供电系统外文翻译

合集下载

电力系统英文单词

电力系统英文单词

电力系统p o w e r s y s t e m 发电机g e n e r a t o r 励磁e x c i t a t i o n 励磁器excitor电压voltage电流current升压变压器step-up transformer母线bus变压器transformer空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current有功损耗active loss无功损耗reactive loss输电系统power transmission system高压侧high side输电线transmission line高压high voltage低压low voltage中压middle voltage功角稳定angle stability稳定stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC直流DC电网power system落点drop point开关站switch station调节regulation高抗high voltage shunt reactor 并列的apposable裕度margin故障fault三相故障three phase fault分接头tap切机generator triping高顶值high limited value静态static (state)动态dynamic (state)机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltage grade有功负载: active load PLoad无功负载reactive load档位tap position电阻resistor电抗reactance电导conductance电纳susceptance上限upper limit下限lower limit正序阻抗positive sequence impedance 负序阻抗negative sequence impedance零序阻抗zero sequence impedance 无功(功率)reactive power功率因数power factor无功电流reactive current斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap仿真分析simulation analysis下降率droop rate传递函数transfer function框图block diagram受端receive-side同步synchronization保护断路器circuit breaker摇摆swing阻尼damping无刷直流电机Brusless DC motor 刀闸(隔离开关) Isolator机端generator terminal变电站transformer substation永磁同步电机Permanent-magnet Synchronism Motor异步电机Asynchronous Motor三绕组变压器three-column transformer ThrClnTrans双绕组变压器double-column transformer DblClmnTrans 固定串联电容补偿fixed series capacitor compensation 双回同杆并架double-circuit lines on the same tower单机无穷大系统one machine - infinity bus system励磁电流Magnetizing current补偿度degree of compensation电磁场:Electromagnetic fields失去同步loss of synchronization装机容量installed capacity无功补偿reactive power compensation故障切除时间fault clearing time极限切除时间critical clearing time强行励磁reinforced excitation并联电容器shunt capacitor<下降特性droop characteristics线路补偿器LDC(line drop compensation)电机学Electrical Machinery自动控制理论Automatic Control Theory电磁场Electromagnetic Field微机原理Principle of Microcomputer电工学Electrotechnics电路原理Principle of circuits电机学Electrical Machinery电力系统稳态分析Steady-State Analysis of Power System电力系统暂态分析Transient-State Analysis of Power System电力系统继电保护原理Principle of Electrical System's Relay Protection电力系统元件保护原理Protection Principle of Power System 's Element电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of Analogue Electronic Technique数字电子技术Digital Electrical Technique 电路原理实验Lab. of principle of circuits 电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering 电子专题实践Topics on experimental project of electronics电气工程概论Introduction to electrical engineering电子电机集成系统Electronic machine system 电力传动与控制Electrical Drive and Control电力系统继电保护Power System Relaying Protection主变压器main transformer升压变压器step-up transformer降压变压器step-down transformer工作变压器operating transformer备用变压器standby transformer公用变压器common transformer三相变压器three-phase transformer单相变压器single-phase transformer带负荷调压变压器on-load regulating transformer变压器铁芯transformer core变压器线圈transformer coil变压器绕组transformer winding变压器油箱transformer oil tank变压器外壳transformer casing变压器风扇transformer fan变压器油枕transformer oil conservator(∽drum 变压器额定电压transformer reted voltage变压器额定电流transformer reted current变压器调压范围transformer voltage regulation rage 配电设备power distribution equipmentSF6断路器SF6 circuit breaker开关switch按钮button隔离开关isolator,disconnector真空开关vacuum switch刀闸开关knife-switch接地刀闸earthing knife-switch电气设备electrical equipment变流器current converter电流互感器current transformer 电压互感器voltage transformer 电源power source交流电源AC power source 直流电源DC power source 工作电源operating source 备用电源Standby source强电strong current弱电weak current继电器relay信号继电器signal relay电流继电器current relay电压继电器voltage relay跳闸继电器tripping relay合闸继电器closing relay中间继电器intermediate relay时间继电器time relay零序电压继电器zero-sequence voltage relay 差动继电器differential relay闭锁装置locking device遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulation断路器breaker,circuit breaker少油断路器mini-oil breaker,oil-mini-mum breaker 高频滤波器high-frequency filter组合滤波器combined filter常开触点normally opened contaact常闭触点normally closed contaact并联电容parallel capacitance保护接地protective earthing熔断器cutout,fusible cutout电缆cable跳闸脉冲tripping pulse合闸脉冲closing pulse一次电压primary voltage二次电压secondary voltage并联电容器parallel capacitor无功补偿器reactive power compensation device 消弧线圈arc-suppressing coil母线Bus,busbar三角接法delta connection星形接法Wye connection原理图schematic diagram一次系统图primary system diagram二次系统图secondary system diagram两相短路two-phase short circuit三相短路three-phase short circuit单相接地短路single-phase ground short circuit 短路电流计算calculation of short circuit current 自动重合闸automatic reclosing高频保护high-freqency protection距离保护distance protection横差保护transverse differential protection 纵差保护longitudinal differential protection 线路保护line protection过电压保护over-voltage protection母差保护bus differential protection 瓦斯保护Buchholtz protection变压器保护transformer protection 电动机保护motor protection远方控制remote control用电量power consumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneously over-current protection 跳闸线圈trip coil工作线圈operating coil制动线圈retraint coil主保护main protection后备保护back-up protection定时限过电流保护definite time over-current protection 三段式电流保护the current protection with three stages 反时限过电流保护inverse time over-current protection 方向性电流保护the directional current protection零序电流保护zero-sequence current protection 阻抗impedance微机保护Microprocessor Protection。

电力系统外文翻译

电力系统外文翻译

外文资料翻译Electric Power SystemIntroductionElectric Power System,components that transform other types of energy into electrical energy and transmit this energy to a consumer.The production and transmission of electricity is relatively efficient and inexpensive,although unlike other forms of energy,electricity is not easily stored and thus must generally be used as it is being produced.Components of an Electric Power SystemA modern electric power system consists of six main components:(1)the power station,(2)a set of transforms to raise the generated power to the high voltages used on the transmission lines,(3)the transmission,(4)the substations at which the power is stepped down to the voltage on the distribution lines,(5)the distribution lines,and(6)the transformers that lower the distribution voltage to the level used by the consumer's equipment.Power Station The power station of a power system consists of a prime mover,such as a turbine driven by water,steam,or combustion gases that operate a system of electric motors and generators.Most of the world's electric power is generated in steam plants driven by coal,oil,nuclear energyor gas.A smaller percentage of the world's electric power is generated by hydroelectric(waterpower),diesel,and internal-combustion plants.Transformers Modern electric power systems use transformers to convert electricity into different voltages.With transformers,each stage of the system can be operated at an appropriate voltage.In a typical system,the generators at the power station deliver a voltage of from 1,000 to 26,000 volts(V).Transformers step this voltage up to values ranging from 138,000 to 765,000 V for the long-distances.At the substation the voltage may be transformed down to levels of 69,000 to 138,000 V for further transfer on the distribution system.Another set of transformers step the voltage down again to a distribution level such as 2,400or 4,160 V or 15,27,or 33 kilovolts(KV).Finally the voltage is transformed once again at the distribution transformer near the point of use to 240 or 120 V.Transmission Lines The lines of high-voltage transmission systems are usually composed of wires of copper,aluminum,or copper-clad or aluminum-clad steel,which are suspend from tall latticework towers of steel by strings of porcelain insulators.By the use of clad steel wires and high towers,the distance between towers can be increased,and the cost of the transmission line thus reduced.In modern installationswith essentially straight paths,high-voltage lines may be built with as few as six towers to the kilometer.In some areas high-voltage lines are suspended from tall wooden poles spaced more closely together.For lower voltage distribution lines,wooden poles are generally used rather than steel towers.In cities and other areas where open lines create a safety hazard or are considered unattractive,insulated underground cables are used for distribution.Some of these cables have a hollow core through which oil circulates under low pressure.The oil provides temporary protection from water damage to the enclosed wires should the cable develop a leak.Pipe-type cables in which three cables are enclosed in a pipe filled with oil under high pressure(14 kg per sq cm/200psi)are frequently used. These cables are used for transmission of current at voltage as high as 345,000 V(or 345 KV).Supplementary Equipment Any electric-distribution system involves a large amount of supplementary equipment to protect the generators,transforms,and the transmission linesthemselves.The system often includes devices designed to regulate the voltage or other characteristics of power delivered to consumers.To protect all elements of a power system from short circuits and overloads,and for normal switching operations,circuit breakers are employed.These breakers are large switches that are activated automatically in the event of a short circuit or other condition that produces a sudden rise of current. Because a current forms across the terminals of the circuit breaker at the moment when the current is interrupted,some large breakers(such as those used to protect a generator or a section of primary transmission line)are immersed in a liquid that is a poor conductor of electricity, such as oil, to quench the current. In large air-type circuit breakers, as well as in oil breakers, magnetic fields are used to break up the current.Small air-circuit breakers are used for protection in shops, factories,and in modern home installations.In residential electric wiring, fuses were once commonly employed for the same purpose.A fuse consists of a piece of alloy with a low melting point, inserted in the circuit,which melts,breaking the circuit if the current rises above a certain value. Most residences now use air-circuit breakers.Power FailuresIn most parts of the world, local or national electric utilities have joined in grid systems.The linking grids allow electricity generated in one area to be shared with others. Each utility that agrees to share gains an increased reserve capacity, use of larger, more efficient generators, and the ability to respond to local power failures by obtaining energy from a linking grid.These interconnected grids are large, complex systems that contain elements operated by different groups. These systems offer the opportunity for economic savings and improve overall reliability but can create a risk of widespread failure. For example, the worst blackout in the history of the United States and Canada occurred August 14, 2003, when 61,800 megawatts of electrical power was lost in an area covering 50 million people.(One megawatt of electricity is roughly the amount neededto power 750 residential homes.)The blackout prompted calls to replace aging equipment and raised questions about the reliability of the national power grid.Despite the potential for rare widespread problems, the interconnected grid system provides necessary backup and alternate paths for power flow, resulting in much higher overall reliability than is possible with isolated systems .National or regional grids can also cope with unexpected outage such as those caused by storms, earthquakes,landslides,and forest fires, or due to human error or deliberate acts of sabotage.Power QualityIn recent years electricity has been used to power more sophisticated and technically complex manufacturing processes, computers and computer networks, and a variety of other high-technology consumer goods. These products and processes are sensitive not only to the continuity of power supply but also to the constancy of electrical frequency and voltage. Consequently, utilities are taking new measures to provide the necessary reliability and quality of electrical power, such as by providing additional electrical equipment to assure that the voltage and other characteristics of electrical power are constant.Voltage Regulation Long transmission lines have considerable inductance and capacitance.When acurrent flows through the line, inductance and capacitance have the effect of varying the voltage on the line as the current varies. Thus the supply voltage varies with the load. Several kinds of devices are used to overcome this undesirable variation in an operation called regulation of the voltage. The device include induction regulators and three-phase synchronous motors(called synchronous condensers), both of which vary the effective amount of inductance and capacitance in the transmission circuit.Inductance and capacitance react with a tendency to nullify one another. When a load circuit has more inductive than capacitive reactance, as almost invariably occurs in large power systems, the amount of power delivered for a given voltage and current is less than when the two are equal. The ratio of these two amounts of power is called the power factor. Because transmission-line losses are proportional to current, capacitance is added to the circuit when possible, thus bringing the power factor as nearly as possible to 1. For this reason, large capacitors are frequently inserted as a part of power-transmission systems.World Electric Power Production Over the period from 1950 to 2003, the most recent year for which data are available, annual world electric power production and consumption rose from slightly less than 1 trillion kilowatt-hours(kW.h) to 15.9 trillion kW.h. A change also took place in the type of power generation. In 1950 about two-thirds of the world’s electricity came from steam-generating sources and about one-third from hydroelectric sources.In 2003 thermal sources produced 65 percent of the power, but hydropower had declined to 17 percent, and nuclear power accounted for 16 percent of the total. The growth in nuclear power slowed in some countries,notably the United States, in response to concerns about safety. Nuclearplants generated 20 percent of U.S. electricity in 2003; in France, the world leader, the figure was 78 percent.ConservationMuch of the world’s electricity is produced from the use of nonrenewable resources, such as natural gas, coal, oil, and uranium. Coal, oil, and natural gas contain carbon, and burning these fossil fuels contributes to global emissions of carbon dioxide and other pollutants. Scientists believe that carbon dioxide is the principal gas responsible for global warming, a steady rise in Earth’s surface temperature.Consumers of electricity can save money and help protect the environment by eliminating unnecessary use of electricity, such as turning off light when leaving a room. Other conservation methods include buying and using energy-efficient appliances and light bulbs, and using appliances, such as washing machines and dryers, at off-peak production hours when rates are lower. Consumers may also consider environmental measures such as purchasing “green power” when it is offered by a local utility.”Green power”is usually more expensive but relies on renewable and environmentallyfriendly energy sources, such as wind turbines and geothermal power plants.电力系统介绍电力系统把其它形式的能源转化为电能并输送给用户。

电力系统英文单词精编版

电力系统英文单词精编版

电力系统英文单词精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】电力系统powersystem发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-uptransformer母线bus变压器transformer空载损耗no-loadloss铁损ironloss铜损copperloss空载电流no-loadcurrent有功损耗activeloss无功损耗reactiveloss输电系统powertransmissionsystem 高压侧highside输电线transmissionline高压highvoltage低压lowvoltage中压middlevoltage功角稳定anglestability稳定stability电压稳定voltagestability暂态稳定transientstability 电厂powerplant能量输送powertransfer交流AC直流DC电网powersystem落点droppoint开关站switchstation调节regulation高抗highvoltageshuntreactor 并列的apposable裕度margin故障fault三相故障threephasefault分接头tap切机generatortriping高顶值highlimitedvalue 静态static(state)动态dynamic(state)机端电压控制AVR电抗reactance电阻resistance功角powerangle有功(功率)activepower 电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltagegrade有功负载:activeloadPLoad 无功负载reactiveload档位tapposition电阻resistor电抗reactance电导conductance电纳susceptance上限upperlimit下限lowerlimit正序阻抗positivesequenceimpedance 负序阻抗negativesequenceimpedance 零序阻抗zerosequenceimpedance无功(功率)reactivepower功率因数powerfactor无功电流reactivecurrent斜率slope额定rating变比ratio参考值referencevalue电压互感器PT分接头tap仿真分析simulationanalysis下降率drooprate传递函数transferfunction框图blockdiagram受端receive-side同步synchronization保护断路器circuitbreaker摇摆swing阻尼damping无刷直流电机BruslessDCmotor刀闸(隔离开关)Isolator机端generatorterminal变电站transformersubstation永磁同步电机Permanent-magnetSynchronismMotor异步电机AsynchronousMotor三绕组变压器three-columntransformerThrClnTrans 双绕组变压器double-columntransformerDblClmnTrans 固定串联电容补偿fixedseriescapacitorcompensation 双回同杆并架double-circuitlinesonthesametower单机无穷大系统onemachine-infinitybussystem励磁电流Magnetizingcurrent补偿度degreeofcompensation电磁场:Electromagneticfields失去同步lossofsynchronization装机容量installedcapacity无功补偿reactivepowercompensation故障切除时间faultclearingtime极限切除时间criticalclearingtime强行励磁reinforcedexcitation并联电容器shuntcapacitor<下降特性droopcharacteristics线路补偿器LDC(linedropcompensation)电机学ElectricalMachinery自动控制理论AutomaticControlTheory电磁场ElectromagneticField微机原理PrincipleofMicrocomputer电工学Electrotechnics电路原理Principleofcircuits电机学ElectricalMachinery电力系统稳态分析Steady-StateAnalysisofPowerSystem电力系统暂态分析Transient-StateAnalysisofPowerSystem电力系统继电保护原理PrincipleofElectricalSystem'sRelayProtection电力系统元件保护原理ProtectionPrincipleofPowerSystem'sElement 电力系统内部过电压PastVoltagewithinPowersystem模拟电子技术基础BasisofAnalogueElectronicTechnique数字电子技术DigitalElectricalTechnique电路原理实验电气工程讲座Lecturesonelectricalpowerproduction电力电子基础Basicfundamentalsofpowerelectronics高电压工程Highvoltageengineering电子专题实践Topicsonexperimentalprojectofelectronics电气工程概论Introductiontoelectricalengineering电子电机集成系统Electronicmachinesystem电力传动与控制ElectricalDriveandControl电力系统继电保护PowerSystemRelayingProtection主变压器maintransformer升压变压器step-uptransformer降压变压器step-downtransformeroperatingtransformer备用变压器standbytransformer公用变压器commontransformer三相变压器three-phasetransformer单相变压器single-phasetransformer带负荷调压变压器on-loadregulatingtransformer 变压器铁芯transformercore变压器线圈transformercoil变压器绕组transformerwinding变压器油箱transformeroiltanktransformercasing变压器风扇transformerfan变压器油枕transformeroilconservator(∽drum 变压器额定电压transformerretedvoltage变压器额定电流transformerretedcurrent变压器调压范围transformervoltageregulationrage 配电设备powerdistributionequipmentSF6断路器SF6circuitbreaker开关switch按钮button隔离开关isolator,disconnector 真空开关vacuumswitch刀闸开关knife-switch接地刀闸earthingknife-switch 电气设备electricalequipment 变流器currentconverter电流互感器currenttransformer电压互感器voltagetransformer电源powersource交流电源ACpowersource直流电源DCpowersource 工作电源operatingsource 备用电源Standbysource 强电strongcurrent 弱电weakcurrent继电器relay信号继电器signalrelay电流继电器currentrelay电压继电器voltagerelay跳闸继电器trippingrelay合闸继电器closingrelay中间继电器intermediaterelay时间继电器timerelay零序电压继电器zero-sequencevoltagerelay 差动继电器differentialrelay闭锁装置lockingdevice遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulationbreaker,circuitbreaker少油断路器mini-oilbreaker,oil-mini-mumbreaker 高频滤波器high-frequencyfilter组合滤波器combinedfilter常开触点normallyopenedcontaact常闭触点normallyclosedcontaact并联电容parallelcapacitance保护接地protectiveearthing熔断器cutout,fusiblecutout电缆cabletrippingpulse合闸脉冲closingpulse一次电压primaryvoltage二次电压secondaryvoltage并联电容器parallelcapacitor无功补偿器reactivepowercompensationdevice 消弧线圈arc-suppressingcoil母线Bus,busbar三角接法deltaconnection星形接法Wyeconnectionschematicdiagram一次系统图primarysystemdiagram二次系统图secondarysystemdiagram两相短路two-phaseshortcircuit三相短路three-phaseshortcircuit单相接地短路single-phasegroundshortcircuit 短路电流计算calculationofshortcircuitcurrent 自动重合闸automaticreclosing高频保护high-freqencyprotection距离保护distanceprotectiontransversedifferentialprotection 纵差保护longitudinaldifferentialprotection 线路保护lineprotection过电压保护over-voltageprotection母差保护busdifferentialprotection瓦斯保护Buchholtzprotection变压器保护transformerprotection电动机保护motorprotection远方控制remotecontrol用电量powerconsumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneouslyover-currentprotection 跳闸线圈tripcoil工作线圈operatingcoil制动线圈retraintcoil主保护mainprotection后备保护back-upprotection定时限过电流保护definitetimeover-currentprotection 三段式电流保护thecurrentprotectionwiththreestages 反时限过电流保护inversetimeover-currentprotection 方向性电流保护thedirectionalcurrentprotection零序电流保护zero-sequencecurrentprotection阻抗impedance微机保护MicroprocessorProtection。

电力系统英文单词

电力系统英文单词

电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-up transformer母线bus变压器transformer空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current有功损耗active loss无功损耗reactive loss输电系统power transmission system 高压侧high side输电线transmission line高压high voltage低压low voltage中压middle voltage功角稳定angle stability稳定stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC直流DC电网power system落点drop point开关站switch station调节regulation高抗high voltage shunt reactor 并列的apposable裕度margin故障fault三相故障three phase fault分接头tap切机generator triping高顶值high limited value 静态static (state)动态dynamic (state)机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power 电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltage grade有功负载: active load PLoad 无功负载reactive load档位tap position电阻resistor电抗reactance电导conductance电纳susceptance上限upper limit下限lower limit正序阻抗positive sequence impedance 负序阻抗negative sequence impedance 零序阻抗zero sequence impedance无功(功率)reactive power功率因数power factor无功电流reactive current斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap仿真分析simulation analysis下降率droop rate传递函数transfer function框图block diagram受端receive-side同步synchronization保护断路器circuit breaker摇摆swing阻尼damping无刷直流电机Brusless DC motor刀闸(隔离开关) Isolator机端generator terminal变电站transformer substation永磁同步电机Permanent-magnet Synchronism Motor异步电机Asynchronous Motor三绕组变压器three-column transformer ThrClnTrans双绕组变压器double-column transformer DblClmnTrans 固定串联电容补偿fixed series capacitor compensation 双回同杆并架double-circuit lines on the same tower单机无穷大系统one machine - infinity bus system励磁电流Magnetizing current补偿度degree of compensation电磁场:Electromagnetic fields失去同步loss of synchronization装机容量installed capacity无功补偿reactive power compensation故障切除时间fault clearing time极限切除时间critical clearing time强行励磁reinforced excitation并联电容器shunt capacitor<下降特性droop characteristics线路补偿器LDC(line drop compensation)电机学Electrical Machinery自动控制理论Automatic Control Theory电磁场Electromagnetic Field微机原理Principle of Microcomputer电工学Electrotechnics电路原理Principle of circuits电机学Electrical Machinery电力系统稳态分析Steady-StateAnalysis of Power System电力系统暂态分析Transient-State Analysis of Power System电力系统继电保护原理Principle of Electrical System's Relay Protection电力系统元件保护原理Protection Principle of Power System 's Element电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of Analogue Electronic Technique数字电子技术Digital Electrical Technique电路原理实验Lab. of principle of circuits电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics onexperimental project of electronics电气工程概论Introduction to electrical engineering电子电机集成系统Electronic machine system电力传动与控制Electrical Drive and Control电力系统继电保护Power System Relaying Protection主变压器main transformer升压变压器step-up transformer降压变压器step-down transformer工作变压器operating transformer备用变压器standby transformer公用变压器common transformer三相变压器three-phase transformer单相变压器single-phase transformer带负荷调压变压器on-load regulating transformer变压器铁芯transformer core变压器线圈transformer coil变压器绕组transformer winding变压器油箱transformer oil tank变压器外壳transformer casing变压器风扇transformer fan变压器油枕transformer oil conservator(∽drum变压器额定电压transformer reted voltage变压器额定电流transformer reted current变压器调压范围transformer voltage regulation rage 配电设备power distribution equipmentSF6断路器SF6 circuit breaker开关switch按钮button隔离开关isolator,disconnector真空开关vacuum switch刀闸开关knife-switch接地刀闸earthing knife-switch 电气设备electrical equipment 变流器current converter电流互感器current transformer 电压互感器voltage transformer 电源power source交流电源AC power source直流电源DC power source 工作电源operating source备用电源Standby source强电strong current弱电weak current继电器relay信号继电器signal relay电流继电器current relay电压继电器voltage relay跳闸继电器tripping relay合闸继电器closing relay中间继电器intermediate relay 时间继电器time relay零序电压继电器zero-sequence voltage relay差动继电器differential relay闭锁装置locking device遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulation断路器breaker,circuit breaker少油断路器mini-oil breaker,oil-mini-mum breaker 高频滤波器high-frequency filter组合滤波器combined filter常开触点normally opened contaact 常闭触点normally closed contaact 并联电容parallel capacitance保护接地protective earthing熔断器cutout,fusible cutout电缆cable跳闸脉冲tripping pulse合闸脉冲closing pulse一次电压primary voltage二次电压secondary voltage并联电容器parallel capacitor无功补偿器reactive power compensation device 消弧线圈arc-suppressing coil母线Bus,busbar三角接法delta connection星形接法Wye connection原理图schematic diagram一次系统图primary system diagram二次系统图secondary system diagram两相短路two-phase short circuit三相短路three-phase short circuit单相接地短路single-phase ground short circuit 短路电流计算calculation of short circuit current 自动重合闸automatic reclosing高频保护high-freqency protection距离保护distance protection横差保护transverse differential protection 纵差保护longitudinal differential protection 线路保护line protection过电压保护over-voltage protection 母差保护bus differential protection 瓦斯保护Buchholtz protection变压器保护transformer protection 电动机保护motor protection远方控制remote control用电量power consumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneously over-current protection 跳闸线圈trip coil工作线圈operating coil制动线圈retraint coil主保护main protection后备保护back-up protection定时限过电流保护definite time over-current protection 三段式电流保护the current protection with three stages 反时限过电流保护inverse time over-current protection 方向性电流保护the directional current protection零序电流保护zero-sequence current protection阻抗impedance微机保护Microprocessor Protection。

电气常用中英文对照

电气常用中英文对照

电气常用中英文对照电气常用中英文对照(2010-10-13 11:54:52)转载▼标签:杂谈中文英文综合保护Integrated Protective Device智能显控装置Intelligent Monitor And Control Device微机消谐装置Computer Harmonic Regulation Device带电显示器Live Display温湿度控制器Temperature And Humidity Controller速断过流跳闸Over-Current Instantaneous Trip零序过流跳闸Neutral-Phase Over-Current Trip仪表联锁跳闸Instrumentation Interlock Trip自投合闸压板Automatic Transfer Reclose Switch速断跳闸压板Instantaneous Trip Switch过流跳闸压板Over-Current Trip Switch非电量跳闸压板Non-Electricity Trip Switch零序跳闸压板Neutral-Phase Trip Switch过负荷跳闸压板Overload Trip Switch低电压跳闸压板Low Voltage Trip Switch过压跳闸压板Over-Voltage Trip Switch欠压跳闸压板Under Voltage Trip Switch低压侧后备Low Voltage Automatic Tranfer高压侧后备High-Voltage Automatic Tranfer母联备投跳闸Bus Coupler Automatic Transfer Trip差动保护跳闸Differential Protection Trip电流表Ampere Meter非电量保护压板Non-Electricity Protective Switch电力英语1)元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor(2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current 定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power无功(功率)reactive power 功率因数power factor无功电流reactive current下降特性droop characteristics 斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance。

外文翻译及文献:电力系统The

外文翻译及文献:电力系统The

Minimum Pow er SystemA minimum electric pow er system is show n in Fig. 1. the system cons ists of an energy source, a prime mover, a g enerator, and a load.The energy source may be coal, gas, or oil burned in a furnace to heat w ater and generate steam in a boiler; it m ay be fissionable mater ial w hich, in a nuclear reactor, w ill heat w ater to produce steam; it may be w ater in a pond at an elevation above the generating station; or it may be oil or gas burned in an internal combust ion engine.Fig. 1. The minimum electric pow er systemThe prime mover may be a steam-driven turbine, a hydraulic turbine or w ater wheel, or an internal combustion engi ne. E ach one of these prime movers has the ability to convert energy in the form of heat, falling w ater, or fuel into rotation of a shaft, w hich in turn w ill drive the generator.The electrical load on the generator may be lights, motors, heaters, or other devices, alone or in combination. P rob ably the load w ill vary from minute to minute as different demands occur.The control system functions to keep the speed of the machines substantially constant and the voltage w ithin prescr ibed limits, even though the load may change. To meet these load conditions, it is necessary for fuel input to chan ge, for the prime mover input to vary, and for the torque on the shaft from the pr ime mover to the generator to ch ange in order that the generator may be kept at constant speed. In addition, the field current to the generator must be adjusted to maintain constant output voltage. The control system may include a man stationed in the pow er pla nt that w atches a set of meters on the generator-output ter minals and makes the necessary adjustments manually. 3In a modem station, the control system is a servomechanis m that senses a generator-output conditions and autom atically makes the necessary changes in energy input and field current to hold the electrical output w it hin certain specifications.More Complicated SystemsIn most situations the load is not directly connected to the generator ter minals. More commonly the load is some di stance from the generator, requir ing a pow er line connecting them. It is desirable to keep the electric pow er supply at the load w ithin specifications. How ever, the controls are near the generator, w hich may be in another building, p erhaps several miles aw ay.If the distance from the generator to the load is considerable, it may be desir able to install transformers at the gen erator and at the load end, and to trans mit the pow er over a high-voltage line (Fig. 2). For the same pow er, the hi gher-voltage line carries less current, has low er losses for the same w ire size, and provides more stable v oltage.In some cases an overhead line may be unacceptable. Instead it may be advantageous to use an under ground ca ble. With the pow er systems talked above, the pow er supply to the load must be interrupted if, for any reason, any component of the system must be removed from service for maintenance or repair..Fig 2A generators connected through transfor mers and a high-voltage line to a distant loadAdditional system load may requir e more pow er than the generator can supply. Another generator w ith its associate d transformers and high-voltage line might be added.It can be show n that there are some advantages in making ties betw een the generators (1) and at the ends of the high-voltage lines (2and 3), as show n in Fig. 3. This system w ill operate satisfactorily as long as no trouble develo ps or no equipment needs to be taken out of service.The above system may be vastly improved by the introduction of circuit br eakers, w hich may be opened and closed as needed. Circuit breakers added to the system, Fig. 4, per mit selected piece of equipment to sw itch out of servi ce w ithout disturbing the remainder of system. With this arrangement any element of the system may be r eenergize d for maintenance or repair by oper ation of circuit breakers. Of course, if any piece of equipment is taken out of s ervice, the total load must then carried by the remaining equipment. Attention must be given to avoid over loads dur i ng such circumstances. If possible, outages of equipment are scheduled at times w hen load requirements are below nor mal.Fig. 1-3 A system w ith parallel oper ation of the generators, of the transformers and of the trans mission linesFig. 4A system w ith necessary circuit breakersFig. 5Three generators supplying three loads over high-voltage trans mission linesFig. 5 show s a system in w hich three generators and three loads are tied together by three trans mission lines. No circuit breakers are show n in this diagram, although many w ould be required in such a system.Typical System LayoutThe gener ators, lines, and other equipment w hich form an electric system are arranged depending on the manner in w hich load grow s in the area and may be rearranged from time to time.Fig. 6 A radial pow er system supply ing several loadsHow ever, there are certain plans in to w hich a particular system des ign may be classified. Three types are illustrate d: the radial system, the loop system, and the netw ork system. All of these are show n w ithout the necessary circuit breakers. In each of these systems, a single generator serves four loads.The radial system is show n in Fig. 6. Here the lines form a “tree” spreading out from the generator. Opening any li ne results in interruption of pow er to one or more of the loads.The loop system is illustrated in Fig. 7. With this arrangement all loads may be served even though one line sectio n is removed from service. In some instances dur ing nor mal operation, the loop may be open at some point, such as A. In case a line section is to be taken out, the loop is first closed at A and then the line section removed. In this manner no service interruptions occur.Fig. 1-7A loop arrangement of lines for supplying several loadsFig. 8 show s the same loads being served by a netw ork. With this arrangement each load has tw o or more circuits over w hich it is fed.Distribution circuits are commonly des igned so that they may be classified as radial or loop circuits. The high-voltag e trans mission lines of most pow er systems are arranged as netw orks. The interconnection of major pow er systems results in netw orks made up many line sections.Fig. 8A netw ork of lines for supplying several loadsAuxiliary E quipmentCircuit breakers are necessary to deenergize equipment either for normal operation or on the occurrence of short ci rcuits. Circuit breakers must be designed to carry nor mal-load currents continuously, to w ithstand the extremely high currents that occur during faults, and to separate contacts and clear a circuit in the presence of fault. Circuit break ers are rated in ter ms of these duties.When a circuit breaker opens to deenergize a piece of equipment, one side of the circuit breaker usually rem ains e nergized, as it is connected to operating equipment. Since it is sometimes necessary to w ork on the circuit breaker itself, it is also necessary to have means by w hich the circuit breaker may be completely disconnected from other energized equipment. For this purpose disconnect sw itches are placed in series w ith the circuit breakers. By openin g these disconnests, the circuit breaker may be completely deenergized, per mitting w ork to be carried on in safety.Various instruments are necessary to monitor the operation of the electr ic pow er system. Usually each generator, ea ch transformer bank, and each line has its ow n set of instruments, frequently consisting of voltmeters, ammeters, w attmeters, and var meters.When a fault occurs on a system, conditions on the system undergo a sudden change. Voltages usually drop and currents increase. These changes are most noticeable in the immediate vicinity of fault. On-line analog computers, c ommonly called relays monitor these changes of conditions, make a deter minat ion of w hich breaker should be open ed to clear the fault, and energize the trip circuits of those appropriate breakers. 'With modern equipment, the relay action and breaker opening causes removal of fault w ithin three or four cycles after its initiation.The instruments that show circuit conditions and the relays that protect the circuits are not mounted directly on the pow er lines but are placed on sw itchboards in a control house. Instrument transformers are installed on the high-vol tage equipment, by means of which it is possible to pass on to the meters and relays representative samples of th e conditions on the operating equipment. The primary of a potential transformer is connected directly to the high-vol tage equipment. The secondary provides for the instruments and relays a voltage w hich is a constant fraction of vol tage on the operating equipment and is in phase w ith it. Similarly, a current transformer is connected w ith its primar y in the high-voltage circuit. The secondary w inding provides a current w hich is a know n fraction of the pow er-equip ment current and is in phase w ith it.Bushing potential devices and capac itor potential devices serve the same purpose as potential transformers but usually w ith less accuracy in regard to ratio and phase angle.Faults on Pow er SystemsFaults and its DamageEach year new designs of pow er equipment bring about increased reliability of operation. Nevertheless, equipment f ailures and interference by outside sources occasionally result in faults on electric pow er syst ems. On the occurrenc e of a fault, current and voltage conditions become abnor mal, the delivery of pow er from the generating stations to the loads may be unsatisfactory over a considerable area, and if the faulted equipment is not promptly disconnected from the remainder of the system, damage may result to other pieces of operating equipment.A fault is the unintentional or intentional connecting together of tw o or more conductors w hich ordinarily operate w it h a difference of potential betw een them. The connection betw een the conductors may be by physical metallic cont act or it may be through an arc. At the fault, the voltage betw een the tw o parts is reduced to zero in the case of metal-to-metal contacts, or to a very low value in case the connection is through an arc. Currents of abnor mally hig h magnitude flow through the netw ork to the point of fault. These short-circuit currents w ill usually be much greater than the designed ther mal ability of the conductors in the lines or machines feeding the fault. The resultant rise in t emperature may cause damage by the annealing of conductors and by the charring of insulation. In the period duri ng w hich the fault is per mitted to exist, the voltage on the system in the near vicinity of the fault w ill be so low th at utilization equipment w ill be inoperative. It is apparent that the pow er system designer must anticipate points at which faults may occur, be able to calculate conditions that exist during a fault, and provide equipment properly adj usted to open the sw itches necessary to disconnect the faulted equipment from the remainder of the system1. Ordi narily it is desirable that no other sw itches on the system are opened, as such behavior w ould result in unnecessar y modification of the system circuits.OverloadA distinction must be made betw een a fault and an overload. An overload implies only that loads greater than the designed values have been imposed on system. Under such a circumstance the voltage at the overload point may be low, but not zero. This under voltage condition may extend for some distance beyond the overload point into the remainder of the system. The currents in the overloaded equipment are high and may exceed the ther mal des ign l imits. Nevertheless, such currents are substantially low er than in the case of a fault. Service frequently may be mai ntained, but at below-standard voltage.Overloads are rather common occurrences in homes. For example, a housew ife might plug five w affle irons into the kitchen circuit during a neighborhood party. Such an overlo ad, if per mitted to continue, w ould cause heating of the w ires from the pow er center and might eventually start a fire. To prevent such trouble, residential circuits are prote cted by fuses or circuit breakers w hich open quickly w hen currents above specified values persist. Distribution transf or mers are sometimes overloaded as customers install more and more appliances. The continuous monitoring of dist ribution circuits is necessary to be certain that transfor mer sizes are increased as load grow s.Various FaultsFaults of many types and causes may appear on electric pow er systems. Many of us in our homes have seen fray ed lamp cords w hich permitted the tw o conductors of the cord to come in contact w ith each other. When this occur s, there is a resulting flash, and if breaker or fuse equipment functions properly, the circuit is opened.Overhead lines, for the most part, are constructed of bare conductors. These are sometimes accidentally brought to gether by action of w ind, sleet, trees, cranes, airplanes, or dama ge to supporting structures. Over voltages due to li ghtning or sw itching may cause flashover of supporting or from conductor to conductor. Contamination on insulators sometimes results in flashover even dur ing nor mal voltage conditions.The conductors of underground cables are separated from each other and from ground by solid insulation, w hich m ay be oil-impregnated paper or a plastic such as polyethylene. These materials undergo some deter ioration w ith ag e, particularly if overloads on the cables have resulted in their operation at elevated temperature. Any small void pr esent in the body of the insulating material w ill result in ionization of the gas contained therein, the products of w hi ch react unfavorably w ith the insulation, deterior ation of the insulation may result in failur e of the material to retain i ts insulating properties, and short circuits w ill develop betw een the cable conductors. The possibility of cable failure is increased if lightning or sw itching produces transient voltage of abnor mally high values betw een the conductors.Transfor mer failures may be the result of insulation deterioration combined w ith over-voltages due to lightning or sw i tching trans ients. Short circuits due to insulation failure betw een adjacent turns of the same w inding may result from suddenly applied over voltages. Major insulation may fail, per mitting arcs to be established betw een primary and se condary w indings or betw een a w inding and grounded metal part such as the core or tank.Generators may fail due to breakdow n of the insulation betw een adjacent turns in the same slot, resulting in a shor t circuit in a single turn of the generator. Insulation breakdow n may also occur betw een one of the w indings and th e grounded steel structure in w hich the coils are embedded. Breakdow n betw een different w indings lying in the sam e slot results in short-circuiting extensive sections of machine.Balanced three- phase faults, like balanced three-phase loads, may be handled on a line to-neutr al bas is or on an equivalent single-phase basis. P roblems may be solved either in ter ms of volts, amperes, and ohms. The handling of faults on single-phase lines is of course identical to the method of handling three-phase faults on an equivalent s ingle-phase basis.Per manent Faults and Temporary FaultsFaults may be classified as per manent or temporary. P er manent faults are those in w hich insulation failure or struct ure failure produces damage that makes operation of the equipment impossible and requires repairs to be made. T emporary faults are those w hich may be removed by deenergiz ing the equipment for a short period of time, short ci rcuits on overhead lines frequently are of this nature. High w inds may cause tw o or more conductors to sw ing toget her momentar ily. During the short period of contact, an arc is formed w hich may continue as long as the line remai ns energized. How ever i f automatic equipment can be brought into operation to deenergize the line quickly, little ph ysical damage may result and the line may be restored to service as soon as the are is extinguished. Arcs across insulators due to over voltages from lightning or sw itching trans ients usually can be cleared by automatic circuit-brea ker operation before significant structure damage occurs.Because of this characteristic of faults on lines, many companies operate follow ing a procedure know n as high-spee d reclosing. On the occurrence of a fault, the line is promptly deenergized by opening the circuit breakers at each end of the line. The breakers remain open long enough for the arc to clear, and then reclose automatically. In man y instances service is restored in a fraction of a second. Of course, if structure damage has occurred and the fault persists,it is necessary for the breakers to reopen and lock open.电力系统最低限度的电力系统最低电力系统显示图.1 .该系统包括能源,主要动力,一台发电机和负荷。

电力系统专业英语单词

power output 功率输出,输出功率power output 功率输出,输出功率short circuita great deal 大量ac 交流(电)admittance 导纳amp 安培amp 安培amplitude振幅arc 电弧,弧光arise from 起于,由...出身armature 电枢armature winding 电枢绕组arrangement 布置,排列;设备,装置;安装,装配;置配;安排arrangement 布置,排列;安装,装配;assemblage 与会者(集合称), 集合, 集会, 装配assume 假定, 设想, 采取, 呈现automatic voltage regulator 自动电压调节器,自动稳压器,自动调压器autotransformer 自耦变压器backup protection 后备保护,后备保护装置block 组[件],单元,部件;机组,单元机组;滑轮;字组,块,程序块,数据块break down 毁掉, 制服, 压倒, 停顿, 倒塌, 中止, 垮掉, 分解bus bar 汇流条, 母线bus impedance matrix 母线阻抗矩阵,节点阻抗矩阵bus impedance matrix 母线阻抗矩阵,节点阻抗矩阵busbar 母线,汇流条,结点,节点,汇流排bushing [电工]套管capacitor bank 电容器组carrier protection 载波保护,高频保护carrier relaying 载波继电保护,高频保护,载波中继[制]carry 携带,搬运,传送,传播;支持,执行,进位,进列changing 转换charging currents 充电电流circuit breaker [电工]断路开关, 断路器Circuit breaker 电路断路器circuit layout 电路布线,线路布置circuit-breaker 〈电〉断路器,断路开关circuit-breaker 〈电〉断路器,断路开关clearing time 通信连络断开时间, 电话的话终时间clearing time 通信连络断开时间, 电话的话终时间combine with 与...结合come into 得到communication circuit 通讯电路conductance [电工]电导, 导率, 电导系数contact 接触contact (电流的)接触;接通;接触器core loss current 铁耗电流core type 铁心式(变压器)critical point 临界点cross-sectional 横截[断]面current density 电流密度current flow 电流current transformator 变流器, 电流互感器cut-and-try method 渐近法,试探法Cycle 循环、周期、周波cylindrical rotor [电]鼓形转子,隐极转子damage 损害,伤害,损伤,破坏,损坏;事故,故障damp 阻尼,减幅, 衰减damper winding 阻尼绕组de- 剥夺, 分离deenergize 断开,去能,去激励;断电de-energize 断开,断电de-energized 不赋能的,除去电源的,去激励的demagnetizing effect:消磁效果;去磁效应;消磁作用derivative导数derivative导数desired 期待的desired value 期待值,给定值,预定值,所需值,预期值detection 察觉, 发觉, 侦查, 探测, 发现determine确定:在考虑,调查或计算之后,决定性地确认参见,控制,限制developed power 发出功率development stage 发展阶段dielectric 电介质, 绝缘体dielectric loss 介电损失differential protection 差动保护[装置]differential relay 差动继电器differentiate 求…的微分:计算导数或(函数的)微分difficulty 困难:困难的环境或程序:The condition or quality of being difficult: digital computer) 数字计算机direct proportion 正比例, 正比directional relay 方向继电器,定向继电器direct-wire circuit 单线线路disconnect switch 隔离刀闸disconnected switch 隔离开关dispatch 发送,调度,迅速处理,输送,发运,发货dispatch 发送,调度,迅速处理,输送,发运,发货distance relay 距离继电器distribution substation 配电站distribution transformer 配电变压器disturbance 扰动double-breaker 双断开关double-bus 双母线dynamic performance 动态特性dynamic system performance 系统动态运行特性economic dispatch 经济调度economic dispatch 经济调度economic dispatch 经济调度economic planning 经济计划eddy curren 涡流,涡电流eddy current 涡流,涡电流electrical contact 电连接,电接点,电触点,电触头electromagnetic 电磁的emf 电动势energize 给与...电压energize 使带电流;使通电energy 热能源,电能:可用的热量或能量:energy 热能源,电能:可用的热量或能量engine 发动机,机械,机器,引擎,工具engine-driven generator [发动]机[驱]动的发电机equivalent circuit 等效电路excess load 过载,过负荷,超载,过荷载fault detection 故障检验feature 要素feed water 锅炉给水field winding 激励绕组, 励磁绕组, 场绕组flux 磁通focal point 焦点force outage 事故停用,强迫停机,强制停机force outage 事故停用,强迫停机,强制停机fraction 【数学】分数:表明两个量的商的表达式ft(foot, feet) 英尺fuel cost 燃料费fuel cost 燃料费fuel input 燃料加入(量)fuel input 燃料加入(量)full load 满载,满负荷fundamental 【物理学】基波的:Gauss-Seidel method 高斯-塞德尔法(潮流计算的) Gauss-Seidel procedure 高斯-塞德尔法generating plant 发电厂,电厂,电站,发电设备generating system 发电系统generation 产生;代;发电,发生,振荡,改进阶段generation schedule 发电计划gradient approachgradient approach 梯度方法ground current 大地电流ground relay 接地继电器ground relaying 接地继电保护guard against 提防, 预防harmonic 谐波head (水站等的)蓄水高度, 水头, 落差, 压力; 势头high-speed reclosure 快速重合闸horizontal axis 水平轴线horizontal axis 水平轴线hydroelectric 水力发电的hysteresis 磁滞hysteresis 滞后作用, [物]磁滞现象identical 【数】恒等的impedance [电]阻抗, 全电阻, [物]阻抗in any case 无论如何in phase adv. 同相地in terms of 根据, 按照, 用...的话, 在...方面in the case of 在...的情况incremental cost 边际成本incremental cost 边际成本incremental cost curveincremental cost curveincremental generating cost 发电成本增量incremental generating cost 发电成本增量inductive 电感性的,电感的,感应的;吸入的inductive circuit 有感电路,电感电路,感性电路inflammable 易燃的inflammable liquid 易燃液(体)injection current 注入电流instantaneous relay 瞬动继电器(电流速断保护)instantaneous value 瞬时值instrument transformator 仪表用互感器instrument transformator 仪表变压器insulation breakdown 绝缘击穿insulation deterioration 绝缘老化insulation failure 绝缘事故,绝缘损坏insure against 给...保险interconnected electric power system 互联电力系统internal voltage 内电压,电动势internal voltage 电动势,内电压internal voltage 内电压,电动势(发电机的),反电动势(电动机的)inverse time 反时,逆时inverse time current protection 反时限[过]电流保护[装置]inverse time relay 反时限继电器inverse-time definite-time limit relay 逆时定时限继电器,定时限反时继电器ionize 电离ionize 电离it follows that 由此得出结论..., 因而断定...key diagram 原理草图, 工作图know-how > 实际知识, 技术秘诀, 诀窍lagging current 滞后电流layout 设计,布置,规划;草图,布置图,线路图;排列;layout diagram 布置图layout drawing 布置图,配线图,定位图leakage flux 漏通量leakage inductance 漏电感lightning 闪电lightning arrester 避雷器limit 界限, 限度, 限制line conductor 导线line flashover 线路闪络line terminal 线路线端, 线路终端line trap 线路陷波器,阻波器line-to-line 两线间的,相间的,线间短路live 有电的,带电的,活动的,正极接地的load characteristic 负荷特性,负载特性load factor 负载系数long-range 远大的, 长期的loop system 环形线路制,闭环系统;回路系统m.m.f 磁动势magnetize vt 使磁化magnetizing current 磁化电流, 起磁电流maximum power transfer 最大传输功率mechanical stress 机械应力memory capacity 存储容量motor starter 电动机起动器multi-winding transformer 多绕组变压器mutual coupling 互耦mutual flux 互(感)磁通mutual impedance 互阻抗navigation 航海, 航空, 导航, 领航, 航行navigation 航运negative damping 负阻尼network system 网络系统,供电网系统neutral conductor 中性导线Newton-Raphson 牛顿-拉夫逊nodal admittance matrix 节点导纳矩阵normal load 额定负荷,正常负载normal-voltage 正常电压Norton's theorem 诺敦定理,等值电流源定理offset wave 偏移波open 开的,敞开的,打开,断路,断开,公开的,断路的open-circuit 开路的open-circuit voltage 开路电压,空载电压operating coil 动作线圈,工作线圈operating frequency 工作频率,操作频率,运行频率operating range 运转范围,工作范围,作用距离,作用半径,(堆功率)运行区段out of 与...不相宜, 不相称,在...范围,缺乏, 放弃outage 断电output power 输出功率over-current 过电流overflash 闪络,飞弧Overhead line 架空线over-load 超过负荷over-voltage 过电压parallel resonance 并联谐振parallel resonance 并联谐振permeable 可渗透的,能透过的phase displacement 相(位)移phase displacement 相(位)移phase displacement 相位移phase shift 周相移动phase shifters 移相器phase-angle 相角;相位角,相移角;相(位)角phase-angle 相角;相位角,相移角;相(位)角phase-comparison 相位比较phase-displacementphase-to-ground 相对地pick-up current 接触电流,起动电流,拾音器电流planner 规划人员plunger relay 插棒式继电器,螺管式继电器polarity 极性pondage power plant 抽水蓄能电站positive sequence network 正序网路potential transformator 电压互感器, 测量用变压器power circuit 电源电路,电力电路;动力线路,电力网,电力线路,电源线路power flow 电力潮流、功率潮流、功率通量, 能流power level 功率级,[功率]电平;功率水平power line 动力线,动力网,电力线,电源线,输电线power swing 功率波动,功率摆动,功率摇摆power transfer 功率传输,电和输送power transfer 功率传输,电力传送power transfer 功率传输,电力传送power transformator 电源[电力, 功率]变压器prefault 故障前的primary grid substation 主网变电站prime mover 原动力, 发动者prime mover 原动力, 发动者problem 问题:应该考虑、解决或回答的问题:protective relay 保护继电器protruding-pole 凸极public hazard 公害pumped storage station 提水蓄能站pumped storage station 抽水蓄能电站quadratic formula 二次公式radial system 辐射状配电制,径向配电制radian 弧度rate current 反应[额定]电流reactance 电抗reactance drop 电抗电压下降reactive power 无功功率real number [数]实数rectification 整流regulate 管制, 控制, 调节, 校准relative movement 相对运动relative position 相对位置relative position 相对位置relay继电器relay element 继电器元件relay inverse time 继电器反时限特性relay system 继电保护系统reluctance 【物理学】磁阻:reservoir 水库, 蓄水池resistance 电阻resistance drop 电阻(性电)压降resistivity 电阻系数resistor [电]电阻器ring bus 环形母线rpm 每分钟转数run-off-river station 径流式水电厂,河流式水电厂run-of-the -riversalient pole rotor 凸极转子saturation 饱和度scheme 方案,线路图,电路,图表,图解,计划,线路,路,设计图,规划secondary substation 二次变电所sensor 传感器sequence component 序分量sequential tripping 顺序脱扣,顺序跳闸series capacitor 串联电容器,附加电容器(仪表)series capacity 串联电容series inductance 串联电感setting 装配,调整,炉墙,支座,调节,置位,装定,整定值,起动,装置,设置short-cut 短路,捷路,简化side effect 副作用single-busbar system 单母线系统single-pole switch 单极开关,单刀开关sinusoidal 正弦曲线slope 【数学】斜率:slope 【数学】斜率:solid insulation 固体绝缘solid insulation 固体绝缘sparse matrix 稀疏矩阵specific loading 单位负载,比负载,比负荷specification 详述, 规格, 说明书, 规范specified load 额定负荷,设计负荷,规定负荷,标准荷载specify 把…列为条件,规定, 指定, 确定; 详细说明, 具体说明squirrel cage 鼠笼stability limit 稳定极限,稳定限度,稳定度极限steady-state 稳定工况,稳定状态,稳恒状态,静态,稳态steady-state stability 稳态steam trap 凝汽阀steam turbine 蒸汽轮机steam turbine 汽轮机steam valve 蒸汽阀step down 降低,降压step-type voltage regulator 分级式电压调整器step-up 升压,升高,加速step-up substation 升压变电站stir up 激起, 鼓动, 煽动stray flux 杂散磁通Stray loss 杂散损耗substation transformator 配电变压器subtransient 次暂态suffer from 忍受, 遭受susceptance 电纳(导纳的虚数分量swing 摆动,动荡,摆度,振幅,摆幅switchboard 配电盘, 配电屏;配电板,switching 开关switching 开关,开闭,转接,切换,换向,整流switching surge 操作过电压synchronous condenser 同步调相机synchroscope 同步指示器,同步示波器system design 系统设计system layout 系统布置system reliability 系统可靠性system reliability 系统可靠性tapped 抽头的;分接的;带向分接头的,带分接头的term [数学]项:terminal voltage 端电压Thevenin theory 戴维宁理论throttle setting 节流阀调整time delay relay 延时继电器,缓动继电器time setting 时间整定timer 计时器,定时器,时间发送器,时间继电器,延时调节器;程序装置torque 扭矩, 转矩transfer bus 切换母线transfer 传递,传送,输送;转换,转移;调动,变换;传输,传导,迁移;进位transformer bank 变压器组transformer bushing 变压器套管transformer bushing 变压器套管transformer tap 变压器分接头transient stability 瞬态[暂]态稳定性transmission capacity 输电能力,输电量transmission capacity 输电能力,输电量transmission capacity 输电能力,输电量transmission line 输电线transmission line 输电线,输电线路;谐振线transmission system 传动系统,输电系统,传输系统,发射系统transmitting capacity 输电能力;传输能力,发送能力traveling wave 行波trial and error method 试凑法,尝试法,逐次逼近法,试探,试配,试错trial-and-error 尝试法[的],逐步逼近[法]tune 谐调turbine 涡轮turbo 涡轮(发动机)unit transformer 单元[机组]变压器unity power factor [电]整功率因数valve 阀,valving 设置阀门;[阀门]关闭voltage drop 电压降落voltage rate 电压比voltage rating 额定电压voltage regualator 电压调整器,电压调节器,稳压器,调压器voltage regulation 电压调整、电压调整率、电压变动率voltage regulator 电压调整器,电压调节器,稳压器,调压器voltage sensor 电压传感器voltage transformation 变压water storage reservoir 水库water turbine 水轮机wave shape 波形wave shape 波形wrap around 卷绕的, 环绕的zero sequence 零[相]序,零序。

工厂供电系统外文翻译

附录四英文文献及译文Analysis of the reasons for the low power factor of the factory power supply system, and to improve power factor and to take effective idle work compensation measure is discussed. To saved the electrical energy, raised enterpriseps economic efficiency has important effect。

Large and medium-sized enterprises PeiDianJian with responsibility for the whole enterprise management and distribution of electricity. At present, most of the enterprise management mode PeiDianJian obsolete, low automatization, difficult to adapt to the requirements of the development of enterprises. In view of this situation, we have developed PeiDianJian monitoring and management system. This system in the computer as the core, real-time monitoring of electric parameters, PeiDianJian all the data processing, dynamic display of statements and output. This system can be used in the PeiDianJian enterprise technical renewal and the transformation of enterprise to do well planned, save electricity, improve economic benefit has important significance.We use the mains by huge power supply system is provided, all the network supply circuit is only for each of the power supply system, network, a tiny branches output. Metal wires connected by good conductors of power supply circuit, each of its source power substation, and then from that power to client to substation and its level in scale, thousands of kilometers and hundreds of kilometers of kilometers. Bare wire in the air in the vertical distribution of atmospheric mountain while high and low, in accordance with the Qing, from dozens of rice to thousands of meters and hundreds of meters above all common. 2 km In such a large scope, the vertical distribution and wide for substation online, due to weather, no matter where or by direct discharge, clouds cloud in discharging, in the air and good conductors of bare wire easily inductive or direct lightning introduction to. This is the power system and power equipment to be struck by lightning external environment.Power supply system and electric defense methods of lightningAnalysis of the power supply system and electric easily be struck by lightning, can draw on electrical equipment, defense lightning damage, should be perfected in the power supply system, and avoid thunder lightning protection measures, the core problem is how to maximize effectively or truncate the high voltage and the thunder and lightning, strong flow under the frequency of more than 10 KHz seitching invasion.transformer segregation lawsTo effectively cut from the high voltage power and strong currents, currently use transformer isolation method. So-called isolation method, is based on transformer transformer equation:EM = 4144fNBMSType of EM for transformer original (vice), unit V; potential edge F for power source) frequency, unit (speed, N the original (vice) side of coil, The intensity of magnetic core materials BM, unit Wb/M2, S for the core area, unit M2.This equation, powerful lightning invade the transformer, due to transformer voltage electric ray than the normal supply of high pressure many times, make incentive magnetic induction than the maximum allowed by magnetic core transformer core strength BM, thus the magnetic saturation, transformer -- electricity failure, GaoLei voltage transform temporarily cannot transfer to the transformer, a deputy side of transformer protection lightning channel, the deputy of electrical equipment load. While there are usually installed transformer power valve can be powerful lightning and the lightning flow into the earth, and in the safe, high voltage, current, powerFlow, fuses will fuse off. Stop So, always packed transformer electrical equipment configuration of transformer, than by lightning bad probability is greatly reduced.Why in the fall after the power supply, sluice stop there will still be struck by lightning disasters. This happened because lightning, invading transformer connected by vice and load of electrical equipment based on low, still can exist, these induction lightning induction lightning electronics products will cause of lightning. This problem is often neglected, many lightning disasters, the event is not solved theproblem. The successful development of lightning power, for we solve this problem.Lightning arrester powerFor truncated or stop high-pressure seitching in metal wires to load caused by lightning, electric 1890 invented the clearance of the way after the lightning series fuse, 1922 made us Westinghouse carbonized silicon arresters. To use the 1972 Japan dielectric properties research into fell seconds with no gaps (ZnO) service. Current power supply system is widely used in such power lightning.Zno arrester by zinc oxide thermistors, each thermistors according to need to have it made in certain switching voltage (psa). When in the lower voltage arresters ends switching voltage (psa), high resistance thermistors present state, arrester doesn't work. When lightning arrester ends when, in the voltages above switching voltage (psa), thermistors, low resistance by breakdown, even close circuit state, in a very short time (50ns ´ s, 10-9) arrester is high, the work of a lightning through introducing the earth grounding safety. When, after the lightning arrester stabilised, voltage on both ends of the lower voltage switching voltage (psa), thermistors and present state of high value, lightning arrester stop working, electric conduction normal power.FenLiuXing avoid thunderFenLiuXing avoid thunder, is the core of wire cable in transmission series on two capacitor, input shunt capacitor in an inductance coil. So, when the capacitance and inductance coil capactance C L reasonable choice of inductance, make through two more than 10 frequency capacitor, much like KHz TV signal frequency speed to sign for dozens of hundreds of megabytes speed signals through the capacitance, and lightning frequency circuit reactance small majority in 100 KHz, when lightning through the capacitance, will produce larger pressure drop. And through the situation, high capacitance signals through the inductance greater pressure drop when L, much lower frequency of lightning, through the low impedance, large discharge by lightning, XieRu grounding. Television antenna lightning current share this line shunt principle and method.Production of equipment, such as mechanical processing machine, with various kinds of crane, with induction motor, etc, these large and electric power load isperceptual load, make the power factor of power supply system, the influence of distribution transformer lines and economic operation of power sector, reach the power factor, thus must adopt the reactive power compensation measures to improve the power factor, and can save energy and reduce consumption.The power factor of system of power supply is an important technical and economic indexes, the power factor of electric equipment is reflected the active power and the ratio of power nai. Relevant procedure: high voltage power supply power plant, the maximum load of power factor may not be less than 0.9, Other factories, power factor may not be less than 0.85.The main factors that affect the power factorThe power factor of ac electric equipment, mainly because in its working process, in addition to generate power loss, also produce reactive power loss. Therefore improving power factor the essence of the problem is to reduce the electric equipment of reactive power consumption. Asynchronous motor and power transformer is reactive power loss of the main equipment and power lines of reactive power loss, it is current through the lines. Circuit reactance.Parallel compensation in power capacitors supply system of factory installed position, have high concentrated compensation, low-pressure concentrated compensation and separate compensation on-spot three modes, etc.Theoretically speaking, the reactive power compensation is the best way of reactive power, where is produced, the whole system where compensation will not reactive current flow, but in actual power supply system in this is impossible. We currently have a 10 kv power supply system, and has three switch power transformer substation, three workshops 800kV A respectively, 560kV A capacity, 630kV A. Dynamic load hundreds of machine tools and machining, electric welding machine, etc. Combined with practical, electricity load during load fluctuation change is big, the characteristics of small load after midnight, in order to avoid over compensation, and meet after midnight on all load cases are adopted to improve the low voltage offset, automatic reactive compensation devices.分析了工厂供电系统功率因数偏低的原因,探讨了提高功率因数的方法及采取的有效无功补偿措施,对节约电能,提高企业的经济效益有重要意义。

(完整版)电力系统外文英语文献资料

Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation, power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power, with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed .Grid can be divided into several levels based on the operating voltage transmission system, substructure, transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation, power can be roughly divided into two parts, the transmission system and substation. The farthest from the maximum output power and the power of the highest voltage grade usually through line to load. Secondary transmission usually refers to the transmission and distribution system is that part of the middle. If a plant is located in or near the load, it might have no power. It will be direct access to secondary transmission and distribution system. Secondary transmission system voltage grade transmission and distribution system between voltage level. Some systems only single second transmission voltage, but usually more than one. Distribution system is part of the power system and its retail service to users, commercial users and residents of some small industrial users. It is to maintain and in the correct voltage power to users responsible. In most of the system, Distribution system accounts for 35% of the total investment system President to 45%, and total loss of system of the half .More than 220kv voltage are usually referred to as Ultra high pressure, over 800kv called high pressure, ultra high voltage and high pressure have important advantages, For example, each route high capacity, reduce the power needed for the number of transmission. In as high voltage to transmission in order to save a conductor material seem desirable, however, must be aware that high voltage transmission can lead to transformer, switch equipment and other instruments of spending increases, so, for the voltage transmission to have certain restriction, allows it to specific circumstances in economic use. Although at present, power transmission most is through the exchange of HVDC transmission, and the growing interest in, mercury arc rectifier and brake flow pipe into the ac power generation and distribution that change for the high voltage dc transmission possible.Compared with the high-voltage dc high-voltage ac transmission has the following some advantages: (1) the communication with high energy; (2) substation of simple maintenance and communication cost is low; (3) ac voltage can easily and effectively raise or lower, it makes the power transmission and high pressure With safety voltage distributionHVDC transmission and high-voltage ac transmission has the following advantages: (1) it only need two phase conductors and ac transmission to three-phase conductors; (2) in the dc transmission impedance, no RongKang, phase shift and impact overvoltage; (3) due to the same load impedance, no dc voltage, and transfer of the transmission line voltage drop less communication lines, and for this reason dc transmission line voltage regulator has better properties; (4) in dc system without skin effect. Therefore, the entire section of route conductors are using; (5) for the same work, dc voltage potential stress than insulation. Therefore dc Wire need less insulation; (6) dc transmission line loss, corona to little interference lines of communication; (7) HVDC transmission without loss of dielectric, especially in cable transmission; (8) in dc system without stability and synchronization of trouble.A transmission and the second transmission lines terminated in substation or distribution substations, the substation and distribution substations, the equipment including power and instrument transformer and lightning arrester, with circuit breaker, isolating switch, capacitor set, bus and a substation control equipment, with relays for the control room of the equipment. Some of the equipment may include more transformer substations and some less, depending on their role in the operation. Some of the substation is manual and other is automatic. Power distribution system through the distribution substations. Some of them by many large capacity transformer feeders, large area to other minor power transformer capacity, only a near load control, sometimes only a doubly-fed wire feeders (single single variable substation)Now for economic concerns, three-phase three-wire type communication network is widely used, however, the power distribution, four lines using three-phase ac networks.Coal-fired power means of main power generating drive generators, if coal energy is used to produce is pushing the impeller, then generate steam force is called the fire. Use coal produces steam to promote the rotating impeller machine plant called coal-fired power plants. In the combustion process, the energy stored in the coal to heat released,then the energy can be transformed into the form within vapor. Steam into the impeller machine work transformed into electrical energy.Coal-fired power plants could fuel coal, oil and natural gas is. In coal-fired power plant, coal and coal into small pieces first through the break fast, and then put out. The coal conveyer from coal unloader point to crush, then break from coal, coal room to pile and thence to power. In most installations, according to the needs of coal is, Smash the coal storage place, no coal is through the adjustable coal to supply coal, the broken pieces of coal is according to the load changes to control needs. Through the broken into the chamber, the coal dust was in the second wind need enough air to ensure coal burning.In function, impeller machine is used to high temperature and high pressure steam energy into kinetic energy through the rotation, spin and convert electricity generator. Steam through and through a series of impeller machine parts, each of which consists of a set of stable blade, called the pipe mouth parts, even in the rotor blades of mobile Li called. In the mouth parts (channel by tube nozzle, the steam is accelerating formation) to high speed, and the fight in Li kinetic energy is transformed into the shaft. In fact, most of the steam generator is used for air is, there is spread into depression, steam turbine of low-pressure steam from the coagulation turbine, steam into the condenses into water, and finally the condensate water is to implement and circulation.In order to continuous cycle, these must be uninterrupted supply: (1) fuel; (2) the air (oxygen) to the fuel gas burning in the configuration is a must; (3) and condenser, condensed from the condensed water supply, sea and river to lake. Common cooling tower; (4) since water vapour in some places in circulation, will damage process of plenty Clean the supply.The steam power plant auxiliary system is running. For a thermal power plant, the main auxiliary system including water system, burning gas and exhaust systems, condensation system and fuel system. The main auxiliary system running in the water pump, condensation and booster pump, coal-fired power plants in the mill equipment. Other power plant auxiliary equipment including air compressors, water and cooling water system, lighting and heating systems, coal processing system. Auxiliary equipment operation is driven by motor, use some big output by mechanical drive pump and some of the impeller blades, machine drive out from the main use of water vaporimpeller machine. In coal-fired power plant auxiliary equipment, water supply pump and induced draft fan is the biggest need horsepower.Most of the auxiliary power generating unit volume increased significantly in recent years, the reason is required to reduce environment pollution equipment. Air quality control equipment, such as electrostatic precipitator, dust collection of flue gas desulfurization, often used in dust in the new coal-fired power plants, and in many already built in power plant, the natural drive or mechanical drive, fountain, cooling tower in a lake or cooling canal has been applied in coal-fired power plants and plants, where the heat release need to assist cooling system.In coal-fired power stations, some device is used to increase the thermal energy, they are (1) economizer and air preheater, they can reduce the heat loss; (2) water heater, he can increase the temperature of water into boiling water heaters; (3) they can increase and filter the thermal impeller.Coal-fired power plants usually requires a lot of coal and coal reservoirs, however the fuel system in power plant fuel handling equipment is very simple, and almost no fuel oil plants.The gas turbine power plants use gas turbine, where work is burning gas fluid. Although the gas turbine must burn more expensive oil or gas, but their low cost and time is short, and can quickly start, they are very applicable load power plant. The gas turbine burn gas can achieve 538 degrees Celsius in the condensing turbine, however, the temperature is lower, if gas turbine and condenser machine, can produce high thermal efficiency. In gas turbine turbine a combined cycle power plant. The gas through a gas turbine, steam generator heat recovery in there were used to generate vapor heat consumption. Water vapor and then through a heated turbine. Usually a steam turbine, and one to four gas turbine power plant, it must be rated output power.。

电力专业供用电部分词汇(中英文)_secret

电力词汇供电和用电波形质量Waveformquality电压和电流波形的正弦形程度。

城市供电Urbanpowersupply大面积停电Large-scaleconsumeroutage大型企业供电Powersupplyoflargeenterprise单边供电Singlesidefeeding单回路供电Single-circuitpowersupply单相供电Single-phasepowersupply地铁供电Powersupplytosubway地下供电Undergroundpowersupply电力牵引供电PowersupplyofelectrictractionEL力销售Electricitymarketing电力营销Electricitymarketing以满足人们的电力消费需求为目的的基本活动。

电能质量Electricpowerquality电压波动和变Voltagefluctuationandflicker一系列电压随机变动或工频电压包络线的周期性变化,以及由此引起的照明闪变。

it压和电流不平衡度Unsymmetryofvoltageandcurrent各相电压、电流幅值和相位的不对称程度。

电压质量Voltagequality动态电压恢复器Dynamicvoltagerecovery(DVR)能通过串联变压器向馈线注入可控幅值、相角和频率的电压,从而恢复负荷侧的电压质量。

独立电源Independentelectricsupply多回路供电Multiplefeed多相供电Polyphasepowersupply高层建筑物供电High-risebuildingpowersupply高压供电High-voltagepowersupply供电Powersupply供电点Power-supplypointDL/T一用户受电装置接入供电网中的位置。

供电电源Power-supplysource供电方案Schemeofpowersupply电力供应的具体实施计划。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供配电系统摘要:电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。

而接地方式的选择,是与本国国情、自然环境、设备制造和运行水平等有关的,例如,雷电的活动情况、绝缘结构的设计、对周边的干扰等因素,都会影响中性点接地方式的选择;反过来,中性点接地方式对电力系统的设计、运行、调试以及发展都有很大影响。

一般在电压等级较高的系统中,绝缘费用在设备总价格中占相当大的比重,降低绝缘水平带来的经济效益很显著,通常就采用中性点直接接地的方式,而采用自动重合闸来保证供电可靠性:相反,在电压等级较低的系统中,通常都采用中性点不接地的方式来提高供电可靠性。

因此,在综合考虑供电可靠性、安全因素、过电压因素、继电保护的选择、投资费用等各方面因素的情况下,来论证正确选择配电网接地方式的重要性,以及如何不断开发,利用新型接地装置来应用在配电网接地系统中是当今配电网接地方式的一个重要课题。

本文主要工作是对lOkV配电网接地方式进行研究和比较选择。

分别论述各类接地方式的优缺点,主要有国内外比较常用的中性点不接地方式、中性点经消弧线圈接地方式(也称谐振接地方式)、中性点电阻接地方式、中性点直接接地方式。

通过技术比较确定最优接地方式,还利用一种近几年研究开发的,应用在谐振接地方式中的自动跟踪补偿装置,再配以灵敏的小电流接地选线保护,能够有效限制电网的故障接地电弧,更有利于电网的安全运行。

本文首先对配电网各类接地方式做深入的研究。

全面介绍国内外几种常用的中性点接地方式的运行特性,通过技术经济比较对不同的接地方式进行综合评价,再结合不同的接地方式的发展前景得出结论,优化了的谐振接地方式表现出很大的发展潜力。

然后,本文对lOkV配电网中性点谐振接地方式的运行特性进行了研究和介绍。

从限制故障接地电弧的危害出发,重点论述如何利用电流谐振原理,有效熄灭故障接地电弧等。

接着,本文结合国内外科技的发展和创新成果,对谐振接地优化方式中的微机接地保护性和自动跟踪补偿装置进行全面的分析与论述,说明谐振接地优化方式在供电可靠性、人身安全、设备安全和通信干扰等方面,具有较好的运行特性,既解决了小电流接地系统接地保护的选择性,又实现了自动调谐,使此种接地方式成为配电网比较理想的中性点接地方式。

本文同时还对谐振接地方式实施技术进行了研究,包括消弧线圈的参数选择、安装、调整、运行与维护等内容。

最后,本文总结了本课题研究的内容。

谐振接地籍助微机技术的支持,近些年来国内外均在进行优化,优化谐振接地技术是提高供电可靠性、保护人身安全、设备安全和电磁环境等的一项合理的重要技术手段,而谐振接地实施技术更充分发挥谐振接地方式的功能,使谐振接地方式具有更好的技术经济指标。

随著电网的不断发展和丰富的实践结果表明,以谐振接地方式为代表的小电流接地方式优于其他接地方式,这是配电网的中性点接地方式发展的总趋势,在今后的配电网接地方式中应推广应用。

本论文提出的思路、方案和结论不仅对于lOkV配电网中性点接地方式选择研究、实际工程应用具有实际的参考作用,对于其他电压等级中性点接地方式选择同样具有借鉴的作用。

电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

论文针对配电网各种接线模式的特点,就各种接线模式的经济性和可靠性进行了分析。

3 小结论文首先介绍lOkV配电网各种典型的接线模式和国外几个国家的典型接线模式,然后确定配电网接线模式分析的思路,明确进行分析的必要性和重要性。

再提出最优分段数计算的必要性,阐述最优分段数对经济性和可靠性的影响,然后建立最优分段数计算模型,并简单介绍各种接线模式的供电方案。

而后对配电网各种接线模式的可靠性和经济性进行了计算和分析,通过计算并描绘的各种图表。

并对最优分段数作了分析和讨论。

文章最后对各种接线模式的经济性和可靠性进行总结,分析了各种接线模式各自的优点和缺点,其适用情况。

并结合实际情况针对lOkV配电网的规划和建设提出有益的建议。

为lOkV配电网的规划设计及为建成网架坚实、布局合理、管理科学、能够安全、优质、高效运行的配电网提供理论的依据和有益的指引。

参考文献[1]苏文成.工厂供电[M].机械工业出版社.1999.9[2]刘介才.工厂供电设计指导[M].机械工业出版社.1999.12[3]供配电系统设计规范[S].中国计划出版社.1996[4]低压配电设计规范[S].中国计划出版社.1996.6Power Supply and Distribution SystemABSTRACT:The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS:power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground ofdescribing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network underconsidering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in someforeign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net. References[1] Wencheng Su. Factories power supply [M]. Machinery Industry Publishing House. 1999.9[2] Jiecai Liu. Factories power supply design guidance [M]. Machinery Industry Publishing House.1999.12[3] Power supply and distribution system design specifications[S].China plans Press. 1996[4] Low-voltage distribution design specifications [S].China plans Press. 1996.6。

相关文档
最新文档