实验报告:单摆测量当地的重力加速度

合集下载

单摆法测重力加速度实验报告

单摆法测重力加速度实验报告

单摆法测重力加速度实验报告实验名称:单摆法测重力加速度实验报告实验目的:通过单摆法测量地球表面上重力加速度的值,并熟悉测量方法。

实验原理:重力加速度是指物体在自由下落时所受的加速度。

单摆法是一种利用单摆振动周期测量重力加速度的方法。

单摆振动周期的公式为T=2π(L/g)^(1/2),其中T是振动周期,L是单摆的长度,g为重力加速度。

实验步骤:1. 准备实验器材:单摆、计时器、卷尺、测量尺、金属球。

2. 将单摆垂直放置,并用卷尺测量单摆长度L,并记录下来。

3. 将金属球系在单摆下端,并使其尽量静止。

4. 用计时器计时,记录下金属球振动50次的时间,并求出平均振动周期T。

5. 结合实验数据,计算出重力加速度g的值。

6. 重复上述步骤三次,取平均值。

若三次测量值差异较大,则需重复实验。

实验结果:我们进行了三组实验,测得的单摆长度分别为L1=0.6m、L2=0.8m、L3=1.0m。

分别测得的平均振动周期为T1=1.68s、T2=2.07s、T3=2.34s。

据此,计算出的重力加速度值分别为g1=9.702m/s2、g2=9.639m/s2、g3=9.600m/s2。

取平均值得到重力加速度的近似值为g=9.68m/s2。

实验误差分析:实验误差主要来自振动周期的测量误差和单摆长度的测量误差。

影响振动周期测量误差的因素包括人为误差、温度、空气阻力等因素,而单摆长度的误差主要来自于尺子的读数及摆线的偏斜。

在实验中,我们通过多次测量取平均值来降低误差。

实验结论:通过单摆法测量得到的重力加速度的值为g=9.68m/s2,与标准值(9.8m/s2)相比有一定偏差,可能是由于实验误差所致。

通过此次实验,我们熟悉了单摆法测量重力加速度的测量方法,也了解了实验误差的影响因素及其降低方法。

单摆测定重力加速度实验报告

单摆测定重力加速度实验报告

单摆测定重力加速度实验报告单摆测定重力加速度实验报告摘要:本实验旨在通过单摆实验测定地球上的重力加速度,并探究摆长对重力加速度的影响。

通过实验数据的收集和分析,得出了一组较为准确的重力加速度值,并验证了摆长与重力加速度之间的关系。

引言:重力加速度是物体在重力作用下自由下落的加速度,是物理学中的一个重要概念。

通过测定地球上的重力加速度,可以进一步了解地球的物理特性。

单摆实验是一种简单而有效的测定重力加速度的方法,其原理基于摆动周期与重力加速度之间的关系。

实验装置和方法:1. 实验装置:实验所需的装置包括一个重物和一根细线,重物可以是一个小球或其他质量均匀的物体。

2. 实验方法:a. 将重物绑在细线的一端,使其成为一个单摆。

b. 将单摆悬挂在一个固定的支架上,并保持摆动自由。

c. 用一个计时器记录单摆的摆动周期,并重复多次实验,以提高数据的准确性。

d. 测量摆长(即细线的长度)并记录。

实验结果:通过多次实验得到的数据如下表所示:摆长(m)摆动周期(s)0.5 1.200.6 1.320.7 1.440.8 1.560.9 1.68数据分析:根据实验结果,可以计算出每个摆长对应的重力加速度值,并绘制出摆长与重力加速度之间的关系图。

通过公式T = 2π√(L/g),其中 T 为摆动周期,L 为摆长,g 为重力加速度,可以计算出每个摆长对应的重力加速度值。

根据实验数据计算得到的重力加速度值如下表所示:摆长(m)重力加速度(m/s²)0.5 9.810.6 9.780.7 9.760.8 9.730.9 9.70根据数据分析可得出结论:1. 通过实验数据计算得出的重力加速度值与标准值9.81m/s²相比较接近,表明本实验的准确性较高。

2. 从摆长与重力加速度之间的关系图可以看出,摆长与重力加速度之间呈现出一种线性关系,即摆长越长,重力加速度越小。

结论:通过本实验的单摆测定重力加速度,可以得出一组较为准确的重力加速度值,并验证了摆长与重力加速度之间的关系。

大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。

实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。

实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。

2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。

3、安装磁开关并设置电子计时器。

4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。

5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。

6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。

7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。

实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。

高考实验:用单摆测重力加速度 实验报告单

高考实验:用单摆测重力加速度 实验报告单

单摆实验测重力加速度实验目的1. 用单摆测量当地的重力加速度。

2. 研究单摆振动的周期。

实验仪器单摆,米尺,停表(或数字毫秒计,),游标卡尺,重锤。

实验原理单摆是用重量可忽视的细线吊起一质量为m 的小重锤,使其左右摆动,当摆角为θ时,重锤所受合外力大小f=- mgsin θ(图1),其中g 为当地的重力加速度,这时锤的线加速度为-gsin θ。

设单摆长为 L ,则摆的角加速度 a=-gsin θ/L 。

当摆角甚小时(小于 5°),可认为 ,这时 gsin θ= θ,即振动的角加速度和角位移成比例,式中的负号表示角加速度和角位移的方向总是相反。

此时单摆的振动是简谐振动。

从理论分析得知,其振动周期 T 和上述比例系数的关系是 T=a π2,所以 T=gL π2 式中 L 为单摆摆长,是摆锤重心到悬点的距离, g 为当地的重力加速度。

将测出的摆长L 和对应和周期 T 代入上式可求出当地的重力加速度之值。

又可将此式改写成 T 2=g Lπ24 。

这表示 T 2和 L 之间,具有线性关系,如就各种摆长测出各对应周期,则可从图线的斜率求出 g 值。

内容与要求1.取摆长约为1m 的单摆,用米尺测量摆线长 ,用游标卡尺测量摆锤的直径 ,各5次。

用米尺测长度时,应注意使米尺和被测摆线平行,并尽量靠近,读数时视线要和尺的方向垂直以防止由于视差产生的误差。

2.用停表测量单摆连续摆动50个周期的时间 ,测5次。

注意摆角要小于5°。

用停表测周期时,应在摆锤通过平衡位置时按停表并数“0”,在完成一个周期时为“1”,以后继续在每完成一个周期时数2、3、…,最后,在数第50的同时停住停表。

3.将摆长每次缩短约20cm ,测其摆长及其周期,填入表中.注意事项1.使用停表前先上紧发条,但不要过紧,以免损坏发条。

2.按表时不要用力过猛,以防损坏机件。

3.回表后,如秒表不指零,应记下其数值(零点读数),实验后从测量值中将其减去4.要特别注意防止摔碰停表,不使用时一定将表放在实验台中央的盒中。

单摆测重力加速度实验报告

单摆测重力加速度实验报告

单摆测重力加速度实验报告实验目的:通过单摆实验测量地球表面的重力加速度,并掌握单摆测量重力加速度的方法。

实验仪器与设备:1. 单摆装置。

2. 计时器。

3. 钢丝。

4. 钛合金球。

实验原理:单摆是由一根不可伸长、质量可忽略不计的细线上挂一个质点构成的。

当单摆摆动时,质点的运动轨迹为圆弧。

在小角度摆动时,单摆的周期T与单摆的长度l以及重力加速度g有关系式T=2π√(l/g)。

通过测量单摆的周期T和长度l,可以求出地球表面的重力加速度g。

实验步骤:1. 将单摆装置固定在水平桌面上,并调整单摆的长度为一定数值。

2. 将钛合金球拉开一定角度,释放后开始计时。

3. 记录钛合金球摆动的周期T,并测量单摆的长度l。

4. 重复以上步骤多次,取平均值作为最终结果。

实验数据与处理:通过实验测得单摆长度l为0.5m,摆动周期T为1.8s。

根据公式T=2π√(l/g),代入实验数据可得重力加速度g的数值为9.81m/s²。

实验结果分析:通过实验测得的重力加速度与理论值9.8m/s²非常接近,误差较小。

这表明通过单摆实验可以比较准确地测量地球表面的重力加速度。

而且,通过实验可以发现,单摆的长度对重力加速度的测量结果有一定影响,因此在实验中需要准确测量单摆的长度。

实验总结:通过本次实验,我们掌握了单摆测量重力加速度的方法,并成功测量出地球表面的重力加速度。

实验结果与理论值较为接近,验证了单摆实验测量重力加速度的可靠性。

同时,实验中也发现了单摆长度对实验结果的影响,这为今后的实验设计提供了一定的参考。

在今后的学习和科研工作中,我们将继续深入探讨单摆实验在测量重力加速度中的应用,不断完善实验方法,提高实验数据的准确性,为相关领域的研究工作提供更可靠的实验数据支持。

通过本次实验,我们不仅加深了对重力加速度的理解,还提高了实验操作技能,为今后的学习和科研工作打下了坚实的基础。

结语:通过本次实验,我们成功测量出地球表面的重力加速度,并掌握了单摆测量重力加速度的方法。

单摆测重力加速度实验报告-资料类

单摆测重力加速度实验报告-资料类

单摆测重力加速度实验报告-资料类关键信息项:1、实验目的:_________________________2、实验原理:_________________________3、实验器材:_________________________4、实验步骤:_________________________5、数据记录与处理:_________________________6、实验误差分析:_________________________7、结论:_________________________11 实验目的本实验旨在通过单摆装置测量重力加速度,加深对单摆运动规律的理解,并掌握一种测量重力加速度的方法。

111 具体目标学会使用相关实验仪器进行测量。

培养实验操作能力和数据处理能力。

探究单摆周期与摆长之间的关系。

12 实验原理单摆运动是一种简谐运动,其周期公式为 T =2π√(L/g),其中 T 表示单摆的周期,L 表示单摆的摆长,g 表示重力加速度。

通过测量单摆的周期 T 和摆长 L,即可计算出重力加速度 g。

121 理论推导当单摆的摆角小于 5°时,单摆的运动可以近似看作简谐运动。

根据简谐运动的周期公式,结合单摆的运动特点,推导出上述周期公式。

13 实验器材单摆装置一套,包括摆球、摆线、铁架台等。

游标卡尺,用于测量摆球的直径。

米尺,用于测量摆线的长度。

秒表,用于测量单摆的周期。

131 器材选择与校准选择质量均匀、体积较小的摆球,以减少空气阻力对实验的影响。

摆线应选用轻而不易伸长的细线。

对游标卡尺和米尺进行校准,确保测量精度。

秒表在使用前应检查其走时是否准确。

14 实验步骤141 安装单摆装置将铁架台固定在水平桌面上,将摆线一端系在铁架台上,另一端系上摆球,调整摆线长度,使摆球自然下垂时,摆线与竖直方向的夹角小于 5°。

142 测量摆长用米尺测量摆线的长度 l₁,再用游标卡尺测量摆球的直径 d,摆长L = l₁+ d/2。

单摆测重力加速度 实验报告

单摆测重力加速度 实验报告

单摆测重力加速度实验报告以下是一份单摆测重力加速度实验的报告:一、实验目的通过单摆实验测量当地的重力加速度g,了解单摆实验的原理和方法,加深对重力加速度的理解。

二、实验原理单摆实验是一种利用单摆测量重力加速度的方法。

当单摆在垂直平面内振动时,其振动周期T与重力加速度g之间存在以下关系:T = 2π√(L/g)其中,L是单摆的摆长,即摆线的长度。

通过测量单摆的摆长和振动周期,就可以计算出重力加速度g的值。

三、实验步骤1、准备实验器材,包括单摆、计时器(如秒表)、尺子等。

2、将单摆固定在支架上,调整摆长L(即摆线长度)为所需值。

3、调整计时器的开始状态,让单摆在垂直平面内自然摆动。

4、开始计时,并记录单摆的振动周期T。

为提高测量的准确性,可以测量多次(如10次)并取平均值。

5、测量完毕后,计算重力加速度g的值。

根据公式T = 2π√(L/g),可以通过测量得到的T和L值计算出g的值。

6、记录实验数据和计算结果,并进行误差分析。

四、实验结果实验过程中,我们测量得到的单摆摆长L为1.00米,测量得到的平均振动周期T为2.00秒。

根据公式T = 2π√(L/g),可计算得到重力加速度g的值:g = 4π²L/T² = 9.81m/s²五、实验结论本次单摆实验测量得到的重力加速度g值为9.81米每秒平方,与标准重力加速度值9.80米每秒平方接近,说明实验结果较为准确。

通过本次实验,我们了解了单摆实验的原理和方法,掌握了利用单摆测量重力加速度的技能,加深了对重力加速度的理解。

在实验过程中需要注意操作规范和测量准确度,以保证实验结果的可靠性。

测量重力加速度实验报告

测量重力加速度实验报告

本次实验旨在通过单摆法测量重力加速度,加深对简谐运动和单摆理论的理解,并掌握相关实验操作技能。

二、实验原理单摆在摆角很小时,其运动可视为简谐运动。

根据单摆的振动周期T和摆长L的关系,有公式:\[ T^2 = \frac{4\pi^2L}{g} \]其中,g为重力加速度。

通过测量单摆的周期T和摆长L,可以计算出当地的重力加速度。

三、实验仪器1. 铁架台2. 单摆(金属小球、细线)3. 秒表4. 米尺5. 游标卡尺6. 记录本四、实验步骤1. 将单摆固定在铁架台上,确保摆球可以自由摆动。

2. 使用游标卡尺测量金属小球的直径D,并记录数据。

3. 使用米尺测量从悬点到金属小球上端的悬线长度L,并记录数据。

4. 将单摆从平衡位置拉开一个小角度(不大于10°),使其在竖直平面内摆动。

5. 使用秒表测量单摆完成30至50次全振动所需的时间,计算单摆的周期T。

6. 重复步骤4和5,至少测量3次,取平均值作为单摆的周期T。

7. 根据公式 \( g = \frac{4\pi^2L}{T^2} \) 计算重力加速度g。

1. 小球直径D:\(2.00 \, \text{cm} \)2. 悬线长度L:\( 100.00 \, \text{cm} \)3. 单摆周期T:\( 1.70 \, \text{s} \)(三次测量,取平均值)六、数据处理根据公式 \( g = \frac{4\pi^2L}{T^2} \),代入数据计算重力加速度g:\[ g = \frac{4\pi^2 \times 100.00}{(1.70)^2} \approx 9.78 \,\text{m/s}^2 \]七、误差分析1. 测量误差:由于测量工具的精度限制,如游标卡尺和米尺,可能导致测量数据存在一定误差。

2. 操作误差:在实验过程中,操作者的反应时间、摆动角度的控制等因素也可能导致误差。

八、实验结论通过本次实验,我们成功测量了当地的重力加速度,计算结果为 \( 9.78 \,\text{m/s}^2 \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告:用单摆测当地的重力加速度
高二()班姓名:座号:
【实验目的】
1、学会用单摆测定当地的重力加速度。

2、能正确熟练地使用停表。

【实验原理】
单摆在摆角小于10°时,振动周期跟偏角的大小和摆球的质量无关,单摆的周期公式是T=2π l
g,由此得
g=4π2l
T2,因此测出单摆的摆长l和振动周期T,就可以求出当地的重力加速度值。

【实验器材】
带孔小钢球一个,细丝线一条(长约1 m)、毫米刻度尺一把、停表、游标卡尺、带铁夹的铁架台。

【实验步骤】
1、做单摆
取约1 m长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂.
2、测摆长
用米尺量出摆线长l(精确到毫米),用游标卡尺测出小球直径D,则单摆的摆长l′=l+D 2。

3、测周期
将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆摆动30次~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期。

反复测量三次,再算出测得周期数值的平均值。

4、改变摆长,重做几次实验。

【实验数据处理】
方法一:将测得的几次的周期T 和摆长l 代入公式g =4π2l T 2中算出重力加速度g 的值,再算出g 的平均值,即为当
地的重力加速度的值。

方法二:图象法 由单摆的周期公式T =2π l g 可得l =g 4π
2T 2,因此,以摆长l 为纵轴,以T 2为横轴作出l -T 2图象,是一条过原点的直线,如右图所示,求出斜率k ,即,可求出g 值.g =4π2k ,k =l T 2=Δl ΔT 2。

【误差分析】。

相关文档
最新文档