三角形的外角 PPT课件
合集下载
课件《三角形的外角》优秀PPT课件 _人教版1

解:∵∠ADB=100°,∠C=80°, ∴∠DAC=∠ADB-∠C=100°-80°=20°. ∵∠BAD= ∠DAC,∴∠BAD= ×20°=10°. 在△ABD中,∠ABD=180°-∠ADB-∠BAD=180°100°-10°=70°, ∵BE平分∠ABC, ∴∠ABE= ∠ABC= ×70°=35°. ∴∠BED=∠BAD+∠ABE=10°+35°=45°.
【应用】(3)如图2,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.
∴∠DAE=90°-∠AED=90°-50°=40°. 如图,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC交BC的延长线于点D,AE平分∠BAC.
(1)求∠DAE的度数;
(2)∵AD⊥BC,∴∠D=90°,∴∠AED=90°-∠DAE, 在△ABE中,∠BAE=∠AED-∠B. 在△ACD中,∠ACB=∠CAD+∠D=∠DAE-∠CAE+90°, ∴∠CAE=∠DAE+90°-∠ACB. ∵AE平分∠BAC,∴∠BAE=∠CAE,∴90°-∠DAE∠B=∠DAE+90°-∠ACB,∴∠ACB=∠B+2∠DAE,即 ∠DAE= (∠ACB-∠B),∴∠DAE= (β-α).
(例3)如图,AB∥CD,DE交AC于点E,F为DC延长线上一点,下列结论:①∠A=∠ACF;
如图,AB∥CD,AD和BC相交于点O,∠A=25°,∠COD=80°,则∠C的度数是( )
(例2)如图,在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC, 求∠BED的度数.
∴∠DAE= (β-α).
(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P=
人教版八年级数学上册第11.2.2三角形的外角 教学课件(共28张PPT)

外角
归纳:
1、每一个三角形都有_6___个外角; 2、每一个顶点相对应的外角都有_2__个。 3、这6个外角中有_3____对外角相等。
4、一个三角形的每一个外角对应一个
_相___邻__的___内__角__和两个__不___相__邻___的__内__.角
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
底角为_3_0__或__7_5_°_.
5.如图所示,∠A=50°,∠B=40°,∠C=30°,则 ∠BDC=_1__2_0_外围走一圈,在每一个拐弯 的地方都转了一个角度(∠ 1, ∠ 2,∠ 3), 那么回到原来位置时,一共转了几度?
∠1+∠2 +∠3 = ?
∠1= 90º ∠1= 85º ∠1= 95º
2. 如图所示, ∠A=37°, ∠CBE=155°,
求∠1, ∠2, ∠3的度数.
D
C 3
2
A 37°
155°
1B
E
∠1=25°, ∠2=62°, ∠3=118°
3.图中∠1与 ∠A、 ∠B 、∠C度 数有什么关系?
课堂巩固:
1.若一个三角形的一个外角小于与它相邻的内角,则这
•
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
《三角形的外角》PPT优质课件

通过已知的两个角,求第三个角的度数。
解决三角形形状判断问题
通过已知的三个角,判断三角形的形状(锐 角、直角、钝角)。
解决三角形边长计算问题
解决实际问题中的角度计算问题
通过已知的角度和边长,利用正弦、余弦定 理等求解未知边长。
如建筑设计、工程测量等领域中的角度计算 问题。
06
总结回顾与拓展延伸
关键知识点总结回顾
定理应用举例
01
计算三角形外角的度数。
02
判断三角形形状,如等边、等 腰或直角三角形。
03
解决与三角形外角相关的实际 问题,如角度计算、角度关系
分析等。
03
特殊三角形中外角特点分 析
等腰三角形中外角特点
等腰三角形底边上的外角等于顶角。 等腰三角形两腰上的外角相等,且都等于底角与顶角之和。
当底角为锐角时,底边上的外角为钝角;当底角为钝角时,底边上的外角为锐角。
01
三角形的外角定义
三角形的一个外角等于与它不相 邻的两个内角之和。
02
三角形外角的性质
三角形的外角大于任何一个与它 不相邻的内角。
03
三角形外角和定理
三角形的一个外角等于和它相邻 的两个内角之和。
易错难点剖析及纠正方法分享
易错点
在计算三角形外角时,容易忽略与 之相邻的内角,导致计算结果错误。
纠正方法
THANKS
正确理解三角形外角的定义和性质, 牢记三角形外角和定理,多做相关 练习题加以巩固。
相关数学领域拓展延伸
三角形内角和定理
01
三角形的内角和等于180°。
多边形的外角和定理
02
任意多边形的外角和等于360°。
三角形中的角度关系
解决三角形形状判断问题
通过已知的三个角,判断三角形的形状(锐 角、直角、钝角)。
解决三角形边长计算问题
解决实际问题中的角度计算问题
通过已知的角度和边长,利用正弦、余弦定 理等求解未知边长。
如建筑设计、工程测量等领域中的角度计算 问题。
06
总结回顾与拓展延伸
关键知识点总结回顾
定理应用举例
01
计算三角形外角的度数。
02
判断三角形形状,如等边、等 腰或直角三角形。
03
解决与三角形外角相关的实际 问题,如角度计算、角度关系
分析等。
03
特殊三角形中外角特点分 析
等腰三角形中外角特点
等腰三角形底边上的外角等于顶角。 等腰三角形两腰上的外角相等,且都等于底角与顶角之和。
当底角为锐角时,底边上的外角为钝角;当底角为钝角时,底边上的外角为锐角。
01
三角形的外角定义
三角形的一个外角等于与它不相 邻的两个内角之和。
02
三角形外角的性质
三角形的外角大于任何一个与它 不相邻的内角。
03
三角形外角和定理
三角形的一个外角等于和它相邻 的两个内角之和。
易错难点剖析及纠正方法分享
易错点
在计算三角形外角时,容易忽略与 之相邻的内角,导致计算结果错误。
纠正方法
THANKS
正确理解三角形外角的定义和性质, 牢记三角形外角和定理,多做相关 练习题加以巩固。
相关数学领域拓展延伸
三角形内角和定理
01
三角形的内角和等于180°。
多边形的外角和定理
02
任意多边形的外角和等于360°。
三角形中的角度关系
《三角形的外角》优秀ppt课件

所以 ∠1﹥∠EDC
因为∠1是△CED的外角
所以∠EDC﹥∠B
因为∠EDC是△ABD的外角
例 1
A
B
C
1
2
3
填空:与三角形的每个内角相邻的外角分别有 个,这两个外角是 ,他们的大小 。
∠1+∠2+∠3 就是△ABC的外角和。
A
B
C
1
2
3
4
5
6
两
对顶角
相等
∠1+∠2+∠3= 度
探索与思考
∠3+ ∠BCA =180°,
∠1+∠BAC=180°,
∠2+∠ABC=180°
∠1+∠2+∠3= 度
A
B
C
1
2
3
数学说理:
三角形的外角和为360度。
360
猜一猜
三式相加可得:
∠1+ ∠2 + ∠3+ ∠BAC+∠ABC+ ∠BCA =540°
又因为∠A+ ∠B+ ∠ACB=180°
所以 ∠A+ ∠B=∠ACD
解:
A
B
C
所以∠ACD =180 °-∠ACB
所以∠A+∠B =180 °-∠ACB
(邻补角的定义)
(三角形内角和180 °)
(等量代换)
如何说明∠ACD= ∠B+ ∠ A
思考
1
(CE//BA)
A
E
擅长画平行线的小明用另一种方法解释了这个性质,看动画,你知道他是怎么解释的吗?
A
B
D
E
F
沪科版数学八年级上册13.2.4三角形内角和定理的推论——三角形外角的性质课件(共15张PPT)

新知引入
知识点2 三角形内角和定理的推论3
推论3 三角形的外角等于与它不相邻的两个内角的和.
三角形内角和推论3:
例题示范
典例
求下列各图中∠1的度数.
95°
85°
130°
知识点3 三角形内角和定理的推论4
新知引入
推论4:三角形的外角大于与它不相邻的任何一个内角.
问题:你能用文字描述你的发现吗?
由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
E
C
B
A
D
三角形的外角应具备的条件:
①角的顶点是三角形的顶点;②角的一边是三角形的一边;③另一边是三角形中一边的延长线.
新知引入
三角形的外角的性质
如图,外角∠BCD与△ABC的内角有什么关系呢?
性质:三角形的外角与它相邻的内角互补.
第十三章 三角形中的边角关系、命题与证明
13.2 命题与证明13.2.4 三角形内角和定理的推论——三角形外角的性质
学习目标
学习重难点
重点
难点
1.了解三角形外角的概念,掌握三角形外角的性质;2.能够利用学过定理证明三角形外角的性质;3.能够灵活运用三角形外角的性质解决数学问题.
பைடு நூலகம்堂练习
如图,在△ABC中,BD是∠ABC的角平分线,DE∥BC交AB于点E,若∠A=40°,∠BDC=55°,求∠AED的度数.
练习
解:∵∠A=40°,∠BDC=55°,∴∠ABD=∠BDC-∠A=15°.∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=30°.∵DE∥BC,∴∠AED=∠ABC=30°.
∠1>∠A ∠1>∠B
如图 ,你能用”>”或“<”表示∠1和∠A、∠1和∠B的大小吗?
知识点2 三角形内角和定理的推论3
推论3 三角形的外角等于与它不相邻的两个内角的和.
三角形内角和推论3:
例题示范
典例
求下列各图中∠1的度数.
95°
85°
130°
知识点3 三角形内角和定理的推论4
新知引入
推论4:三角形的外角大于与它不相邻的任何一个内角.
问题:你能用文字描述你的发现吗?
由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
E
C
B
A
D
三角形的外角应具备的条件:
①角的顶点是三角形的顶点;②角的一边是三角形的一边;③另一边是三角形中一边的延长线.
新知引入
三角形的外角的性质
如图,外角∠BCD与△ABC的内角有什么关系呢?
性质:三角形的外角与它相邻的内角互补.
第十三章 三角形中的边角关系、命题与证明
13.2 命题与证明13.2.4 三角形内角和定理的推论——三角形外角的性质
学习目标
学习重难点
重点
难点
1.了解三角形外角的概念,掌握三角形外角的性质;2.能够利用学过定理证明三角形外角的性质;3.能够灵活运用三角形外角的性质解决数学问题.
பைடு நூலகம்堂练习
如图,在△ABC中,BD是∠ABC的角平分线,DE∥BC交AB于点E,若∠A=40°,∠BDC=55°,求∠AED的度数.
练习
解:∵∠A=40°,∠BDC=55°,∴∠ABD=∠BDC-∠A=15°.∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=30°.∵DE∥BC,∴∠AED=∠ABC=30°.
∠1>∠A ∠1>∠B
如图 ,你能用”>”或“<”表示∠1和∠A、∠1和∠B的大小吗?
《三角形的外角》PPT课件

利用外角证明线段相等或平行
通过三角形外角性质,证明两线段相等
若两线段分别与三角形的两边平行,且它们所截得的线段相等,则这两线段相等。
利用外角证明两直线平行
若一直线与三角形的一边平行,且它们所截得的线段相等,则这直线与三角形的另 一边也平行。
利用外角解决角度问题
通过三角形外角性质计算角度
一个三角形的外角等于与它不相邻的两个内角之和,利用这一性质可以计算三 角形中的角度。
THANKS
感谢观看
REPORTING
题目一
题目三
已知三角形ABC中,∠A = 50°,∠B = 60°,求∠C的外角大小。
已知等边三角形ABC中,D、E分别是 AB、AC上的点,且BD = CE,BE与 CD相交于点F,求∠BFC的度数。
题目二
在三角形ABC中,D是BC边上一点, ∠ADB = 120°,∠BAD = 30°,求∠C 的大小。
案例分析:典型计算题目解析
第一季度
第二季度
第三季度
第四季度
案例一
已知三角形ABC中,∠A 的外角为120°,求∠B 和∠C的度数。
解析
根据三角形外角定理, ∠A的外角等于∠B+∠C, 即∠B+∠C=120°。再结 合三角形内角和为180°, 可求得∠B和∠C的度数。
案例二
已知四边形ABCD中, ∠A的外角为60°,求四 边形ABCD的内角和。
建筑设计中角度调整与优化
01
02
03
角度调整
在建筑设计中,利用三角 形的外角性质可以灵活调 整建筑物的角度,使其更 加符合审美和实用要求。
结构优化
通过合理设置三角形的外 角,可以优化建筑结构的 稳定性和承重能力。
三角形的外角PPT课件

通过三角形的内角和来证明
利用三角形的内角和为180度,将三角形的三个内角相加, 再减去一个内角,即可得到外角等于两不相邻内角之和。
9
典型例题解析
例题1
已知三角形ABC中,角A=50度, 角B=60度,求角C的外角度数。
2024/1 得角C=180度-50度-60度=70度 。再根据外角定理,角C的外角 =180度-70度=110度。
三角形的外角PPT课 件
2024/1/28
1
目录
CONTENTS
• 三角形外角基本概念 • 三角形外角定理及其证明 • 三角形外角在几何问题中应用 • 三角形外角在现实生活中的应用 • 拓展:三角形内外角综合问题探
讨
2024/1/28
2
01
三角形外角基本概
念
2024/1/28
3
定义与性质
2024/1/28
2024/1/28
6
02
三角形外角定理及
其证明
2024/1/28
7
外角定理内容
2024/1/28
01
三角形的一个外角等于与它不相 邻的两个内角的和。
02
三角形的一个外角大于任何一个 与它不相邻的内角。
8
证明方法
2024/1/28
通过平行线的性质来证明
过三角形的一个顶点作一条与三角形的一边平行的直线,利 用平行线的性质来证明外角等于两不相邻内角之和。
在一些几何证明题中,可以通过利用平行线与三角形外角 关系来证明线段相等或平行。
2024/1/28
13
多边形外角和计算
多边形的外角和为360°
多边形可以被划分成若干个三角形,每个三角形的外角和为180°,因此多边形的外角 和为360°。
利用三角形的内角和为180度,将三角形的三个内角相加, 再减去一个内角,即可得到外角等于两不相邻内角之和。
9
典型例题解析
例题1
已知三角形ABC中,角A=50度, 角B=60度,求角C的外角度数。
2024/1 得角C=180度-50度-60度=70度 。再根据外角定理,角C的外角 =180度-70度=110度。
三角形的外角PPT课 件
2024/1/28
1
目录
CONTENTS
• 三角形外角基本概念 • 三角形外角定理及其证明 • 三角形外角在几何问题中应用 • 三角形外角在现实生活中的应用 • 拓展:三角形内外角综合问题探
讨
2024/1/28
2
01
三角形外角基本概
念
2024/1/28
3
定义与性质
2024/1/28
2024/1/28
6
02
三角形外角定理及
其证明
2024/1/28
7
外角定理内容
2024/1/28
01
三角形的一个外角等于与它不相 邻的两个内角的和。
02
三角形的一个外角大于任何一个 与它不相邻的内角。
8
证明方法
2024/1/28
通过平行线的性质来证明
过三角形的一个顶点作一条与三角形的一边平行的直线,利 用平行线的性质来证明外角等于两不相邻内角之和。
在一些几何证明题中,可以通过利用平行线与三角形外角 关系来证明线段相等或平行。
2024/1/28
13
多边形外角和计算
多边形的外角和为360°
多边形可以被划分成若干个三角形,每个三角形的外角和为180°,因此多边形的外角 和为360°。
《三角形的外角》三角形PPT精品课件

∴ ∠BEC= ∠A+ ∠ACE,
∵∠A=42° ,∠ACE=18°,
∴ ∠BEC=60°.
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,
B
C ∵ ∠ABD=28° ,∠BEC=60°,
∴ ∠BFC=88°.
巩固练习
如图,直线AB,CD被BC
所截,若AB∥CD,∠1=45°,
A
B
360°
=________.
1
P
C
N3
F
2 M
D
E
课堂小结
三角形
的外角
定 义
角一边必须是三角形的一边,另一边必须是三角
形另一边的延长线
性 质
三角形的一个外角等于与它不相邻的两个内角的和
三角形的
外 角 和
辅助线总结
三角形的外角和等于360 °
①求角的度数,通过三角形一顶点的平行线,
利用平行线的性质解决
F
∠BAE+ ∠CBF+ ∠ACD+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °– 180°=360°.
3
C
D
探究新知
E
A 4
1
M
解法三:过A作AM平行于BC,
3
∠3= ∠4
B
F
2
C
D
∠2= ∠BAM,
∠2+ ∠ 3= ∠ 4+∠BAM,
所以 ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAM=360°
A.24°
B.59°
C.60°
D.69°
课堂检测
∵∠A=42° ,∠ACE=18°,
∴ ∠BEC=60°.
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,
B
C ∵ ∠ABD=28° ,∠BEC=60°,
∴ ∠BFC=88°.
巩固练习
如图,直线AB,CD被BC
所截,若AB∥CD,∠1=45°,
A
B
360°
=________.
1
P
C
N3
F
2 M
D
E
课堂小结
三角形
的外角
定 义
角一边必须是三角形的一边,另一边必须是三角
形另一边的延长线
性 质
三角形的一个外角等于与它不相邻的两个内角的和
三角形的
外 角 和
辅助线总结
三角形的外角和等于360 °
①求角的度数,通过三角形一顶点的平行线,
利用平行线的性质解决
F
∠BAE+ ∠CBF+ ∠ACD+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °– 180°=360°.
3
C
D
探究新知
E
A 4
1
M
解法三:过A作AM平行于BC,
3
∠3= ∠4
B
F
2
C
D
∠2= ∠BAM,
∠2+ ∠ 3= ∠ 4+∠BAM,
所以 ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAM=360°
A.24°
B.59°
C.60°
D.69°
课堂检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问2:对于△ABC来说,∠1、∠2、∠3的共同 特征是什么?
问3:一个三角形共有几个外角呢?
答1:∠1+∠2+∠3=360°
2 A 答2:∠1、∠2、∠3都是三角形的一 边与另一边的延长线组成的角,
B
1 叫做三角形的外角。
3
C 答3:一个三角形共有6个外角。
三角形外角的性质:
性质 1:三角形的三个外角的和是360°。
∠EFC=
+
,
∠BFC是 ∠BFC>
和 的外角,A
>
.D F E
B
C
2、在⊿ABC中, ∠A等于和它相邻 的外角的四分之一,这个外角等于 ∠B的2倍,那么∠A= 度,∠B = 度,∠C=________ 度。
3、如图,∠1=27.5°,∠2=95°,
∠3=38.5°,则∠4的大小是
.
4
2
1
3
4、⊿ABC中,∠B=∠C,若它的一个 外角等于150°,则∠A =
(2) ∠ C的度数。
A
B
D
C
例2:如图,类似于三角形,我们称 ∠1+ ∠2+ ∠3+ ∠4为四边行的外角和, 已知四边形的内角和为360º,你能用今 天所学的方法进行推理计算吗?
C 3
D 4
2 B
1 A
三角形的外角和的规定
• 从与每一个内角相邻的两个外角中分别取一 个相加,得到的和称为三角形的外角和。
∠4 = ∠2 + ∠3 ∠5 = ∠1 + ∠3 ∠6 = ∠1 + ∠2
2 6 31 4
性质2:三角形的一个外角大于任何一个 与它不相邻的内角。
∠4 > ∠2 (或 ∠3 ) ∠5 > ∠1 (或 ∠3 ) ∠6 > ∠1 (或 ∠2 )
1、如图∠BDC是 的外角,
∠BDC=
+
,
∠EFC是
的外角,
钝角三角形
性质1:三角形的一个外角等于与它不相邻的两个内角的和 性质2:三角形的一个外角大于任何一个与它不相邻的内角
练习3:如图4,五角星ABCDE中,请你求
出∠A +∠B+∠C+∠D+∠E的度数。
A
解:∵∠AFE是△FCE的外角
B F G E ∴∠AFE=∠C+ ∠E 同理∠AGB=∠B+∠D
在△AFG中
2、三角形的一个外角大于任何一个与它 不相邻的内角。 ∠CAD > ∠B, ∠CAD >
∠C
三角形的外角的两条性质:
1.三角形的一个外角等于 与它不相邻的两个内角的和;
2.三角形的一个外角大于任何一个 与它不相邻的内角。
三角形的外角的性质:
性质1:三角形的一个外角等于与它不相邻的
两个内角的和; 5
A
E
1
F
54
B
2 3C
D
8、如图,∠BOC=138°, ∠B=36°,∠C=30°, 求∠A的度数。
A
O
B
C
9、如图,P是⊿ABC内任意一点 求证:∠BPC>∠A A
D 1
B
C
10、如图,⊿ABC中,AD⊥BC 于D,AE平分∠BAC ,∠B=80° ∠C=46°求∠DAE的度数。
A
B
DE
C
问1:小明从点C出发,按逆时针方向绕△ABC跑 一圈, 身体转过的角度之和是多少?
⑶若∠A=37°∠B=52°则⊿ABC 是 角三角形。
A
⑷若∠A、∠B都大于45°
B
则⊿ABC是 角三角形。
⑸若∠A、∠B都小于45°,则⊿ABC 是 角三角形。
⑹若∠C= 2∠B=3∠A,则⊿ABC 是 角三角形。
7、如图,D为BC上一点,∠1=∠2, ∠3=∠4, ∠A=50°求∠EDF的度数。
动动脑:
• 1、三角形的内角和等于( 180º )
• 2、观察图1:
C
不相邻内角
A
相邻内角
图1
外角
B
D
为承办北京2008奥林匹克运动会,对某体育场馆
进出礼堂的地面图案进行了招标。以下是某公司
设计的地面图案的一部分:
E 思考!
C
(1).请指出图中哪些是
三角形的内角,哪些
60º
是三角形的外角?
40º
(第 3 题)
C 图4 D
∠A+∠AFE+∠AGB=180º
∴∠A+ ∠ B+∠C+ ∠ D+∠E= 180º
你能由下图说明三角形的外角和 等于360º,这一结论吗?
A D
B C
例:如图,D是△ ABC的BC边上一点, ∠ B= ∠ BAD, ∠ ADC=80º,∠ BAC=70º, 求:(1) ∠ B的度数;
3.如图,计算∠BOC
A
90º
B
20º O
30º C
性质1:三角形的一个外角等于与它不相邻的两个内角的和
例1:求下列各图中∠α的度数。
60º
30º
α
∠α=( 90º)
120º
α
35º α
45º 50º
∠α=( 8º
35º α
α
80º
∠α=(60º) ∠α=(43º)
性质 2:三角形的一个外角等于与它不相邻的两 个内角的和。
推论1:三角形的一个外角大于与它不相邻的任何一 个内角。
A 思考:如图,∠ ACD与∠ A、 ∠ B有 什么关系?
B
CD
1、看图填空,根据图中所示角的度数,求出其中
∠α的度数。
30°
120°
45° α
α
72°
40°
20°α 25°
2、三角形的一个外角与它相邻的内角相等,而且等于 与它不相邻的两角中一角的3倍,则这个三角形各角的 度数是______________。
∠ADC=∠B+∠BAD=80°.
又 ∠B=∠BAD,
所以∠B=80°÷ 2=40°.
(2)在△ABC中,因为
∠B+∠BAC+∠C=180°,
图 8.2.9
所以∠C=180°-∠B-∠BAC
=180°-40°-70°
=70°
例2:如图,已知BCD、CAE、AFB是直线 , 试比较∠1与∠2的大小。
6、如图:已知∠A=20°, ∠ B=162 ° , ∠ C=27 ° ,则∠ D=______。
A
B
D
C
7.求五角星的五个角的度数之和.
8.如图,A 、 B 、 C 、 D 、 E 、 F是平面上的 6个点,则∠A+∠B+∠C+∠D+∠E +∠F 的度数为 ( B )
(A) 180 ° (B) 360 ° (C) 540 ° (D) 720 °
A、 ∠ B> ∠ ACD B 、 ∠ B+ ∠ ACB=180°-∠ A C 、 ∠ B+ ∠ ACB<180 ° D 、 ∠ HEC > ∠AB
E F
(
)
B
C
D
练习: 1.求下列图中∠1的度数。
1 30º 60º
120º 30º 1
1 45º 50º
2.判断∠1与∠2的大小,并说明理由。
3 12
A
F
B
E
C
D
9、如图∠1是△ABC的一个外角,E为边AC上一点, 延长BC到D,连结DE,试说明∠1 >∠2的理由。
D
2 C
5 E
3
4
61
A
B
10、如图,在△ABC中,D是BC边上一点, ∠1 =∠2, ∠3 =∠4, ∠BAC=60°,求∠ DAC的度数。
A 1
B
2
43
D
C
11、如图所示下列说法一定正确的是
CD
检验一下自己的知识够用不?
• (巩固练习):1) 求下列各图中∠1的度数。
(第1题) (2)如果∠C=4∠A,∠A+∠B=100°,
那么∠A= 20 ° ∠B= 80 ° 与∠C相邻的外角= 100°
• 3)如图,在直角△ABC中,CD是斜边AB上的高, ∠BCD=35°,求∠A与∠EBC的度数.
性质1:三角形的一个外角等于与它不相邻的两个内角的和 性质2:三角形的一个外角大于任何一个与它不相邻的内角
练习1:(口答)一个三角形可以有两个内角 都是直角吗?可以有两个内角都是钝角或都 是锐角吗?为什么? 练习2:你能根据三角形外角的特征把三角 形分类吗?请与同学交流你的想法 。
锐角三角形
直角三角形
5、已知,∠B=∠D+∠E ,问: AB与CD平行吗?为什么?
A
B
C
F
D
E
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
6、如图, ⊿ABC的一个角 A
B
被纸挡住了,请你根据以
下问题中的条件填空:
⑴若∠A=35°∠B=55°则⊿ABC 是 角三角形。
⑵若∠A=48°∠B=43°则⊿ABC 是 角三角形。
• 如图:你有几种方法计算∠1+∠2+∠3=?
1
3
B2
C
试试看,你能不能独立完成下面一题.
• 例1如图8.2.9,D是△ABC的BC边上一点, ∠B=∠BAD, ∠ADC=80°, ∠ BAC=70°.求: (1)∠B的度数; (2)∠C的度数
图 8.2.9
• 解 (1)因为∠ADC是△ABD的外角,所以
3、三角形的三个外角中,最多可以有____个锐角 ______个直角______个钝角。
4、三角形的三个外角中,钝角的个数至少是 ( )
A、0个
问3:一个三角形共有几个外角呢?
答1:∠1+∠2+∠3=360°
2 A 答2:∠1、∠2、∠3都是三角形的一 边与另一边的延长线组成的角,
B
1 叫做三角形的外角。
3
C 答3:一个三角形共有6个外角。
三角形外角的性质:
性质 1:三角形的三个外角的和是360°。
∠EFC=
+
,
∠BFC是 ∠BFC>
和 的外角,A
>
.D F E
B
C
2、在⊿ABC中, ∠A等于和它相邻 的外角的四分之一,这个外角等于 ∠B的2倍,那么∠A= 度,∠B = 度,∠C=________ 度。
3、如图,∠1=27.5°,∠2=95°,
∠3=38.5°,则∠4的大小是
.
4
2
1
3
4、⊿ABC中,∠B=∠C,若它的一个 外角等于150°,则∠A =
(2) ∠ C的度数。
A
B
D
C
例2:如图,类似于三角形,我们称 ∠1+ ∠2+ ∠3+ ∠4为四边行的外角和, 已知四边形的内角和为360º,你能用今 天所学的方法进行推理计算吗?
C 3
D 4
2 B
1 A
三角形的外角和的规定
• 从与每一个内角相邻的两个外角中分别取一 个相加,得到的和称为三角形的外角和。
∠4 = ∠2 + ∠3 ∠5 = ∠1 + ∠3 ∠6 = ∠1 + ∠2
2 6 31 4
性质2:三角形的一个外角大于任何一个 与它不相邻的内角。
∠4 > ∠2 (或 ∠3 ) ∠5 > ∠1 (或 ∠3 ) ∠6 > ∠1 (或 ∠2 )
1、如图∠BDC是 的外角,
∠BDC=
+
,
∠EFC是
的外角,
钝角三角形
性质1:三角形的一个外角等于与它不相邻的两个内角的和 性质2:三角形的一个外角大于任何一个与它不相邻的内角
练习3:如图4,五角星ABCDE中,请你求
出∠A +∠B+∠C+∠D+∠E的度数。
A
解:∵∠AFE是△FCE的外角
B F G E ∴∠AFE=∠C+ ∠E 同理∠AGB=∠B+∠D
在△AFG中
2、三角形的一个外角大于任何一个与它 不相邻的内角。 ∠CAD > ∠B, ∠CAD >
∠C
三角形的外角的两条性质:
1.三角形的一个外角等于 与它不相邻的两个内角的和;
2.三角形的一个外角大于任何一个 与它不相邻的内角。
三角形的外角的性质:
性质1:三角形的一个外角等于与它不相邻的
两个内角的和; 5
A
E
1
F
54
B
2 3C
D
8、如图,∠BOC=138°, ∠B=36°,∠C=30°, 求∠A的度数。
A
O
B
C
9、如图,P是⊿ABC内任意一点 求证:∠BPC>∠A A
D 1
B
C
10、如图,⊿ABC中,AD⊥BC 于D,AE平分∠BAC ,∠B=80° ∠C=46°求∠DAE的度数。
A
B
DE
C
问1:小明从点C出发,按逆时针方向绕△ABC跑 一圈, 身体转过的角度之和是多少?
⑶若∠A=37°∠B=52°则⊿ABC 是 角三角形。
A
⑷若∠A、∠B都大于45°
B
则⊿ABC是 角三角形。
⑸若∠A、∠B都小于45°,则⊿ABC 是 角三角形。
⑹若∠C= 2∠B=3∠A,则⊿ABC 是 角三角形。
7、如图,D为BC上一点,∠1=∠2, ∠3=∠4, ∠A=50°求∠EDF的度数。
动动脑:
• 1、三角形的内角和等于( 180º )
• 2、观察图1:
C
不相邻内角
A
相邻内角
图1
外角
B
D
为承办北京2008奥林匹克运动会,对某体育场馆
进出礼堂的地面图案进行了招标。以下是某公司
设计的地面图案的一部分:
E 思考!
C
(1).请指出图中哪些是
三角形的内角,哪些
60º
是三角形的外角?
40º
(第 3 题)
C 图4 D
∠A+∠AFE+∠AGB=180º
∴∠A+ ∠ B+∠C+ ∠ D+∠E= 180º
你能由下图说明三角形的外角和 等于360º,这一结论吗?
A D
B C
例:如图,D是△ ABC的BC边上一点, ∠ B= ∠ BAD, ∠ ADC=80º,∠ BAC=70º, 求:(1) ∠ B的度数;
3.如图,计算∠BOC
A
90º
B
20º O
30º C
性质1:三角形的一个外角等于与它不相邻的两个内角的和
例1:求下列各图中∠α的度数。
60º
30º
α
∠α=( 90º)
120º
α
35º α
45º 50º
∠α=( 8º
35º α
α
80º
∠α=(60º) ∠α=(43º)
性质 2:三角形的一个外角等于与它不相邻的两 个内角的和。
推论1:三角形的一个外角大于与它不相邻的任何一 个内角。
A 思考:如图,∠ ACD与∠ A、 ∠ B有 什么关系?
B
CD
1、看图填空,根据图中所示角的度数,求出其中
∠α的度数。
30°
120°
45° α
α
72°
40°
20°α 25°
2、三角形的一个外角与它相邻的内角相等,而且等于 与它不相邻的两角中一角的3倍,则这个三角形各角的 度数是______________。
∠ADC=∠B+∠BAD=80°.
又 ∠B=∠BAD,
所以∠B=80°÷ 2=40°.
(2)在△ABC中,因为
∠B+∠BAC+∠C=180°,
图 8.2.9
所以∠C=180°-∠B-∠BAC
=180°-40°-70°
=70°
例2:如图,已知BCD、CAE、AFB是直线 , 试比较∠1与∠2的大小。
6、如图:已知∠A=20°, ∠ B=162 ° , ∠ C=27 ° ,则∠ D=______。
A
B
D
C
7.求五角星的五个角的度数之和.
8.如图,A 、 B 、 C 、 D 、 E 、 F是平面上的 6个点,则∠A+∠B+∠C+∠D+∠E +∠F 的度数为 ( B )
(A) 180 ° (B) 360 ° (C) 540 ° (D) 720 °
A、 ∠ B> ∠ ACD B 、 ∠ B+ ∠ ACB=180°-∠ A C 、 ∠ B+ ∠ ACB<180 ° D 、 ∠ HEC > ∠AB
E F
(
)
B
C
D
练习: 1.求下列图中∠1的度数。
1 30º 60º
120º 30º 1
1 45º 50º
2.判断∠1与∠2的大小,并说明理由。
3 12
A
F
B
E
C
D
9、如图∠1是△ABC的一个外角,E为边AC上一点, 延长BC到D,连结DE,试说明∠1 >∠2的理由。
D
2 C
5 E
3
4
61
A
B
10、如图,在△ABC中,D是BC边上一点, ∠1 =∠2, ∠3 =∠4, ∠BAC=60°,求∠ DAC的度数。
A 1
B
2
43
D
C
11、如图所示下列说法一定正确的是
CD
检验一下自己的知识够用不?
• (巩固练习):1) 求下列各图中∠1的度数。
(第1题) (2)如果∠C=4∠A,∠A+∠B=100°,
那么∠A= 20 ° ∠B= 80 ° 与∠C相邻的外角= 100°
• 3)如图,在直角△ABC中,CD是斜边AB上的高, ∠BCD=35°,求∠A与∠EBC的度数.
性质1:三角形的一个外角等于与它不相邻的两个内角的和 性质2:三角形的一个外角大于任何一个与它不相邻的内角
练习1:(口答)一个三角形可以有两个内角 都是直角吗?可以有两个内角都是钝角或都 是锐角吗?为什么? 练习2:你能根据三角形外角的特征把三角 形分类吗?请与同学交流你的想法 。
锐角三角形
直角三角形
5、已知,∠B=∠D+∠E ,问: AB与CD平行吗?为什么?
A
B
C
F
D
E
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
6、如图, ⊿ABC的一个角 A
B
被纸挡住了,请你根据以
下问题中的条件填空:
⑴若∠A=35°∠B=55°则⊿ABC 是 角三角形。
⑵若∠A=48°∠B=43°则⊿ABC 是 角三角形。
• 如图:你有几种方法计算∠1+∠2+∠3=?
1
3
B2
C
试试看,你能不能独立完成下面一题.
• 例1如图8.2.9,D是△ABC的BC边上一点, ∠B=∠BAD, ∠ADC=80°, ∠ BAC=70°.求: (1)∠B的度数; (2)∠C的度数
图 8.2.9
• 解 (1)因为∠ADC是△ABD的外角,所以
3、三角形的三个外角中,最多可以有____个锐角 ______个直角______个钝角。
4、三角形的三个外角中,钝角的个数至少是 ( )
A、0个