法向量求法及应用方法

合集下载

法向量求法及应用方法

法向量求法及应用方法

法向量求法及应用方法法向量是指与一些曲面上的每一点的切平面垂直的向量。

在三维空间中,法向量可以方便地描述曲面的几何特征和方向。

一、法向量的求法:1.平面的法向量:平面的法向量可以通过两个不平行的向量叉积得到。

设平面上两个向量为a和b,法向量n=a×b。

2.曲面的法向量:曲面的法向量可以通过曲面的方程求得。

常见的曲面方程包括参数方程、隐函数方程和显函数方程。

对于参数方程和隐函数方程,可以通过求偏导数来得到曲面的切向量,然后再将切向量进行标准化得到法向量。

例如,对于参数方程x=x(u,v),y=y(u,v),z=z(u,v),法向量可以通过求∂(x,y,z)/∂(u,v)的叉积来得到。

而对于隐函数方程F(x,y,z)=0,可以通过对F(x,y,z)进行偏导数得到一个方程组,然后解这个方程组来得到法向量。

二、法向量的应用方法:1.曲面法向量的判定:通过计算曲面的法向量可以判断曲面的朝向和几何特征。

例如,在渲染图形时,可以通过曲面的法向量来决定光线对曲面的照射效果,以实现更真实的光影效果。

2.曲面法向量的插值和平滑:在计算机图形学中,通常需要对曲面进行插值和平滑处理。

曲面的法向量可以帮助我们在曲面上进行平滑采样。

例如,在曲面细分中,通过计算曲面的法向量来过滤掉尖锐的细分结果,使得细分结果更加平滑自然。

3.曲面的切平面和法向量的切线:对于空间曲线上的点,可以通过曲线的参数方程求得曲线的切线向量。

而对于空间曲面上的点,可以通过曲面的法向量和曲面上其中一点的切平面求得曲线的切向量。

切平面上的切向量和曲面的法向量垂直,并且与曲线相切。

4.计算曲面的面积和体积:曲面的法向量可以用来计算曲面的面积和体积。

对于平面,面积等于法向量的模长;对于曲面,可以通过对曲面分割成小区域然后计算每个小区域的法向量,并对法向量进行积分得到曲面的面积或体积。

5.平面和曲面的方程:法向量可以帮助我们确定平面和曲面的方程。

对于平面,通过平面上一点和法向量,可以得到平面的方程;对于曲面,通过曲面上一点和法向量,可以得到曲面的方程。

平面法向量的求法法向量怎么求

平面法向量的求法法向量怎么求
点到平面的距离:
方法指导:如图2-5,若点B为平面α外一点,点A
1
ab
adcb;2、适合右手定则。
cd
二、平面法向量的应用
1、求空间角
为平面α内任一点,平面的法向量为,则点B到平面α的距离公式为d
三、高考真题新解
例1、已知如图3-1,四棱锥P-ABCD的底面为直角梯形,
AB∥DC,DAB90,PA底面ABCD,且PA=AD=DC=
mn0,mn,即平面A1MC平面A1BD1.
(III).设点A到平面A1MC的距离为d,
mMCMA1(a2,
又MA(
2222
a,a)是平面A1MC的法向量, 22
2|mMA|1
a,0,0),A点到平面A1MC的距离为:da.22|m|
四、用空间向量解决立体几何的“三步曲”
(1)、建立空间直角坐标系(利用现有三条两两垂直的直线,注意已有的正、直条件,相关几何知识的综合运用,建立右手系),用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;、通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;、把向量的运算结果“翻译”成相应的几何意义。
3|m||n|
22
面AMC与面BMC所成二面角的大小为arccos().
33
例2、(本题满分12分)如图3-2,在长方体ABCD-A1B1C1D1中,已知AB=AA1=a,BC,M是AD的中点。(Ⅰ)求证:AD∥平面A1BC;
(Ⅱ)求证:平面A1MC⊥平面A1BD1;(Ⅲ)求点A到平面A1MC的距离。
线线、线面、面面间的位置关系与向量运算的关系设直线l,m的方向向量分别为,,平面,的法向量分别为,。
1.平行关系

法向量的求法及其空间几何题的解答

法向量的求法及其空间几何题的解答

状元堂一对一个性化辅导教案教师张敏科目数学时间2013 年6 月4日学生董洲年级高二学校德阳西校区授课内容空间法向量求法及其应用立体几何知识点与例题讲解难度星级★★★★教学内容上堂课知识回顾(教师安排):1.平面向量的基本性质及计算方法2.空间向量的基本性质及计算方法本堂课教学重点:1.掌握空间法向量的求法及其应用2.掌握用空间向量求线线角,线面角,面面角及点面距3.熟练灵活运用空间向量解决问题得分:平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。

由n α⊥,得0n a ⋅=且0n b ⋅=,由此得到关于,x y 的方程组,解此方程组即可得到n 。

二、 平面法向量的应用1、 求空间角(1)、求线面角:如图2-1,设→n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:.||||arccos 2,2→→→→→→⋅⋅->=<-=AB n ABn AB n ππθ 图2-1-2:2||||arccos 2,ππθ-⋅⋅=->=<→→→→→→AB n AB n AB n(2)、求面面角:设向量→m ,→n 分别是平面α、β的法向量,则二面角βα--l 的平面角为:θβα→m图2-2→nθ→mα图2-3→nβ|,cos |sin ><=→→AB n θABα图2-1-2θC→n 图2-1-1αθB→nA C||||arccos,→→→→→→⋅⋅>==<n m nm n m θ(图2-2);||||arccos,→→→→→→⋅⋅->==<n m nm n m πθ(图2-3)两个平面的法向量方向选取合适,可使法向量夹角就等于二面角的平面角。

法向量快速求解小技巧

法向量快速求解小技巧

法向量快速求解小技巧法向量是与给定曲线或曲面垂直的向量。

在计算机图形学和计算机视觉领域,求解法向量是一个非常重要的问题,因为法向量可以用于计算光照、碰撞检测、阴影等许多图形处理任务。

在本文中,我将分享一些快速求解法向量的小技巧,以帮助您优化计算速度和准确性。

1. 基于几何法:在求解曲面法向量时,最简单的方法是基于几何法。

对于离散的曲面,可以通过计算相邻顶点之间的差异来估计曲面的斜率。

从而通过斜率来计算相邻顶点之间的法向量。

具体而言,对于每个顶点,可以找到相邻的顶点,并计算从该顶点到相邻顶点的矢量差。

然后通过将这些矢量差进行归一化,即可获得曲面的法向量。

此方法的优点是简单易懂,适用于离散数据和粗糙的曲面。

然而,它的缺点是计算效率低下,并且对于复杂曲面效果较差。

2. 基于微分法:基于微分法是一种更精确和高效的求解法向量的方法。

它基于曲线或曲面的导数来计算法向量。

对于连续函数,可以通过求解函数的导数来得到曲线或曲面的切线。

然后,通过将切线进行归一化,即可得到切线的方向,即法向量的方向。

具体来说,对于曲线,可以通过求解曲线的一阶导数来得到切线的方向。

对于曲面,可以通过求解曲面的一阶偏导数来得到曲面的切平面,从而得到法向量的方向。

这种方法的优点是精确和高效,并且对于复杂曲线和曲面也能够得到良好的效果。

然而,它要求曲线和曲面必须是在数学上连续可微的,对于离散数据和不连续的曲面效果较差。

3. 基于深度法:基于深度法是一种特别适用于三维三角网格模型的求解法向量的方法。

它基于三角形的深度信息来计算法向量。

具体来说,对于每个三角形,可以计算其三个顶点的深度信息。

然后,通过计算这三个顶点的矢量差并归一化,即可得到三角形的法向量。

这种方法的优点是简单和高效,并且对于三角网格模型效果良好。

然而,它要求模型必须是三角形,并且对于非三角形模型效果较差。

在实际应用中,可以根据具体的需求和数据特点选择合适的方法来求解法向量。

可以根据场景和性能要求来平衡计算速度和准确性。

法向量和方向向量公式

法向量和方向向量公式

法向量和方向向量公式法向量和方向向量是在数学和物理学中经常用到的概念。

下面我将分别解释这两个概念,并提供对应的公式。

1. 法向量:法向量是指与给定曲线、曲面或图形上某一点的切线垂直的向量。

它的方向垂直于曲线、曲面或图形的切线方向。

法向量在几何学、物理学和计算机图形学中都有广泛的应用。

在二维平面中,法向量可以用二维向量表示,通常记作n = (n₁, n₂)。

对于一条曲线或者一个曲面上的点P,可以通过求取该点的切线的斜率的负倒数来得到法向量。

如果曲线或曲面的方程已知,可以通过求取参数化方程的导数来得到法向量。

在三维空间中,法向量可以用三维向量表示,通常记作n = (n₁, n₂, n₃)。

对于一个曲面上的点P,可以通过求取该点处曲面方程的偏导数来得到法向量。

具体的求法需要根据曲面方程的形式来确定。

2. 方向向量:方向向量是指描述一个物体或者一个点移动方向的向量。

它表示从一个点到另一个点的位移向量,它的大小和方向描述了物体或者点的运动轨迹。

方向向量可以用起点和终点的坐标差表示,通常记作d = (d₁, d₂)或者d = (d₁, d ₂, d₃)。

如果两个点的坐标分别为A(x₁, y₁)和B(x₂, y₂),那么方向向量可以表示为d = (x₂- x₁, y₂- y₁)。

类似地,在三维空间中,方向向量可以表示为d = (x ₂- x₁, y₂- y₁, z₂- z₁)。

需要注意的是,方向向量只描述了移动的方向和距离,并没有说明起点和终点的具体位置。

因此,方向向量可以通过缩放来表示不同的位移长度。

希望以上解释和公式能够对你有所帮助。

3.2立体几何中的向量方法——法向量

3.2立体几何中的向量方法——法向量
(3)根据法向量的定义建立 关于x, y, z的 n a 0 方程组 n b 0
(4)解方程组,取其中的一 个解,即得法向量。
例1: 已 知 A(0,2,3), B( 2,0, - 1), C ( 3, - 4,0) 求平面 ABC的 法 向 量 。
问题:如何运用向量法求法向量呢?
2014年11月7日星期五
法向量在立体几何中的妙用
1
前面,我们把
平面向量
推广到
空间向量
立体几何问题 研究的基本对象是点、直线、平面以及由它们组成 的空间图形 从今天开始,我们将进一步来体会向量这一工 具在立体几何中的应用.
如何确定一个点、一条直线、一个平面 思考:
在空间的位置?
一、点的确定:
在空间中,我们取一定点O作为基点,那么空间中 任意一点P的位置就可以用向量OP来表示。我们把 向量OP称为点P的位置向量。
对于平面 上的任一点 P , 存在有序实数对 ( x, y) ,使得
OP xa yb
除此之外, 还可以用垂直于平面的直线的 方向向量(这个平面的法向量)表示空间中平面 的位置.
平面的法向量:如果表示向量 n 的有向线段所在
直线垂直于平面 ,则称这个向量垂直于平面 ⊥ n,如果 么 向 量 叫做 ,记作 ⊥ n ,那 n 平面 的法向量 .
解:设平面 ABC 的一个法向量为 n ( x, y, z )
则 n ^ AB, n ^ AC .
祆 ( x , y , z )(2, - 2, - 4) = 0 镲 镲 \ 眄 镲 ( x , y , z )(3, - 6, - 3) = 0 镲 铑
AB = (2,- 2,- 4), AC = (3,- 6,- 3)

法向量的计算公式

法向量的计算公式

法向量的计算公式平面的法向量怎么求建立恰当的直角坐标系;设平面法向量n=(x,y,z);在平面内找出两个不共线的向量,记为a=(a1,a2,a3),b=(b1,b2,b3);根据法向量的定义建立方程组n·a=0与n·b=0;解方程组,取其中一组解即可。

1平面法向量的具体步骤(待定系数法)1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)4、根据法向量的定义建立方程组①n·a=0②n·b=05、解方程组,取其中一组解即可。

法向量公式是:由向量AB和BC可知,当B=(0,0,0),则A(x1,y1,z1),C(x2,y2,z2)。

则直线AB:x/x1=y/y1=z/z1,直线CB:x/x2=y/y2=z2。

因此,过B和直线AB垂直的面方程为:x1x+y1y+z1z=0,过B和直线CB垂直的面方程为:x2x+y2y+z2z=0,联立上述两方程可得过B和直线AB,CB都垂直的直线方程:x/(y2z1-y1z2)=y/(x1z2-x2z1)=z/(x2y1-x1y2)。

即所求法向量为(y2z1-y1z2,x1z2-x2z1,x2y1-x1y2)。

垂直于一个面的向量就是这个面的法向量先表示出这个面中两个不平行的向量设法向量n=(x,y,z)然后用n点乘找出的两个向量都等于零得出一个不等式组,里面有三个未知数令x,y,z其中任意一个为1,然后就可以表示出法向量n了,n可以为不同的值。

也可以相反,只要垂直这个面的就行然后任何一个向量与n相乘为O就与n垂直,也就与此面平行如果一个向量可以表示成λn(λ是任意实数,n是刚才的法向量),那么就与n平行,也就与此面垂直。

法向量的算法与举例

法向量的算法与举例

法向量的算法与举例摘要高中数学中的向量作为沟通代数与几何的桥梁,大大简化了几何问题的运算量。

然而在高中数学体系中,几何占有很重要的地位,有些几何问题用常规的方法去解决往往比较繁杂,而运用向量能使过程得到大大的简化。

[1]用向量法解决几何问题有着思路清晰、过程简洁的优点。

[2]在立体几何中常用法向量来解决距离问题,夹角问题,于是求法向量又是一个新问题。

如果能够掌握平面法向量的快速求法,那么在解决立体几何问题中一定会有事半功倍之效。

关键词:法向量;矩阵;行列式;速算一、法向量的定义如果向量平面,那么向量叫做平面的法向量。

由定义可知,法向量并不是唯一的,以致只要是与平面互相垂直的向量都可以作为平面的法向量。

二、法向量的算法1、待定系数法求法向量与举例在给定的空间直角坐标系中,设平面的法向量 [或,或 ],在平面内任找两个不共线的向量。

由,得且,由此得到关于的方程组,解此方程组即可得到 .具体步骤如下:①联立方程②消元求解③得出结论举例:如果,那么与的法向量为?解:设,因为,,则,,得,①-②得,,取,,(注意:给其中一个字母取一个不为零的值)。

例1 如图,在四棱锥S-ABCD中,S A⊥平面ABCD,底面ABCD是菱形,S A =AB=2,∠BAD=60°,E是PA的中点.(1)求证:直线S C∥平面BDE;证明设AC∩BD=O.因为∠BAD=60°,AB=2,底面ABCD为菱形,s所以BO=1,AO=CO=,AC⊥BD.如图,以O为坐标原点,以OB,OC所在直线分别为x轴,y 轴,过点O且平行于S A的直线为z轴,建立空间直角坐标系O-xyz,则S(0,-,2),A(0,-,0),B(1,0,0),C(0,,0),D(-1,0,0),E(0,-,1).(1)设平面BDE的法向量为n1=(x1,y1,z1),因为BE=(-1,-,1),BD=(-2,0,0),由得令z1=,得y1=1,所以n1=(0,1,).又=(0,2,-2),所以·n1=0+2-2=0,即⊥n1,又,所以S C∥平面BDE.例 2 如图,在直三棱柱ADE—BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点.运用向量方法证明:(1)OM∥平面BCF;(2)平面MDF⊥平面EFCD.解:(1)略( 2)建系如右图,设平面MDF与平面EFCD的一个法向量分别为n1=(x1,y1,z1),n2=(x2,y2,z2).∵DF=(1,-1,1),DM=,DC=(1,0,0),由n1·DF=n1·DM=0,得解得令x1=1,则n1=.同理可得n2=(0,1,1).∵n1·n2=0,∴平面MDF⊥平面EFCD.1.行列式法求法向量与举例向量=(x,y,z ),=(x,y,z )是平面内的两个不共线向量,则向量=(y z-y z,-(x z-x z ),x y-x y )是平面的一个法向量.如果用二阶行列式表示,则=(,-, ) ,这更便于记忆和计算.(注:1、行列式:;2、纵坐标前边要加一个负号).具体步骤:①竖着列出平面内的两个不共线向量②算出法向量的三个坐标(要算横坐标,就把已知两个向量的横坐标那一列遮起来用纵坐标和竖坐标求,其它坐标相同的求法)③得到平面的法向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =r[或(,1,)n x z =v,或(1,,)n y z =r ],在平面α内任找两个不共线的向量,a b r r 。

由n α⊥r ,得0n a ⋅=r r 且0n b ⋅=r r ,由此得到关于,x y 的方程组,解此方程组即可得到n r 。

方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。

0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。

其法向量),,(C B A n =→;若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++czb y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。

方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→→⨯b a 为一长度等于θsin ||||→→b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。

通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→⨯b a 的方向,→→→→⨯-=⨯a b b a 。

:),,,(),,,(222111则设z y x b z y x a ==→→⎝⎛=⨯→→21y y b a ,21z z 21x x - ,21z z 21x x⎪⎪⎭⎫21y y (注:1、二阶行列式:ca M =cb ad db -=;2、适合右手定则。

) 例1、 已知,)1,2,1(),0,1,2(-==→→b a , 试求(1):;→→⨯b a (2):.→→⨯a bKey: (1) )5,2,1(-=⨯→→b a ;)5,2,1()2(-=⨯→→a b例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中,图1-1 C 1CByFA DxA 1D 1 zB 1E求平面AEF 的一个法向量n r。

二、 平面法向量的应用1、 求空间角(1)、求线面角:如图2-1,设→n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:2,2→→→→->=<-=AB n ππθ图2-1-2:2,πθ=->=<→→AB n (2)、求面面角:设向量→m ,→n 分别是平面α、β的法向量,则二面角βα--l 的平面角为:||||arccos,→→→→→→⋅⋅>==<n m nm n m θ(图2-2);||||arccos,→→→→→→⋅⋅->==<n m nm n m πθ(图2-3)两个平面的法向量方向选取合适,可使法向量夹角就等于二面角的平面角。

约定,在图2-2中,→m 的方向对平面α而言向外,→n 的方向对平面β而言向内;在图2-3中,→m 的方向对平面α而言向内,→n 的方向对平面β而言向内。

我们只要用两个向量的向量积(简称“外积”,满足“右手定则”)使得两个半平面的法向量一个向内一个向外,则这两个半平面的法向量的夹角即为二面角βα--l 的平面角。

2、 求空间距离(1)、异面直线之间距离:图2-3|,cos |><=→→AB n θ)2,2,1(:=⨯=→→→AE AF n key 法向量方法指导:如图2-4,①作直线a 、b 的方向向量→a 、→b , 求a 、b 的法向量→n ,即此异面直线a 、b②在直线a 、b 上各取一点A 、B ,作向量→AB ;③求向量→AB 在→n 上的射影d ,则异面直线a 、b ||||→→→•=n n AB d ,其中b B a A b n a n ∈∈⊥⊥→→,,,(2)、点到平面的距离:方法指导:如图2-5,若点B 为平面α外一点,点A 为平面α内任一点,平面的法向量为,则点P 到 平面α的距离公式为||||→→→•=n n AB d(3)、直线与平面间的距离:方法指导:如图2-6,直线a 与平面α之间的距离:||AB n d n ⋅=u u u r r r ,其中a B A ∈∈,α。

n r是平面α的法向量(4)、平面与平面间的距离:方法指导:如图2-7,两平行平面,αβ之间的距离:||||→→→•=n n AB d ,其中,A B αβ∈∈。

n r是平面α、β3、 证明(1)、证明线面垂直:在图2-8中,→m 向是平面α的法向量,→a 是直线a 的方向向量,证明平面的法向量与直线所在向量共线(→→=a m λ(2)、证明线面平行:在图2-9中,→m 向是平面α的法向量,→a 的方向向量,证明平面的法向量与直线所在向量垂直(0=•→→a m )。

(3)、证明面面垂直:在图2-10中,→m 是平面α的法向量,→n 是平面的法向量,证明两平面的法向量垂直(0=•→→n m )(4)、证明面面平行:在图2-11中, →m 向是平面α的法向量,→n 是平面β的法向量,证明两平面的法向量共线(→→=n m λ)。

三、高考真题新解1、(2005全国I ,18)(本大题满分12分)已知如图3-1,四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90ο底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ;(Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小解:以A 点为原点,以分别以AD ,AB ,AP 为x 轴,y 轴,z 轴,建立空间直角坐标系A-xyz 如图所示.)1,0,0().(=→AP I Θ,)0,0,1(=→AD ,设平面PAD 的法向量为)0,1,0(-=⨯=→→→AD AP m )0,1,0(=→DC Θ又,)1,0,1(-=→DP ,设平面PCD 的法向量为)1,0,1(=⨯=→→→DP DC n0=•∴→→n m ,→→⊥∴n m ,即平面PAD ⊥平面PCD 。

).(II )0,1,1(=→AC Θ,)1,2,0(-=→PB ,510arccos ||||arccos ,=⋅•>=∴<→→→→→→PB AC PB AC PB AC ).(III )21,0,1(-=→CM Θ,)0,1,1(--=→CA ,设平在AMC 的法向量为)1,21,21(-=⨯=→→→CA CM m .又)0,1,1(-=→CB Θ,设平面PCD 的法向量为)1,21,21(---=⨯=→→→CB CM n .)32arccos(||||arccos ,-=⋅•>=∴<→→→→→→n m n m n m .∴面AMC 与面BMC 所成二面角的大小为)32arccos(-.]32arccos [-π或2、(2006年云南省第一次统测19题) (本题满分12分) 如图3-2,在长方体ABCD -A 1B 1C 1D 1中, 已知AB =AA 1=a ,B C =2a ,M 是AD 的中点。

(Ⅰ)求证:AD ∥平面A 1BC ;图图3-1 CMA PB(Ⅱ)求证:平面A 1MC ⊥平面A 1BD 1; (Ⅲ)求点A 到平面A 1MC 的距离。

解:以D 点为原点,分别以DA,DC,DD 1为x 轴,y 轴,z 轴,建立空间直角坐标系D-xyz 如图所示.).(I )0,0,2(a BC -=→Θ,),,0(1a a BA -=→,设平面A 1BC 的法向量为)2,2,0(221a a BA BC n =⨯=→→→又)0,0,2(a AD -=→Θ,=•∴→→AD n ,→→⊥∴nAD ,即AD ).(II ),0,22(a a MC =→Θ,)0,,22(1a a MA -=→,设平面A 1MC 的法向量为: )22,22,(2221a a a MA MC m -=⨯=→→→, 又),,2(1a a a BD --=→Θ,),,0(1a a BA -=→,设平面A 1BD 1的法向量为:)2,2,0(2211a a BA BD n =⨯=→→→,0=•∴→→n m ,→→⊥∴n m ,即平面A 1MC ⊥平面A 1BD 1.).(III 设点A 到平面A 1MC 的距离为d,Θ)22,22,(2221a a a MA MC m -=⨯=→→→是平面A 1MC 的法向量, 又)0,0,22(a MA =→Θ,∴A 点到平面A 1MC 的距离为:a m MA m d 21||||=•=→→→. 四、 用空间向量解决立体几何的“三步曲”(1)、建立空间直角坐标系(利用现有三条两两垂直的直线,注意已有的正、直条件,相关几何知识的综合运用,建立右手系),用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)、通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)、把向量的运算结果“翻译”成相应的几何意义。

(回到图形问题)。

相关文档
最新文档