【高中数学】高中数学知识点:二面角

合集下载

高中数学课件-求二面角

高中数学课件-求二面角
求空间角
复习回顾
两直线所成角的取值范围:[ 0o, 90o ].
异面直线所成角的取值范围: (0o, 90o ] .
直线和平面所成角的取值范围:[ 0o, 90o ].
O
平面的斜线和平面所成的角
的取值范围: (0o, 90o).
1
A
B
问题
1、在平面几何中“角”是怎样定义的?
答:从平面内一点出发的两条射
2、二面角的画法和记法:做二的面大角小的与面。其顶点
画法:在直棱立上式的和位平置卧无式关
3、二面角的平面角:
记2法、:二二面面角角的大-小A用B-
它二的面平角面角-的大l-
4、二面角的平面角的作法:12、、小根利来据用度定直量义线作和出平来面垂
直作出来
1、二面角的定义 2、二面角的平面角
*转化思想 —降维
3、二面角的平面角的作法 *类比思想
4、数学思想
二面角的平面角的常用作法
1、定义法:
2、应用三垂 线定理:
l
A
OB
A
l
O
B
课堂小结
从一条直线出发的两个半
1、二面角的定义:
平面所组成的图形叫做二 面角。这条直线叫做二面
角1的、棱二。面这角两的个平半面平角面叫
在正方体ABCD-A’B’C’D’中,找出下列二面角 的平面角:
(1)二面角C’-BD-C和C’-BD-A.
D’ A’
C’ B’
D
C
A
OB
寻找二面角的平面角
在正方体ABCD-A’B’C’D’中,找出下列 (2)二面角C’-BD-C和C’-BD-A.
D’ A’
C’ B’
D线所组成的图形叫做角。

高中数学求二面角公式

高中数学求二面角公式

高中数学求二面角公式
二面角的公式在高中数学中是非常重要的一部分,下面我们介绍一些常用的二面角公式。

二面角的平面角公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个方向角,$angle B$为$angle ACB$的另一个方向角,$angle C$为$angle ACB$的第三个方向角,则二面角的平面角公式为:
$$angle ACB = angle A + angle B + angle C$$
这个公式可以帮助我们计算任意一个方向角的平面角。

二面角的垂直角公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个垂直角,$angle B$为$angle ACB$的另一个垂直角,$angle C$为$angle ACB$的第三个垂直角,则二面角的垂直角公式为:
$$angle ACB = 2angle A + angle B + angle C$$
这个公式可以帮助我们计算任意一个垂直角的平面角。

二面角的平面角和垂直角的关系公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个垂直角,$angle B$为$angle ACB$的另一个垂直角,$angle C$为$angle ACB$的第三个垂直角,则二面角的平面角和垂直角的关系公式为:
$$angle ACB = 2angle A + angle B - angle C$$
这个公式可以帮助我们在计算二面角的平面角和垂直角时,把它们的关系理清楚。

以上是一些比较常用的二面角公式,它们可以帮助我们更好地理解和计算二面角的大小。

高中数学立体几何——二面角求法

高中数学立体几何——二面角求法

二面角求法1 .定义法即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.·例1 . 正方体ABCD-A 1B 1C 1D 1中,求 二面角A-BD-C 1解析:易知∠COC 1是二面角C-BD-C 1的平面角,且tan ∠COC 1例2.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60︒,PA PD ==分别是BC,PC 的中点.求:二面角P-AD-B 的余弦值.&解:由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 2PG BG PB PGB PG BG +-∠==⋅.2 三垂线法此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.《例3.如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2, 求:二面角A 1-AB -B 1的正弦值.分析与略解:作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B.@—A图3αβP¥BlB 1 A *A 1l%EF@PCS| FGP ASBS;C DSF E,过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则得A 1F ⊥AB , ∴∠A 1FE 就是所求二面角的平面角.依次可求得 AB 1=B 1B=2,A 1B=3,A 1E=22,A 1F=23, 则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 .·例4.如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD,点E 在线段PC 上,PC ⊥平面BDE.若PA=1,AD=2,求二面角B-PC-A 的正切值.】解:由(1)得BD ⊥平面PAC, ∴BD ⊥AC.又四边形ABCD 为矩形,∴四边形ABCD 是正方形.设AC 交BD 于O 点,∵PC ⊥平面BDE,∴∠BEO 即为二面角B-PC-A 的平面角. ∵PA=1,AD=2,∴AC=2,BO=OC=,∴PC==3,—又OE===在直角三角形BEO 中,tan ∠BEO===3,∴二面角B-PC-A 的正切值为3.例5. 如图, 四棱锥P-ABCD 中, 底面ABCD 为矩形, PA ⊥底面ABCD, PA=AB=, 点E 是棱PB 的中点.(1) 若AD=, 求二面角A-EC-D的平面角的余弦值.—(1) 过点D作DF⊥CE, 交CE于F, 过点F作FG⊥CE, 交AC于G, 则∠DFG为所求的二面角的平面角.由(Ⅰ) 知BC⊥平面PAB, 又AD∥BC, 得AD⊥平面PAB, 故AD⊥AE, 从而DE==. 在Rt△CBE中, CE==. 由CD=, 所以△CDE为等边三角形, 故F为CE的中点, 且DF=CD·sin=.因为AE⊥平面PBC, 故AE⊥CE, 又FG⊥CE, 知FG=AE, 从而FG=, 且G点为AC的中点. 连结DG, 则在Rt△ADG中, DG=AC==.,所以cos∠DFG==.、3、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

高中数学求二面角技巧

高中数学求二面角技巧

高中数学求二面角技巧
高中数学中,求解二面角是一项重要的技巧。

二面角是指两个平面相交而形成的角度,常常出现在几何题目中。

以下是一些求解二面角的技巧:
1. 使用向量法求解二面角
向量法是求解二面角的常用方法。

假设有两个平面AB和CD,且它们相交于一条直线EF。

设向量AB=n,向量CD=m,向量EF=a,则二面角θ的余弦值为:
cosθ=(n·m)/( |n|·|m| )
其中,n·m表示n和m的数量积,|n|和|m|表示向量n和向量m 的模长。

2. 利用三角函数求解二面角
如果已知二面角的两个面的斜率,可以使用三角函数求解二面角。

设两个平面的斜率分别为k1和k2,则二面角的正切值为:
tanθ=(k1-k2)/(1+k1k2)
可以使用反正切函数求解出二面角的值。

3. 利用平面几何知识求解二面角
通过平面几何知识,可以求解出两个平面的交线与一个球面的交线,从而求解二面角。

设两个平面在点O处相交,交线为AB和CD,球心为O,球面与交线AB和CD的交点分别为P和Q,则二面角θ等
于∠POQ。

以上是求解二面角的一些常用技巧,希望对高中数学学习有所帮
助。

高中数学必修二 最新版-二面角求法及经典题型归纳

高中数学必修二 最新版-二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法一:知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°]4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。

(显然,一个平面的法向量有无数个,它们是共线向量)6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。

7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系?二:二面角的基本求法及练习1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM—B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

高二数学 空间角——二面角

高二数学 空间角——二面角

01 知识梳理
3.二面角的求法:
(1)找到或作出二面角的平面角
A
B
A`
D
M
C
01 知识梳理
3.二面角的求法: (3)向量法
B
CA l
D
01 知识梳理
3.二面角的求法: ① 垂直于棱的两个向量的夹角; (3)向量法 ② 求两个平面法向量的夹角.
22 2
小试牛刀
分析:(折叠问题)找二面角的平面角
22 2
小试牛刀
练习2

22 2
感受高考
课堂小结
二面角的求法: (1)构造二面角的平面角; (2)阴影面积法; (3)向量法:转化为与棱垂直两向量的夹角问题; 转化为两平面法向量的夹角的问题.
ห้องสมุดไป่ตู้
P
D
D E
F
g
E
F
B
C
C
22 2
小试牛刀
分析:找二面角的平面角
A
B
D
A
D
CB
C
22 2
小试牛刀
例2 正三棱锥的一个侧面的面积与底面积之比为2:3, 求这个三棱锥的侧面与底面所成二面角的度数?
分析:阴影面积法
22 2
小试牛刀
22 2
小试牛刀
例4:如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平 面垂直,M 是弧CD 上异于 C、D 的点.当三棱锥 M-ABC体积最大时, 求面MAB 与面MCD 所成二面角的正弦值.
高中数学 高二年级
空间角——二面角
01 知识梳理
1.二面角:从一条直线出发的两个半平面所组成的图形叫做二 面角,这条直线叫作二面角的棱,每个半平面叫作

高中数学知识点二面角

高中数学知识点二面角二面角是解析几何中的重要概念,在高中数学课程中也占有一定的比重。

下面将对二面角的定义、性质、应用以及解题方法进行详细介绍。

一、二面角的定义:二面角是指在空间中,由两个不重合射线所确定的两个平面之间的角。

具体而言,设有两条射线OA和OB,这两条射线除了一个公共点O之外没有其他交点,那么我们就可以通过射线OA和射线OB来确定一个二面角。

二、二面角的性质:1.二面角的大小范围是0到π之间,即0<α<π。

2.如果射线OA与射线OB共面,则二面角的大小为0。

3.如果两个射线平行或共线,则二面角的大小为π。

4.二面角的大小与两个面之间的夹角有关,夹角小,二面角大;夹角大,二面角小。

三、二面角的应用:1.几何推理:在解决空间几何题目时,常常需要运用二面角的概念进行证明与推理。

2.几何计算:在三角学和立体几何的计算中,常常需要求解二面角的大小以完成问题的解答。

3.坐标几何:通过给定点的坐标,可以确定射线的方向,进而求解二面角的大小。

四、二面角的解题方法:1.直接法:通过已知条件,利用二面角的定义直接计算得出二面角的大小。

2.投影法:将二面角所在的两个平面进行坐标投影,然后利用向量的内积关系来求解二面角的大小。

3.解析法:利用解析几何的相关知识,将二面角所在的两个平面转化为方程,然后通过求解方程组来求解二面角的大小。

在具体的解题过程中,我们需要根据题目的要求选择合适的解题方法,然后通过运用相应的数学知识和技巧来计算和推导。

总之,二面角是高中数学中的重要知识点之一,理解二面角的定义、性质和应用,掌握求解二面角的解题方法,对于解决相关问题具有重要的意义。

通过深入学习和实践应用,相信同学们对于二面角的理解和运用能力会有所提高。

高一数学二面角知识点

高一数学二面角知识点二面角是几何学中的重要概念之一,在高一数学课程中也是必学的知识点之一。

二面角主要涉及到直线和平面的交角问题,在解题过程中需要灵活运用相关理论和定理。

下面将详细介绍高一数学中与二面角有关的知识点。

1. 二面角的定义和性质在平面几何中,二面角是指两个相交平面所张角的角度。

二面角有正负之分,当两个相交平面逆时针旋转时,角度增加,为正二面角;顺时针旋转时,角度减小,为负二面角。

2. 二面角的计算方法计算二面角的方法主要有两种:直接使用给定的公式计算和利用相关性质进行推导和计算。

(1)直接使用公式计算:当已知两个相交平面的法线向量时,可以使用向量内积的方法计算二面角的角度。

(2)利用相关性质计算:若已知两个相交平面上的夹角和两个平面与第三个平面的夹角,可以利用平面几何中的一些性质和定理,如余弦定理、平面内角和定理等进行推导和计算。

3. 二面角与直线之间的关系在解决与直线有关的问题时,二面角也起到了重要的作用。

通过二面角的概念,可以理解和推导出一些与直线平行、垂直、夹角等性质相关的定理。

(1)直线的斜率与二面角的关系:两个相交直线的斜率之间的关系可以通过二面角推导出来,从而可以得到判断两条直线斜率大小关系的方法。

(2)直线的夹角与二面角的关系:当两条直线相交时,可以通过二面角的概念计算出两条直线的夹角。

4. 二面角的应用举例在实际问题中,二面角的概念和性质被广泛应用。

以下是一些常见的应用场景:(1)建筑物的倾斜角度:通过测量建筑物的倾斜面与地平面的二面角,可以得知建筑物的倾斜程度。

(2)车辆的转弯半径计算:通过计算车辆转弯时前后轮之间的二面角,可以求得车辆的转弯半径和转弯角度。

(3)立体图形的表面积计算:计算立体图形的表面积时,需要考虑到不同面之间的二面角,根据二面角的性质进行计算。

(4)光的折射和反射:在光的折射和反射现象中,二面角的概念可以解释和计算光线的入射角、反射角和折射角。

综上所述,二面角是高一数学中的重要知识点之一,它与直线、平面等几何对象之间有密切的关系。

高中数学知识点:二面角

高中数学知识点:二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.表示方法:棱为AB、面分别为、的二面角记作二面角AB.有时为了方便,也可在、内(棱以外的半平面部分)分别取点P Q、,将这个二面角记作二面角P AB Q.如果棱记作l,那么这个二面角记作二面角l或P l Q.2.二面角的平面角(1)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做二面角的平面角.(2)二面角的平面角的范围:0°≤≤180°.当两个半平面重合时,=0°;当两个半平面相交时,0°<<180°;当两个半平面合成一个平面时,=180°.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.(3)二面角与平面角的对比角二面角图形定义从半面内一点出发的两条射线(半直线)所组成的图形从空间内二直线出发的两个半平面所组成的图形表示法由射线、点(顶点)、射线构成,表示为∠AOB由半平面、线(棱)、半平面构成,表示为二面角a(4)二面角的平面角的确定方法方法1:(定义法)在二面角的棱上找一特殊点,在两个半平面内分别作垂直于棱的射线.如右图,在二面角a的棱a上任取一点O,在平面内过点O作OA⊥a,在平面内过点O作BO⊥a,则∠AOB为二面角a的平面角.方法2:(垂面法)过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如下图(左),已知二面角l,过棱上一点O作一平面,使l,且OA,OB。

∴OA,OB,且l⊥OA,l⊥OB,∴∠AOB为二面角l的平面角.方法3:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,利用线面垂直可找到二面角的平面角或其补角,此种方法通常用于求二面角的所有题目,具体步骤:一找,二证,三求.如上图(右),已知二面角A-BC-D,求作其平面角.过点A作AE⊥平面BCD于E,过E在平面BCD中作EF⊥BC于F,连接AF.∵AE⊥平面BCD,BC平面BCD,∴AE⊥BC.又EF⊥BC,AE∩EF=E,∴BC⊥平面AEF,∴BC⊥AF由垂面法可知,∠AFE为二面角A-BC-D的平面角。

高中数学选修2-1二面角

∴OE∥BC且 OE
OE⊥AB ,因此 PE⊥AB ∴∠PEO为二面角P-AB-C 的平面角

1 BC 2
A
E
B O
1 3 在Rt△PBE中,BE 2,PB=1,PE 2
C
在Rt△POE中, OE 2 tan PEO ∴ 2 2 ∴所求的二面角P-AB-C 的正切值为 2
1 2 2 ,PO 2
二面角
二面角
一、二面角的定义
从空间一直线出发的两个半 平面所组成的图形叫做二面角
α A B β
α
ι
或α-AB-β
β
记为:
二、二面角的平面角
在二面角 的棱 l 上任取一点 O,以点O为垂足,在半平面α和β内分别 作垂直于棱 l的射线OA,OB,则射线 OA和OB构成的∠AOB叫做二面角 的平面角.


C
B
A
α
D
β
二面角
一、二面角的定义
从空间一直线出发的两个半 平面所组成的图形叫做二面角
ι
β α
二、二面角的平面角
ι


1、定义 P B A 2、求二面角的平面角方法 ①点P在棱上 —定义法 ②点P在一个半平面上 —三垂线定理法 ③点P在二面角内 —垂面法
ι
p
α
β
α
β
A B B

β
B
p
ቤተ መጻሕፍቲ ባይዱ
α
A
ι
ι
ι
O
α
A
β
B
1、定义
A O
B
平面角是直角的二面角直二面角
二面角
2、作二面角的平面角的常用方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学】高中数学知识点:二面角
半平面的定义:
一条直线把一个平面分成两部分,每一部分都被称为半平面
二面角的定义:
从一条直线开始由两个半平面组成的图形称为二面角,这条直线称为二面角的边,这
两个半平面称为二面角的面。

二面角的平面角:
以二面角边上的任意点为顶点,使两条光线垂直于两个面的边。

这两条光线形成的角
称为二面角的平面角。

平面角度的大小可以通过平面的大小来测量。

多少度是二面角的平
面角,也就是说,多少度是二面角。

二面角的取值范围为[0180°]。

直二面角:
平面角是直角的二面角,称为直二面角。

如果两个相交平面形成的二面角是直二面角,则两个平面垂直;相反,如果两个平面垂直,则产生的二面角为直二面角。

二面角的平面角具有下列性质:
a、二面角的边缘垂直于其平面角所在的平面,即L⊥ 飞机AOB
b.从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必
在平面角的另一边(或其反向延长线)上.
c、二面角所在的平面垂直于二面角的两面,即平面AOB⊥ α、飞机AOB⊥ α.
求二面角的方法:
(1)定义方法:通过二面角的平面角计算;找出或制作二面角的平面角;符合其定
义的证明;通过求解三角形,计算出二面角的平面角。

上述过程可概括为“一项工作(发现)、两项证明和三项计算”
(2)三垂线法:已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其
逆定理作出平面角.
(3)垂直面法:当已知二面角中从一点到两个平面的垂直线时,该平面与穿过两条
垂直线的两个半平面相交形成的角度即为平面角。

因此,可以看出,二面角的平面角所在
的平面垂直于边缘
(4)射影法:利用面积射影定理求二面角的大小;
其中s是平面图形在一个二面角平面上的面积,s'是平面图形在另一个平面上投影图
形的面积,α是二面角的大小
(5)向量法:设二面角
的平面角是θ。

①如果
那个
②设向量m、n分别为平面α和平面β的法向量
是否相等或互补取决于具体数字。

对二面角定义的理解:
根据这个定义,两个平面相交成四个二面角,其中两个相对的二面角大小相等。

如果
四个二面角中的一个是直二面角,那么四个二面角就是直二面角。

此时,两个平面相互垂直。

根据这个定义,要证明两个平面相互垂直,或者要证明一个二面角是一个直的二面角,只需证明它的平面角是一个直角,两个平面相交即可。

如果相交的二面角不是直的二面角,则必须有一对尖锐的二面角和一对钝的二面角。

在未来,两个平面形成的角度指的是一对
尖锐的二面角。

注意两个平面形成的角度与二面角之间的差异。

相关文档
最新文档