出了一些有利于减小汽车阻力系数,提升汽车性能与乘员舒适性的建议,为汽车外形设计方提供了参考。
%A research on numerical simulation of external flow field of a self-owned brand vehicle was conducted by the use of fluid mechanics analysis software STAR-CCM+, and reasonable results were got by the comparison of trial data and simulated data, the pressure distribution chart and acoustic power chart were calculated as well. Some suggestions were put forward in order to reduce the drag coefficient, improve the performance of the car and comfort of the driver. Results can provide some references in shape design.【期刊名称】《机械研究与应用》【年(卷),期】2015(000)004【总页数】2页(P24-25)【关键词】STAR-CCM+;数值模拟;外形优化【作者】雷荣华【作者单位】重庆交通大学机电与汽车工程学院,重庆 400074【正文语种】中文【中图分类】TH1220 引言近几十年以来,我国汽车工业飞速发展,汽车诸多性能得到了很大的提高,例如行驶稳定性以及乘员舒适性,同时又随着我国高速公路网的完善与道路质量的提升,使得汽车行驶速度有了提升的前提。
汽车外流场的数值模拟

汽车外流场的数值模拟宁燕,辛喆中国农业大学, 北京 (100083)E-mail :rn063@摘 要:利用CFD 方法,运用FLUENT 软件对斜背式车型的外流场进行了数值模拟,并对结果进行了处理与分析。
研究了车身周围涡系的三维结构和车身表面分离流的情况,表明由于车身前后的压力差和主流的拖拽作用等,在汽车尾部形成了极其复杂的涡系。
关键词:汽车空气动力学;CFD ;车身外流场;FLUENT1. 引 言汽车空气动力学的研究主要有两种方法[1]:一种是进行风洞实验,另一种是利用计算流体动力学(CFD )技术进行数值模拟。
传统的汽车空气动力学研究是在风洞中进行实验,存在着费用昂贵、开发周期长等问题。
另外,在风洞实验时,只能在有限个截面和其上有限个点处测得速度、压力和温度值,而不可能获得整车流场中任意点的详细信息。
随着计算机技术和计算流体动力学的发展,汽车外流场的计算机数值仿真由于其具有可再现性、周期短以及低成本等优越性而成为研究汽车空气动力学性能的另一种有效方法。
2. 控制方程和湍流模型汽车外流场一般为定常、等温和不可压缩三维流场,由于外形复杂易引起分离,所以应按湍流处理。
汽车外流场的时均控制方程式[2]如下:3,2,1,=j i ;z x y x x x ===321,,;,:u u =1w u v u ==32,平均连续方程:0=∂∂ii x u 平均动量方程:⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂∂∂+∂∂−=∂∂i j j i eff j j j i j x u x u x x p x u u µρ κ方程 ρεκσµµκρκ−+⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂=∂∂G x x x u j t jj j )( ε方程 κερκεεσµµερε221)(C G C x x x u j t j j j −+⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂=∂∂ -1-其中, ji i j j i t x u x u x u G ∂∂⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂=µ εκρµµ2C t = µ为动力粘性系数,t µ为湍流动力粘性系数,它的提出来源于Boussinesq 提出的涡粘假定,是空间坐标函数,取决于流动状态,满足:⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂=−i j j i t j i x u x u u u µρ 其中,j i u u ρ−是由于对动量方程式平均化后得到的雷诺应力项。
基于CFD软件某跑车外流场数值模拟分析

基于CFD软件某跑车外流场数值模拟分析作者:王瑞丽魏丽青来源:《科学与财富》2020年第28期摘要:根据对国内某跑车进行相应的研究,通过catia三维软件设计出其三维模型,之后再用CFD软件实现对跑车划分网格,之后再对得出的数值进行相应的模拟计算,并采取一定的加工处理,同时关注跑车内部的空气动力性问题。
在一系列的模拟计算后,我们可以得知,进行局部的优化处理是可以有效地得出最佳画的跑车外部参数,同时实现跑车周身速度压力场的改善处理。
关键词:跑车车身;局部优化;风阻系数前言通常所说的汽车空气动力一般指在汽车的前行过程中和空气产生相应的作用力,由于产生的力对汽车消耗汽油的经济性能和舒适性能等产生的影响。
目前我国的科学技术不断向前发展,随之而来的是信息技术的发展包括计算流体力学,这对于研究汽车的空气动力学有了很重要的推动作用。
流体力学方法有很多的优点,例如所用时间少、消耗成本较低等,所以我们可以在汽车设计开发和相应的改进完善方面,都使用此技术。
1.跑车外流场的控制方程和湍流模型在汽车以较高速度向前行驶的时候,可以得出此时的流体雷偌数是比临界雷诺数大的,所以它的流动可以视作湍流。
根据雷诺平均方程:在这个公式里,si是源项,代表催化器载体阻力; 是应力张量。
根据标准的K - £模型计算雷诺应力来封闭上述流动控制方程,即有在这个公式里的是指湍流粘性系数,可以根据以下得出:式中:K、£分别为湍动能和湍能耗散率。
2.计算模型的建立及网格劃分2.1 车身模型计算模型是在CATIA软件中以现实大小比例相等建立的(见图1)。
要同时实现提高网格的质量以及达到计算的速度,就要简化车身模型。
所以,忽略了跑车的一些部件,并对车身底部作平整化加工。
2.2 网格划分从以往的研究可以得出,要进行汽车行驶的模拟,可以采用的计算域是长方形:根据汽车的大小长×宽×高(L×W×H),我们将计算域设定成10L×4W×5H,计算域入口和车头相距3L,出口处和车尾的距离为6L,车子的左右两侧宽度大小都是2W,高度是5W,完整的计算域都是通过结构网格来进行划分的。
大学生方程式赛车车身外流场SYS分析报告

大学生方程式赛车车身外流场S Y S分析报告Prepared on 22 November 2020大学生方程式赛车车身外流场ANSYS分析报告指导老师:詹振飞小组序号:第五小组小组成员:刘宇航黄志宇谢智龙陈治安重庆大学方程式赛车创新实践班二〇一六年十月摘要大学生方程式赛车起源于国外,近几年才在国内兴起并得以迅速发展,成为各个高校研发实力的侧影,因此得到了各个高校的重视,赛车外形设计更是赛车很重要的一部分,它不仅是赛车的外壳,更可以利用空气动力学来为赛车减少阻力,提高赛车的性能。
因此外形设计时赛车总体设计中很重要的一部分,通过有限元法对赛车外壳进行风洞模拟测试对赛车外形的改进及优化分析有重要的意义。
利用ANSYS中的fluent进行有限元模拟风洞试验试验,能够准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。
ANSYS在此过程中起到极其重要的作用。
对于一辆优秀的赛车而言,它的性能不仅取决于优秀的结构设计和强劲的发动机性能,还在一定程度上取决于它的外形。
赛车的外形不仅能够影响赛车的美观度,更重要的是能够影响车身所受的阻力。
因此,如果赛车有一个好的外观设计,利用好空气动力学的原理,则能够在一定程度上减小车身的阻力,从而提高整车的性能。
本小组利用CATIA等建模软件建立了适当的赛车外观模型。
在此基础上,利用ANSYS中的Fluent进行有限元的模拟风洞试验,并得出了一定的结论,整理成报告。
关键字:CATIA三维设计,车身外流场,ANSYS,风洞模拟,有限元1.利用三维建模软件建立车身模型在2016年发布的大赛规则限定的范围内,本小组利用CATIA等相关的建模软件建立了合适的赛车车身模型,以用于后续分析。
年大赛关于车身的部分规则要求1)赛车的轴距至少为 1525mm(60 英寸)。
轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。
2)赛车较小的轮距(前轮或后轮)必须不小于较大轮距的 75%。
基于CFD的三种轿车模型外流场仿真及气动性能比较

基于CFD的三种轿车模型外流场仿真及气动性能比较武浩浩【摘要】建立直背式、快背式和折背式轿车的简化模型,导入Fluent前期处理软件GAMBIT,在GAMBIT中建立汽车绕流场的三维物理模型。
用结构化网格对简化的汽车模型外流场划分网格,在计算流体力学软件FLUENT中采用N-S方程及SIMPLE算法求解阻力和力矩。
模拟出相同速度下三种轿车模型的气动压力场和速度场,计算出气动阻力系数、升力系数及阻力矩系数。
并通过车尾空气流态的模拟,对三种车身空气绕流的空气动力特性进行了研究。
通过比较,解释了这三种车身造型与气动力特性,及气动力特性与汽车性能的关系,为轿车车型产出比的决策及汽车造型优化设计提供参考。
【期刊名称】《管理工程师》【年(卷),期】2011(000)004【总页数】4页(P49-51,66)【关键词】轿车模型;压差阻力;CFD【作者】武浩浩【作者单位】中国矿业大学机电工程学院【正文语种】中文【中图分类】U469.11一、引言国际油价的不断飙升和环境对低碳的要求以及国内汽车行业竞争的日益加剧,提高燃油利用率成了汽车制造业越来越重视的问题。
而汽车在高速行驶时燃油利用率的高低,有很大一部分取决于车身造型的空气动力学特性.现代汽车按美国环保署(EPA)城市/高速公路混合循环的平均能耗分解数据显示,汽车驱动轮有效机械能约53%被用来克服风阻,47%用来克服其他阻力。
在风阻中,有85%左右为压差阻力,其余为空气与车身摩擦产生的阻力。
压差阻力中,汽车尾流占至少90%。
另外车身造型的空气动力学特性还会影响汽车的美观和清洁。
因此,通过研究汽车外流场压力分布求得阻力系数,再进行比较得出几种轿车的空气动力特性,可以使用户对轿车的选购趋于理性,也可以为制造商对不同车型的生产提供决策参考。
二、流场控制方程传统的空气动力学实验多以成本高、周期长、设备庞大的风洞实验为主,但是随着计算机技术的发展,设计人员的研究重点逐渐转向计算流体力学(CFD)及其相关应用软件的开发应用。
基于CFD技术的轿车外流场数值模拟及优化

o f e x t e r n a l f l o w f i e l d o f t h e c a r a r e a n a l y z e d . Ac c o r d i n g t o t h e r e s u l t s o f ቤተ መጻሕፍቲ ባይዱ n u me r i c a l s i mu l a t i o n,t h e d e s i g n o f c a r b o d y s h a p e i s o p —
Hu a n g S h u o
( E n g i n e Pl a n t o f Do n g F e n g C o mme r c i a l V e h i c l e C o . , L t d, S h i y a n , Hu b e i 4 4 2 0 0 1 , C h i n a )
t i mi z e d i n o r d e r t O r e d u c e t h e d r a g c o e f f i c i e n t a n d t h e 1 i f t c o e f f i c i e n t .I n t h e me a n t i me ,t h e v o r t e x mo t i o n o f c a r t a i li S we a k e n e d , o b t a i n i n g b e t t e r a e r o d y n a mi c c h a r a c t e r i s t i c s . Ke y wo r d s :o d y f l o w f i e l d ;n u me r i c a 1 s i mu l a t i o n;a e r o d y n a mi c c h a r a c t e r i s t i c s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车外流场Fluent仿真设计与分析
SC12013043 高志谦
摘要:汽车车型是汽车的重要特性之一,它直接影响汽车的动力性、燃油经济性、操纵稳定性、舒适性与安全性。
而汽车外流场的压强分布则是比较各车型优劣的一项重要参考依据。
本文通过Fluent软件对不同外形的车辆进行外流场仿真计算,并得出其外流场压强分布。
通过比较分析得出各种车型的优势与劣势。
关键词: Fluent,汽车外流场,压强分布,车型
1、引言
近几十年来,汽车工业迅速发展,除了在发动机等内部器件方面进展迅速以外,对汽车外形的设计也有了很大的突破和提高。
汽车的外形设计一方面是为了满足消费者对汽车的美观要求,另一方面也可以通过外形设计减小汽车运行时的空气阻力,从而提高速度;与此同时,汽车运行时会由于空气作用产生升力,是汽车运行时稳定性大大下降,因此也可以通过外形设计减小升力,使得汽车行驶时稳定性安全性大大提高。
而Fluent公司是目前世界上最大的计算流体力学(CFD)软件供应商。
在全球众多的CFD 软件开发、研究厂商中,Fluent独占了大约40%以上的市场份额。
而汽车领域更是Fluent 公司最为重视的行业之一。
几乎全球所有知名的汽车厂家都是Fluent的用户。
因此,本设计中,主要通过Fluent对汽车外流场的压力分布进行仿真设计与分析。
如今最常见的汽车类型有三种:四人小轿车、面包车和小货车。
因此本文主要通过对这三种类型的汽车进行gambit建模,并划分网格。
再用fluent进行迭代计算,得出相同条件下三种汽车的外流场压力分布图。
并通过分析,得出各种车型的优点与劣势。
2、四人小轿车的建模和计算
1、建立汽车模型
本设计中,四人小轿车长宽高依次为3.6m*2m*1.5m,(其中,车高是从地面到车顶距离)。
轮胎直径为0.7m,胎宽为0.2m。
并将汽车套在一个尺寸为10m*4m*4m的长方体中,作为待分析的汽车外流场区域。
汽车以60km/h的速度行驶(16.67m/s),具体汽车模型如图所示:
2、划分网格
对汽车外流场区域划分网格,网格尺寸为0.15。
其余设置如下图所示。
3、定义边界层类型
该模型中,我们近似地认为汽车静止,而风从左边的面中灌入,从右边的面中逸出,地面以和风相同的速度向右移动,而中间其余三个面以及汽车表面都是固壁。
因此,入口壁面定义为velocity_inlet(命名为inlet),出口壁面定义为pressure_outlet(命名为outlet),其余面均定义为wall,为了后面方便将地面和汽车表面取出来,分开定义,并命名为ground和car。
4、fluent条件设置
1)、将msh文件导入fluent中,check之。
由于该过程运动速度较大,且气体可压缩,因此选用耦合求解器(具体在后面设置)。
2)、上文中已经提到,假定汽车速度为60km/h(16.67m/s)。
考虑雷诺数:Re=vd
υ=16.67∗2
14.8∗10−6
=2.25∗106
因此该模型显然是湍流模型,故选用k-e求解模型。
3)、定义材料为空气,参数默认
4)、设置操作条件,重力存在,方向为z方向向下。
5)、设置边界条件,空气入口速度为16.67m/s。
同时,相对车而言,地面也以16.67m/s 的速度运动。
其余保持默认。
6)、选用耦合求解器
将pressure-velocity coupling一栏中原本的simple改为Coupled,其余参数均保持默认。
7)、初始化设置为从inlet开始计算
8)、设置残差值为10−5。
9)、设置迭代,并预计迭代500次。
如图,迭代到100次以后各项残差基本保持稳定,但continuity曲线残差值相对还是较高,故通过报告中的质量流量观察连续性方程是否收敛。
显然进口质量等于出口质量,连续性方程没有问题,故认为质量残差值收敛。
5、四人小轿车外流场压力分布图
通过上面计算,可以得到四人小轿车的外流场压力分布云图。
具体图像如下所示:从前往后看:
从后往前看:
车身压力分布等值线:
车身中心面上压力分布图(车子在向左行驶):
3、面包车的建模和计算
1、建立面包车模型
建立长宽高尺寸为3.6m*2m*1.8m,轮胎直径为0.7m,轮胎厚度为0.2m的面包车模型。
如图所示:
2、划分网格
以0.15为网格尺寸划分网格,其余设置见下图:
3、设置边界层类型
与上面的四人小轿车边界层类型类似,风从左边面进入,从右边面出,地面以16.67m/s 的速度向右运动,其余面均为静止的wall。
因此左面设为velocity-inlet,右面设为pressure-outlet,其余均是wall。
为后面使用方便分别将地面命名为ground,汽车表面命名为car。
4、fluent参数设置
Fluent具体参数设置与上文中四人小轿车完全相同,在此就不多做赘述,直接进行迭代,得到残差图如下所示:
收敛得不是很稳定,尤其是continuity曲线,同上文所述,查看流量报告。
显然进出口流量相同,因此认为continuity曲线收敛成功。
5、面包车外流场压力分布图
从前往后看:
从后往前看:
车身压力分布等值线:
车身中心面上压力分布图(车子在向左行驶):
4、小货车的建模和计算
1、建立小货车模型
如下图所示建立长宽高尺寸为6m*2m*2.5m,轮胎直径0.7m,轮胎厚度0.2m的小货车模型。
2、划分网格
与上面类似,划分尺寸为0.15的网格,其余参数设置如图所示。
3、定义边界层类型
与前文所述完全一样,风从左边面进入,从右边面出,地面以16.67m/s的速度向右运动,其余面均为静止的wall。
因此左面设为velocity-inlet,右面设为pressure-outlet,其余均是wall。
为后面使用方便,分别将地面命名为ground,汽车表面命名为car。
4、fluent参数设置
与前面一样再次不多做解释。
给出计算残差图:
同样查看流量报告:
流量守恒,因此认为迭代收敛。
5、小货车外流场压力分布云图从前往后看
从后往前看:
车身压力分布等值线:
小货车外流场中心面压力分布:
5、三种车型压力比较分析
1、水平方向阻力比较分析
比较三种车型的外流场中心面压力分布云图可以很明显地看出,小轿车前进中水平方向所受到阻力最小,面包车次之,小货车由于其前方接触面较大,因此所受到水平方向的空气阻力也远大于前面两种车
2、升力比较分析
比较三张外流场中心面压力分布云图可以得出,面包车上下两侧空气压力差别不大,因此所受到的升力最小,小货车次之,而小轿车可以很明显地看出上下两侧的压力分布不同,因此受到的升力最大。
6、小结
通过上面的计算分析我们可以发现,车型不同对汽车行驶过程中所受到的阻力和升力有着较为明显的作用。
因此通过改变车型不仅可以使车身美观,同时对于改善汽车运行状况也有着不可忽视的影响。
因此,随着时间的流逝,我相信一定会有更合适、更先进的车型问世。
通过本次课程设计,我对fluent及其前处理软件gambit也有了更深入的了解。
对其常用功能也基本能做到熟练使用。
在此感谢刘老师的指导,也感谢几位同学的帮助,谢谢!。