基于BP算法的神经网络技术毕业论文

合集下载

基于BP模型神经网络的研究综述

基于BP模型神经网络的研究综述

基于BP模型神经网络的研究综述摘要:基于BP模型的神经网络是一种用于前向多层神经网络的反传学习算法,目前为止应用最为广泛且最重要的一种训练前向神经网络的学习算法。

本文详细介绍BP算法原理并剖析其性能不足的几个方面,简要介绍优化算法,对模型未来的发展方向进行展望。

关键词:BP模型;神经网络;梯度下降法1.BP神经网络模型BP网络是一种用于前向多层神经网络的反传学习算法,是目前应用最广泛的神经网络模型之一。

它是由鲁梅尔哈特提出后受到广泛重视[1]。

BP 网络由输入层、隐层和输出层三部分构成,每层由许多并行运算的简单神经元组成,网络的层与层之间的神经元采用全互连方式,但同层神经元之间并无相互连接。

2.BP 网络学习算法2.1基于ep的BP算法的学习过程学习的最终结果是通过一系列的训练过程不断调整连接权值,使得对任一输入都能得到所期望的输出。

学习的方法是需要用一组训练样例对神经网络进行训练,每个样例都包含样例的输入及期望的输出两部分。

样例训练就是首先将样例通过BP神经网络正向的进行计算,通过输入层经各隐层逐层处理并计算每个单元的实际输出值;然后计算实际输出与期望输出之间的差值,如果该误差不能达到预定的要求,则沿着原来的连接通路逐层返回,利用两者的误差按照一定的原则对各层节点的权值进行相应的调整,使得最后得到的误差逐渐减小,满足要求即可停止2.2基于E的BP算法的学习过程2.3BP神经网络模型的性能分析BP 网络的理论依据坚实,推导过程严谨,物理概念清楚,通用性强。

但是,人们在使用过程中发现 BP 网络也存在许多不足之处,主要包括以下几个方面:2.3.1收敛速度慢由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,误差曲面存在平坦区域[2]。

在这些区域中,误差梯度变化较小,即使权值的调整量很大,误差依然下降缓慢,使训练过程几乎停顿。

2.3.2易陷入局部极小BP 网络的训练是从某一起始点开始的斜面逐渐达到误差的最小值。

毕业论文BP神经网络在图像深度预测中应用

毕业论文BP神经网络在图像深度预测中应用

毕业论文BP神经网络在图像深度预测中应用BP神经网络在图像深度预测中应用摘要:深度预测是计算机视觉领域的重要研究方向之一。

该文提出了一种采用BP神经网络方法进行图像深度预测的新方法。

该方法使用BP神经网络结合反向传播算法对图像进行训练,从而预测每个像素点的深度。

实验结果表明,该方法有效地提高了图像深度预测的精度和效率。

关键词:深度预测;神经网络;BP算法;图像处理1.引言深度预测是计算机视觉领域的重要研究方向之一。

在计算机视觉领域中,图像深度预测是一种重要的图像处理技术。

它的主要目的是预测图像中每个像素点的深度。

图像深度预测是一个复杂的问题。

传统的图像深度预测方法采用线性回归模型和决策树模型。

然而,这些方法的预测精度受限,且不能满足实际的应用需求。

随着神经网络和深度学习技术的发展,它们被广泛应用于图像深度预测领域。

2.BP神经网络BP神经网络是一种常用的神经网络模型,它可以在监督学习的情况下进行训练。

BP神经网络通过误差反向传播算法训练网络,不断优化网络的权值和偏置,从而提高预测结果的准确性。

BP神经网络具有很好的非线性拟合能力,并且可以处理大规模、高维度的数据。

3.图像深度预测方法图像深度预测主要包括两个步骤,即训练和预测。

3.1 训练训练过程中,需要将图像所有像素点的深度作为训练数据,输入BP神经网络中。

BP神经网络将深度值作为训练目标,对图像进行训练,不断优化网络的权值和偏置,从而提高预测结果的准确性。

3.2 预测预测过程中,需要将待预测图像输入BP神经网络中。

神经网络将对输入图像进行计算,从而预测每个像素点的深度值。

预测结果可以通过扫描每个像素点获得。

4.实验利用400张图片,采用传统算法和本文提出的算法进行图像深度预测。

实验结果表明,利用BP神经网络方法进行图像深度预测可以在保持高精度的同时提高预测效率。

本文提出的算法拥有更高的预测精度和更快的预测速度,可以有效地用于实际应用中。

5.结论本文提出了一种基于BP神经网络的图像深度预测方法,通过在训练过程中使用反向传播算法,可以提高预测结果的准确性。

基于MATLAB的BP神经网络的仿真与实现论文

基于MATLAB的BP神经网络的仿真与实现论文

2012届毕业设计论文基于MatLab的BP神经网络的仿真与实现院、部:计算机与信息科学学院学生姓名:指导教师:职称讲师专业:计算机科学与技术班级:完成时间:2012年5月摘要摘要本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,引出目前存在的问题。

然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,并给出神经网络算法的基本流程。

采用Matlab软件编程实现BP神经网络算法。

将神经网络算法应用于函数逼近,样本分类和样本含量估计问题中,并分析相关参数或算法对运行结果的影响。

最后对BP神经网络算法进行了展望。

关键字: 神经网络;BP神经网络;函数逼近;样本分类ABSTRACTABSTRACTFirst, the research purpose and significance of neural network is expounded in this article. Commentary studies current situation at the problem home and abroad. Leads to the existing problems. and then have analyzed algorithmic basal principle of neural networks, Give algorithmic concert of classics neural networks out the realization method. Summing up the characteristics of neural network algorithm. Neural network algorithm is given the basic processes. The arithmetic of BP neural network is realized in Matlab software. The algorithm applies of BP neural networks to the function approximation problem,Sample classification and computes the swatch content. And analysis of relevant parameters on the results of algorithm. Finally, The BP neural network algorithm is Outlook.Key words: Neural network;BP neural network;Function approximation; Sample classfication目录摘要 (I)ABSTRACT........................................................ I I 目录............................................................ I II 前言.. (V)第一章绪论................................................... - 1 -1.1 人工神经网络的研究背景和意义............................ - 1 -1.2 神经网络的发展与研究现状................................ - 2 -1.2.1 神经网络的发展..................................... - 2 -1.2.2 神经网络的现状.................................... - 3 -1.3 神经网络的研究内容和目前存在的问题...................... - 3 -1.3.1 神经网络的研究内容................................. - 3 -1.3.2 神经网络研究目前存在的问题......................... - 3 -1.4 神经网络的应用.......................................... - 4 - 第二章神经网络结构及BP神经网络................................ - 5 -2.1 神经元与网络结构........................................ - 5 -2.1.1 生物神经元......................................... - 5 -2.1.2 人工神经元......................................... - 6 -2.1.3人工神经网络的构成................................. - 6 -2.2 BP神经网络及其原理...................................... - 9 -2.2.1 BP神经网络定义.................................... - 9 -2.2.2 BP神经网络模型及其基本原理........................ - 9 -2.3 BP神经网络的主要功能................................... - 10 -2.4 BP网络的优点以及局限性................................. - 11 - 第三章 BP神经网络在实例中的应用............................... - 13 -3.1 基于MATLAB的BP神经网络工具箱函数..................... - 13 -3.1.1 BP网络创建函数................................... - 14 -3.1.2 神经元上的传递函数................................ - 14 -3.1.3 BP网络学习函数................................... - 15 -3.1.4 BP网络训练函数................................... - 15 -3.2 BP网络在函数逼近中的应用............................... - 15 -3.2.1 问题的提出........................................ - 15 -3.2.2 基于BP神经网络逼近函数........................... - 16 -3.2.3 不同频率下的逼近效果.............................. - 19 -3.2.4 讨论............................................. - 21 -3.3仿真实验................................................ - 21 -3.3.1 BP神经网络MATLAB设计............................ - 21 -3.3.2 各种BP学习算法MATLAB仿真........................ - 23 -3.3.3 各种算法仿真结果比较与分析........................ - 26 -3.3.4 调整初始权值和阈值的仿真.......................... - 27 -3.3.5 其他影响因素仿真.................................. - 29 -3.4 BP网络在样本含量估计中的应用........................... - 30 -3.4.1 问题的提出........................................ - 30 -3.4.2 基于BP神经网络对胆固醇含量估计................... - 31 -3.4.3 不同条件下的输出结果.............................. - 33 -3.4.4 讨论.............................................. - 35 -3.5 BP神经网络在样本分类中的应用........................... - 36 -3.5.1问题的提出........................................ - 36 -3.5.2 基于BP神经网络的样本分类......................... - 36 -3.5.3不同算法条件下的不同测试过程以及输出结果.......... - 38 -3.5.4讨论.............................................. - 42 - 结论........................................................... - 43 - 参考文献 (1)致谢 (2)前言前言BP神经网络是目前人工神经网络模式中最具代表性,应用最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。

BP神经网络风险评估论文-最新范文

BP神经网络风险评估论文-最新范文

BP神经网络风险评估论文摘要:软件需求分析不仅仅是为了让开发者满足用户要求,而且还可以帮助用户了解软件的性能和功能,具有一举两得的效果,但是如果软件需求不符合实际需求,就会出现风险,导致返工。

在BP神经网络的基础上,我们建立了软件需求分析风险评估模型,以减少软件开发的失败率,规避因软件需求分析失误而带来的实际存在的或潜在的风险。

关键词:风险;软件需求;BP神经网络;研究;分析软件开发过程中,需求分析是一个关键性的阶段。

导致它失败的原因有很多,例如开发者和用户之间的沟通障碍、软件本身的隐含性、需求信息的不对称等等。

这些问题导致的返工,增加了开发的成本,也损坏了企业形象,更可能流失掉部分用户。

因此,我们必须对软件需求分析进行风险评估管理,把负面影响降到最低。

现代商业发展中,各企业和企业之间的竞争日趋激烈,掌握最新的技术,对技术进行创新,才是企业在行业内立足脚跟,获得更加长远发展的方法,因此要想牢牢地把握企业的运命就需要我们保持对技术创新的热情,并在这条道路上乐此不疲。

21世纪,只有掌握了最新和最具有创造性的技术,才能赢的最后的胜利,本文把BP网络与软件需求分析风险评估模型相结合,具有十分重要的意义。

1BP神经网络BP神经网络是开发者使用最多的神经网络之一,它具有算法简单、极强的鲁棒性、收敛速度极快等优点。

最重要的一点是能够最大限度的接近其真实系统,非常适合于线性的、不确定的、模糊的软件风险数据。

BP算法是一种用于前向多层神经网络的的反传学习算法。

采用BP算法的数层感知器神经网络模型,它的基本思想是,学习过程由信号的正向传播和误差的反向传播两个过程组成。

模糊理论采用模糊数学的方法,通过抽象思维,对处于多种因素作用下的事物做出总体评价。

它的两大主要特征是:第一,结果清晰;第二,系统性强,这非常适合于各种非确定性问题的解决。

2软件需求分析风险评估模型开发过程中,了解软件需求是很重要的。

软件开发主要是依据需求的不同而设计出的产品。

bp神经网络的算法改进与应用研究

bp神经网络的算法改进与应用研究

BP神经网络的算法改进与应用研究重庆大学硕士学位论文学生姓名:程*指导教师:刘琼荪教授专业:概率论与数理统计学科门类:理学重庆大学数学与统计学院二O一一年四月Study on Improved Algorithm and Application of BP Neural NetworkA Thesis Submitted to Chongqing Universityin Partial Fulfillment of the Requirement for theDegree of Master of ScienceByCheng YueSupervised by Prof. Liu QiongsunMajor: Probability and Mathematical StatisticsCollege of Mathematics and Statistics Science of Chongqing University, Chongqing, ChinaApril 2011摘要人工神经网络是一种模拟大脑信息处理算法的非线性系统,具有强大的分布式信息存储、并行处理和自适应学习能力等特点。

BP网络由于结构简单、精度较高、易于编程、可操作性强、非线性映射能力强等优点而成为目前神经网络中应用最广泛的一种。

由于标准BP算法采用的是最速梯度下降法,因而存在收敛速度慢、易陷入局部极小等缺点。

为此,许多学者在标准BP算法的基础上,从学习率、误差函数、激励函数、优化算法、网络结构等方面进行了大量的研究,并且提出了一些改进的BP算法。

本文首先对BP网络模型和算法进行了系统的综述。

针对标准BP算法的“平台”现象,构造了一种自适应放大的误差信号,通过修改激励函数的导数,使权值的修正过程不会因饱和区域而趋于停滞,并对其收敛性进行分析证明。

其次,从影响BP网络性能的学习率角度提出一种新的自适应学习率改进BP算法。

本文针对BP算法的缺陷,从两个不同的角度对标准BP算法进行改进。

BP神经网络的MATLAB实现--研究生结课论文

BP神经网络的MATLAB实现--研究生结课论文

河北工程大学2013~2014学年第2学期研究生课程论文报告BP神经网络的MATLAB实现摘要:本文首先介绍了神经网络的发展与研究现状,然后分析了BP神经网络的基本原理,采用Matlab软件编程实现BP神经网络算法。

重点讲述将神经网络算法应用于函数逼近问题。

关键词:神经网络 BP神经网络函数逼近0引言BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。

本文主要是将神经网络算法应用于函数逼近,利用MATLAB予以实现,并分析比较相关参数对算法运行结果的影响。

1概述1.1神经网络的发展现状神经网络起源于20世纪40年代,至今发展已半个多世纪,自1943年M-P模型开始,至20世纪60年代为止,这一段时间可以称为神经网络系统理论发展的初期阶段。

这个时期的主要特点是多种网络的模型的产生与学习算法的确定。

20世纪60年代,人们发现感知器存在一些缺陷,例如,它不能解决异或问题,因而研究工作趋向低潮。

不过仍有不少学者继续对神经网络进行研究。

Grossberg 提出了自适应共振理论;Kohenen 提出了自组织映射;Fukushima 提出了神经认知网络理论;Anderson提出了BSB模型;Webos 提出了BP理论等。

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

基于BP神经网络算法的仿真研究

基于BP神经网络算法的仿真研究

基于BP神经网络算法的仿真研究BP神经网络算法(Back Propagation Neural Network Algorithm)是一种常用的人工神经网络算法,它具有非常广泛的应用领域,如模式识别、数据挖掘、预测分析等。

本文将基于BP神经网络算法进行仿真研究,重点探讨其在分类问题中的应用。

BP神经网络算法是一种有监督学习的算法,可以通过输入变量进行训练,然后利用已有数据进行预测或分类。

其核心思想是通过反向传播算法来对网络参数进行调整,以达到最小化误差的目标。

BP神经网络是一种多层前馈网络,通常包含输入层、隐层和输出层。

输入层负责接收外部输入,隐层负责进行特征提取和映射,输出层负责产生最终的输出结果。

在训练过程中,通过计算误差和调整权值来不断优化网络的性能。

在本次仿真研究中,我们将以一个真实的案例为例,来说明BP神经网络算法的应用。

假设我们需要对一个银行的客户进行信用评级,以判断其是否有违约的风险。

我们将收集一些已知的客户数据,如年龄、性别、收入、负债情况等作为输入变量;同时,我们还需要针对每位客户进行标记,将其划分为“违约”或“非违约”两个类别。

我们将以80%的数据用作训练集,20%的数据用作测试集。

首先,我们需要对输入数据进行预处理,通常包括数据清洗、特征选择和归一化等步骤。

在本次研究中,我们假设已经完成了这些预处理工作。

接下来,我们构建BP神经网络模型。

假设我们选择了一个包含一个隐层的神经网络,其中隐藏层含有10个神经元。

输入层的节点数与输入变量的数目相同,输出层的节点数为1(即输出一个标记)。

我们将采用sigmoid函数作为激活函数,用于将输入信号转化为输出信号。

在实际训练过程中,我们将采用梯度下降法来更新网络的权值。

每次迭代时,我们计算网络的输出与实际标记之间的误差,并通过反向传播算法来更新网络的参数。

迭代次数与学习率等超参数的选择可以通过实验来确定。

在本次研究中,我们选择迭代100次,并设置学习率为0.01训练完成后,我们将使用测试集来评估模型的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)题目:基于BP算法的神经网络技术研究与应用毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订指导教师评价:一、撰写(设计)过程1、学生在论文(设计)过程中的治学态度、工作精神□优□良□中□及格□不及格2、学生掌握专业知识、技能的扎实程度□优□良□中□及格□不及格3、学生综合运用所学知识和专业技能分析和解决问题的能力□优□良□中□及格□不及格4、研究方法的科学性;技术线路的可行性;设计方案的合理性□优□良□中□及格□不及格5、完成毕业论文(设计)期间的出勤情况□优□良□中□及格□不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)指导教师:(签名)单位:(盖章)年月日评阅教师评价:一、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格二、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)评阅教师:(签名)单位:(盖章)年月日教研室(或答辩小组)及教学系意见教研室(或答辩小组)评价:一、答辩过程1、毕业论文(设计)的基本要点和见解的叙述情况□优□良□中□及格□不及格2、对答辩问题的反应、理解、表达情况□优□良□中□及格□不及格3、学生答辩过程中的精神状态□优□良□中□及格□不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格评定成绩:□优□良□中□及格□不及格教研室主任(或答辩小组组长):(签名)年月日教学系意见:系主任:(签名)年月日摘要本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,引出目前存在的问题。

然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,掌握BP网络的形成步骤。

学会使用Matlab中的神经网络工具箱函数,采用Matlab软件编程实现BP神经网络算法。

将神经网络算法应用于函数逼近,样本分类和样本含量估计问题中,并分析相关参数或算法对运行结果的影响。

最后对BP神经网络算法进行了展望。

关键字:神经网络;BP神经网络;函数逼近;仿真实验ABSTRACTThis paper first explains the purpose and significance of the topic research. Commentary studies current situation at the problem home and abroad. Leads to the existing problems. and then have analyzed algorithmic basal principle of neural networks, Give algorithmic concert of classics neural networks out the realization method. Summing up the characteristics of neural network algorithm. Master the forming step of BP network. The arithmetic of BP neural network is realized in Matlab software. The algorithm applies of BP neural networks to the function approximation problem,Sample classification and computes the swatch content. And analysis of relevant parameters on the results of algorithm. Finally, The BP neural network algorithm is Outlook.Key words: Neural network;BP neural network;Function approximation;Simulation experiment目录第一章引言 (1)1.1 神经网络的概述 (1)1.2人工神经网络的研究目的和意义 (1)1.3神经网络的发展与研究现状 (2)1.3.1神经网络的发展 (2)1.3.2神经网络的研究现状 (3)1.4神经网络研究目前存在的问题 (3)1.5 神经网络的应用领域 (4)第二章BP神经网络概述 (6)2.1 BP神经网络介绍 (6)2.2 神经元 (6)2.2.1人工神经元 (6)2.2.2生物神经元 (10)2.3 BP神经网络原理 (10)2.4 BP神经网络的主要功能 (13)2.5 BP神经网络的优点和缺点 (13)第三章BP神经网络的应用 (17)3.1基于MATLAB的BP神经网络工具箱函数 (17)3.1.1 MATLAB工具箱介绍 (17)3.1.2 BP网络创建函数 (18)3.1.3 神经元上的传递函数 (18)3.1.4 BP网络学习函数 (19)3.1.5 BP网络训练函数 (19)3.2 BP网络在函数逼近中的应用 (19)3.2.1 问题的提出 (19)3.2.2 基于BP神经网络逼近函数 (20)3.2.3 不同频率下的逼近效果 (23)3.2.4 讨论 (25)3.3 仿真实验 (25)3.3.1 BP神经网络MATLAB设计 (25)3.3.2 各种BP学习算法MATLAB仿真 (27)3.3.3 各种算法仿真结果比较与分析 (30)3.3.4 调整初始权值和阈值的仿真 (31)3.3.5 其他影响因素仿真 (33)3.4 BP神经网络在样本分类中的应用 (34)3.4.1问题的提出 (34)3.4.2 基于BP神经网络的样本分类 (34)结束语.................................... 错误!未定义书签。

致谢.................................... 错误!未定义书签。

参考文献.. (39)附录A (40)第一章引言1.1神经网络的概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

神经元网络是机器学习学科中的一个重要部分,用来classification或者regression。

相关文档
最新文档