因式分解(公式法之完全平方公式与平方差公式)(精选.)
3因式分解完全平方公式微课

二、探索新知
问题:分解因式:(1) a2+2ab+b2 (2) a2-2ab+b2
(1)你能用学过的方法对它们进行因式分解吗? (2)这两个多项式有什么共同的特点? (3)你能利用整式的乘法公式——完全平方公式
a b2 a2 2ab b2 来解决这个问题吗?
a2+2ab+b2=(a+b)2
= -(x2-4xy+4y2)
=2m(x+y)2
若有公因式,先提取 公因式;若第一项是 负号,先提取负号。
= -[x2-2·x·2y+(2y)2] =-(x-2y)2
8
四、归纳小结
a2±2ab+b2 = (a±b)2
1.因式分解方法: (1) 提取公因式法
直到每个因式不 能再分解为止.
平方差公式法 (两项) (2) 公式法
=(3a)2+2×3a·b+b2 = (3a+b)2
先将多项式化成符合 完全平方公式特点的 形式,再分解因式.
6
三、例题讲解
a2±2ab+b2 = (a±b)2
例2 分解因式: (3)(m+n)2-6(m +n)+9 解: (m+n)2-6(m +n)+9
= (m+n)2 -2·(m +n)·3 +32
= (m +n-3)2
这说明公式中的a与b,可以表示一个数, 也可以表示一个单项式,甚至是多项式.
7
三、例题讲解
a2±2ab+b2 = (a±b)2
例3 分y+2my2 (5)-x2-4y2+4xy 解: 2mx2+4mxy+2my2 解: -x2-4y2+4xy
因式分解的常见公式

因式分解的常见公式因式分解可是数学中的一个重要“法宝”,它能把一个复杂的多项式变得简单明了,就像把一团乱麻理得整整齐齐。
今天咱们就来好好聊聊因式分解的常见公式。
先来说说平方差公式,那就是 a² - b² = (a + b)(a - b) 。
这就好比我们整理书包,把不同类的东西分开装。
比如说,给你一个式子 9x² - 25 ,这时候你就可以把 9x²看成 (3x)²,25 看成 5²,那么它就可以因式分解为 (3x + 5)(3x - 5) 。
是不是感觉一下子就清晰了?再看看完全平方公式,(a ± b)² = a² ± 2ab + b²。
这就像搭积木,每一块都有它固定的位置和作用。
比如说 4x² + 12x + 9 ,我们可以把 4x²看成 (2x)²,9 看成 3²,12x 正好是 2×2x×3 ,所以它可以因式分解为(2x + 3)²。
我记得有一次给学生们讲因式分解,有个学生怎么都弄不明白完全平方公式。
我就拿教室的黑板打比方,黑板的长是 a ,宽是 b ,那么整个黑板的面积就是a×b 。
如果把黑板的长和宽都增加相同的长度c ,新的面积就是 (a + c)(b + c) 。
通过这个形象的比喻,那个学生终于恍然大悟,那一刻我心里别提多有成就感了。
还有立方和与立方差公式,a³ + b³ = (a + b)(a² - ab + b²) ,a³ - b³ = (a- b)(a² + ab + b²) 。
这两个公式就像是一对双胞胎,虽然有点相似,但又各有特点。
比如 x³ + 8 ,可以把 8 看成 2³,所以就可以因式分解为(x + 2)(x² - 2x + 4) 。
完全平方公式法因式分解

1.
7.(1)已知a-b=3,求a(a-2b)+b2的值; (2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.
8.(1)已知a-b=3,求a(a-2b)+b2的值; (2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值. 解:(1)原式=a2-2ab+b2=(a-b)2. 当a-b=3时,原式=32=9. (2)原式=ab(a2+2ab+b2)=ab(a+b)2.
利用公式把某些具有特殊形式(如平方差式, 完全平方式等)的多项式分解因式,这种分解因式 的方法叫做公式法.
因式分解的平方差公式: a2-b2=(a+b)(a-b)
因式分解的完全平方公式:
a2+2ab+b2= (a+b) 2
a2-2ab+b2= (a-b) 2
例3:因式分解: (1)-3a2x2+24a2x-48a2;
3. 完全平方公式: (a+b) 2 =a2+2ab+b2.
(a-b) 2 =a2-2ab+b2
完全平方公式: (a+b) 2=a2±2ab+b2.
1.整式的乘法 (1). (p+1) 2 = ______ (2). (m+2) 2 =______ (3). (p-1) 2 =______ (4). (m-2) 2 =______ (5). (a+b) 2 =_______ (6). (a-b) 2 =_______
(1).两个数的平方和加上这两个数的积的2倍, 等于这两个数的和的平方;
(2).两个数的平方和减去这两个数的积的2倍, 等于这两个数的差的平方.
特点:1.共有三项、2.有两个平方项、 3.另一项两个数乘积的正或负2倍。
完全平方公式因式分解

灵活应用: 灵活应用:
(1)2006 − 6
2 2 2 2
2
(2)13 − 2 ×13 × 3 + 9 (3)11 + 39 + 66 ×13
小结
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 正确选取a,b. 注意 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中 (3)在因式分解中,通常先观察 在因式分解中, 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
注意: 注意
(1)正确选取 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清
分解因式
(1)3am + 3an + 6amn
2 2
(2) − a
2
− 4b + 4ab
2
2
(3) -8a(2a+b)-b
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 注意 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中,通常先观察 在因式分解中, 在因式分解中 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
2 就得到
a + 2ab + b = (a + b) 2 2 2 a − 2ab + b = (a − b )
a + 2ab+ b = (a+ b) 2 2 2 a − 2ab+ b = (a − b )
苏教版初一下因式分解(提公因式法、平方差、完全平方公式)

因式分解(提公因式法、平方差公式、完全平方公式)学习目标:1.了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.3. 能运用平方差公式、完全平方公式把简单的多项式进行因式分解.学习重难点:1.会综合运用提公因式法和公式法把多项式分解因式;2.发展综合运用知识的能力和逆向思维的习惯.【知识回顾】因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算因式分解--提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即. (2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.1、下列各式中,运用提取公因式分解因式正确的是( )A.()()()()22222a x a a x -+-=-+B.()32222x x x x x x ++=+ C.()()()2x x y y x y x y ---=- D.()2313x x x x --=--2、因式分解:()()2222y x y x +++=____________.公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.【练习】 x 2-4y 2 25x 2-4 a 6-81(3x -4y)2-(4x+3y )2 16(3m -2n )2-25(m -n )225×2652-1352×25 91×89要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到).要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.1、判断一个多项式是否可用完全平方公式进行因式分解例:下列多项式能分解因式的是( )A .y x -2B .22y x +C .y y x ++22D .962+-x x2、关于求式子中的未知数的问题例:1、若多项式162++kx x 是完全平方式,则k 的值为2.若k x x +-692是关于x 的完全平方式,则k=3.若49)3(22+-+x m x 是关于x 的完全平方式则m=__________4. 填空题:① 26a a ++__= 2__a ⎛⎫ ⎪⎝⎭+②241x ++__=( 2)3、直接用完全平方公式分解因式的类型2816x x ++; 21449x x ++; 224x xy y ++; 22111162a b ab -+4、整体用完全平方式的类型(x -2)2+12(x -2)+36; 29()12()4a b a b +-++2)()(69b a b a ++++ 22()4()()4()x y x y x y x y +++-+-5、用提公因式法和完全平方公式分解因式的类型-4x 3+16x 2-16x ; 21ax 2y 2+2axy+2a已知:2,1=-=y x ab ,求xyab aby abx 63322-+的值练习:分解因式(1)442+-x x (2) 641622++ax x a (3) 4224168b b a a +-(4)49)(14)(2++-+y x y x (5)2)()(69b a b a ++++(6)22312123xy y x x +- (7)21222++x x【巩固练习】一.选择题1. 将224144a a ++因式分解,结果为( ).A.()()188a a ++B.()()1212a a +-C.()212a +D.()212a -2. 已知a+b=3,ab=2,则a 2+b 2的值为( )A . 3B . 4C . 5D .63. 如果222536a mab b ++可分解为()256a b -,那么m 的值为( ).A.30B.-30C.60D.-604. 如果229x kxy y ++是一个完全平方公式,那么k 是( )A.6B.-6C.±6 D.18二.填空题5. 若()22416-=+-x mx x ,那么________m =.6. 因式分解:()()225101a b a b -+-+=____________.7. 分解因式:214m m ---=_____________.三.解答题8. 若13x x +=,求221x x +的值.9. 已知x ﹣y=1,x 2+y 2=25,求xy 的值.例题.已知:x ²+y ²+4x-2y+5=0,求x+y 的值。
【知识】因式分解知识点归纳

【关键字】知识因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就能够用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就能够得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就能够了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就能够用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
完全平方公式与平方差公式

完全平方公式与平方差公式1.完全平方公式:其中,±表示取两个值,分别对应方程的两个解。
让我们来看一个例子:例子1:解方程x^2+6x+8=0根据完全平方公式,我们可以知道a=1,b=6,c=8根据完全平方公式,我们可以得到x=(-6±√(6^2-4*1*8))/2*1,即x=(-6±√(36-32))/2化简后,我们可以得到x=(-6±√4)/2,即x=(-6±2)/2分别求出两个解,我们可以得到x=-4和x=-2所以,方程x^2+6x+8=0的解为x=-4和x=-22.平方差公式:平方差公式是一个用于将两个平方差表示为因式积的公式。
平方差公式有两种形式:(a+b)(a-b)=a^2-b^2和(a-b)(a+b)=a^2-b^2、两种形式是等价的,根据实际情况选择使用。
让我们来看一个例子:例子2:计算(3+2)(3-2)根据平方差公式,我们可以将(3+2)(3-2)展开为3^2-2^2计算后,我们可以得到(3+2)(3-2)=9-4=5所以,(3+2)(3-2)=5在解决问题时,我们还可以将完全平方公式和平方差公式结合使用。
例子3:解方程x^2-9=0观察到x^2-9是一个差的平方形式,即(x+3)(x-3)。
所以,方程x^2-9=0可以改写为(x+3)(x-3)=0。
根据乘法法则,当一个积等于0时,至少有一个因子等于0。
所以,我们得到x+3=0或x-3=0。
解得x=-3或x=3所以,方程x^2-9=0的解为x=-3或x=3通过以上的例子,我们可以看到完全平方公式和平方差公式在解决一元二次方程和计算平方差时的作用。
在实际应用中,熟练地掌握它们可以帮助我们更快地解决问题,提高数学解题的效率。
平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解
平方差公式和完全平方公式因式分解
平方差公式和完全平方公式是数学中常用的公式,在因式分解中起到了重要作用。
以下是这两个公式的介绍和因式分解方法:
1. 平方差公式:
平方差公式用于因式分解具有平方项的差的平方。
其公式为:a^2 - b^2 = (a + b)(a - b)。
利用此公式,我们可以将一个差的平方写成两个因数的乘积。
2. 完全平方公式:
完全平方公式用于因式分解一个二次多项式。
其公式为:a^2 + 2ab + b^2 = (a + b)^2。
利用完全平方公式,我们可以将一个二次多项式写成一个完全平方的形式。
因式分解示范:
1. 平方差公式因式分解:
假设我们要因式分解x^2 - 9。
根据平方差公式,我们有:x^2 - 9 = (x + 3)(x - 3)。
2. 完全平方公式因式分解:
假设我们要因式分解x^2 + 6x + 9。
根据完全平方公式,我们有:x^2 + 6x + 9 = (x + 3)^2。
通过使用平方差公式和完全平方公式,我们可以将一个多项式因式分解为乘积的形式。
这两个公式在代数中的应用非常广泛,帮助我们简化表达式,解决方程和证明数学性质等问题。
需要注意的是,因式分解可能会涉及到更复杂的多项式和多步操作。
理解和熟练运用这些公式,可以在数学问题求解中提高效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解基础习题
(公式法)
专题训练一:利用平方差公式分解因式
题型(一):把下列各式分解因式
1.24x -
2.29y -
3.21a -
4.224x y -
5.2125b -
6.222x y z -
7.2240.019m b -
8.2219a x -
9.2236m n -
10.2249x y - 11.220.8116a b - 12.222549p q -
13.2422a x b y - 14.41x - 15.
44411681
a b m -
题型(二):把下列各式分解因式
1.22()()x p x q +-+
2. 22(32)()m n m n +--
3.2216()9()a b a b --+
4.229()4()x y x y --+
5.22()()a b c a b c ++-+-
6.224()a b c -+
题型(三):把下列各式分解因式
1.53x x -
2.224ax ay -
3.322ab ab -
4.316x x -
5.2433ax ay -
6.2(25)4(52)x x x -+-
7.324x xy - 8.343322x y x - 9.4416ma mb -
10.238(1)2a a a -++ 11.416ax a -+ 12.2216()9()mx a b mx a b --+
题型(四):利用因式分解解答下列各题
1.证明:两个连续奇数的平方差是8的倍数。
2.计算
⑴22758258- ⑵22429171- ⑶223.59 2.54⨯-⨯
⑷22222
11111(1)(1)(1)(1)(1)234910-
--⋅⋅⋅--
专题训练二:利用完全平方公式分解因式
题型(一):把下列各式分解因式
1.221x x ++
2.2441a a ++
3. 2169y y -+
4.214
m m ++ 5. 221x x -+ 6.2816a a -+
7.2144t t -+ 8.21449m m -+ 9.222121b b -+ 10.214
y y ++ 11.2258064m m -+ 12.243681a a ++
13.2242025p pq q -+ 14.224x xy y ++ 15.2244x y xy +-
题型(二):把下列各式分解因式
1.2()6()9x y x y ++++
2.222()()a a b c b c -+++
3.2412()9()x y x y --+-
4.22()4()4m n m m n m ++++
5.()4(1)x y x y +-+-
6.22(1)4(1)4a a a a ++++
1.222xy x y --
2.22344xy x y y --
3.232a a a -+-
题型(四):把下列各式分解因式 1.221222
x xy y ++ 2.42232510x x y x y ++
3.2232ax a x a ++
4.2222()4x y x y +-
5.2222()(34)a ab ab b +-+
6.42()18()81x y x y +-++
题型(五):利用因式分解解答下列各题
1.已知: 2211128,22x y x xy y ==++,求代数式的值。
2.3322322a b ab +==已知,,求代数式a b+ab -2a b 的值。
3.已知:2220a b c ABC a b c ab bc ac ++---=、、为△的三边,且, 判断三角形的形状,并说明理由。