2020年中考复习——条件开放型问题专题训练(三)

合集下载

中考数学复习开放性问题3[人教版]

中考数学复习开放性问题3[人教版]
装运存有放射性物质的铅箱时,一只箱子从车上掉下来,吴明(8岁)看见后,即取出箱中的放射性物质玩耍,结果因过量吸收放射性物质而得病。吴明的治疗费和其他必要费用应由谁承担?()A.吴明的监护人B.某研究所C.主要由某研究所承担,吴明的监护人适当分担D.主要 [单选]容许建筑高度是指()。A.桥面(或轨顶)标高与设计洪水位之高差B.桥面(或轨顶)标高与通航净空顶部之高差C.桥跨结构最下缘与设计洪水位之高差D.桥面(或轨顶)标高与桥跨结构最下缘之间的距离 [单选,A2型题,A1/A2型题]点彩红细胞胞质中的颗粒为()A.残存变性的DNAB.残存变性的RNAC.残存变性的脂蛋白D.核糖体E.金属颗粒沉淀 [问答题,简答题]新户分配抄表段的原则是什么? [单选]进行口对口人工呼吸时注意事项中不包括()A.吹气量应使胸廓抬起B.吹气时间约占1次呼吸周期1/3C.操作前取下假牙D.牙关紧闭者可做口对鼻吹气E.人工呼吸不应与自主呼吸同步 [单选]当路堤基底横坡陡于()时,基底坡面应挖成台阶。A.1:0.5B.1:1.5C.1:5D.1:10 [判断题]经常项目下的个人外汇业务按照可兑现原则管理,资本项目下的个人外汇业务按照可兑换进程管理。A.正确B.错误 [填空题]3、宽体机的机身较宽,客舱内至少有2条走廊,3排座椅,机身宽一般在()米以上 [单选]相同浓度的下列四种溶液,()溶液的沸点最高。Al2(SO4)3B.CaCl2C.MgSO4D.HAc [单选,A2型题,A1/A2型题]母亲正常分娩后何时喂哺自己的婴儿()A.产后立即B.产后2hC.产后4hD.产后6hE.产后8h [单选]《建设工程勘察合同示范文本(一)》和《建设工程勘察合同示范文本(二)》均约定,在合同生效后()天内,发包人应向勘察人支付勘察费的()作为定金。在合同履行后,定金可抵作勘察费。A.3;15%B.2;20%C.3;20%D.2;15% [单选]朊毒体可以诱发机体产生()A.细胞免疫B.体液免疫C.补体D.细胞凋亡E.体液免疫和细胞免疫 [单选,A型题]白喉棒状杆菌的异染颗粒,通过哪种染色可观察到()A.革兰染色B.抗酸染色C.阿尔伯特染色D.镀银染色E.黑斯染色 [单选,A1型题]下列偏倚不可能在Meta分析过程中产生的是()A.发表偏倚B.奈曼偏倚C.英语偏倚D.文献库偏倚E.多次发表偏倚 [单选]海图图式“Si”表示该区地质为()。A.沙B.泥C.淤泥D.岩石 [单选]阀控式密封铅酸蓄电池组,在下列哪项容量以上时宜设专用蓄电池室()?A.50AhB.100AhC.150AhD.200Ah [单选]对多个四线组来说,()在红组的顺时针方向时,该端为A端。A.绿线B.兰线C.绿组D.兰组 [单选]下列哪项不是预防局麻药中毒的措施()A.一次用药量不超过限量B.避免误入血管C.局麻药中加少量肾上腺素D.麻醉前适量用苯妥英钠E.根据病人情况酌情减量 [单选]项某是某建筑公司司机,在一工地驾车作业时违反操作规程,不慎将一名施工工人轧死,对项某的行为应当()。A.按过失致人死亡罪处理B.按交通肇事罪处理C.按重大责任事故罪处理D.按意外事件处理 [单选]当前化妆品经营中的主要卫生问题是()。A.微生物污染B.无卫生许可证产品的销售C.化妆品的产品质量D.化妆品的无证经营E.化妆品的假冒伪劣产品 [单选,A1型题]有关检查胎位的四步触诊法,哪项是错误的()A.用以了解子宫的大小、胎先露、胎方位B.第三步是双手置于耻骨联合上方,弄清先露部是胎头还是胎臀C.第一步是双手置于子宫底部,了解宫高度,井判断是胎头还是胎臀D.第二步是双手分别置于腹部两侧,辨别胎背方向E.第四步双 [单选,A1型题]关于乌药的归经说法正确的是()A.肺、肝、脾、肾经B.肺、胃、脾、膀胱经C.肺、脾、肾、膀胱经D.肝、胃、肾、膀胱经E.肝、肾、胃、小肠经 [填空题]WindowsServer2003的安装可分为()和()两种方式。 [单选]下列哪项不属于各级人民检察院管辖范围内的信访事项()。A.对人民检察院工作的建议、批评和意见B.对人民法院工作的建议、批评和意见C.对人民检察院生效决定不服的申诉D.对公安机关不予立案决定不服的申诉 [单选,A2型题,A1/A2型题]银屑病理疗中的PUVA疗法,正确的是()A.长波紫外线加8-MOP是常用的光化学疗法B.局部治疗前2小时服用8-MOP后短波紫外线照射治疗部位C.全身治疗前3小时按治疗剂量服用8-MOP后全身照射长波紫外线D.局部治疗时,也可在照射前1小时涂补骨脂素溶液,再用长波紫 [单选,A2型题,A1/A2型题]果汁、牛奶常用的灭菌方法为()A.巴氏消毒法B.干热灭菌法C.间歇灭菌法D.高压蒸汽灭菌法E.流动蒸汽消毒法 [单选,A1型题]下列哪个方剂中重用生姜()A.大建中汤B.吴茱萸汤C.健脾丸D.实脾散E.固冲汤 [判断题]储蓄机构受理挂失后,必须冻结该项储蓄存款。()A.正确B.错误 [填空题]电气设备的绝缘水平是指该电气设备能承受的() [单选]建设单位申请施工许可证时,向办证机关提供的施工图纸及技术资料应当满足()。A.施工需要并按规定听过审查B.编织招标文件的要求C.主要设备材料订货的要求D.施工安全措施的要求 [单选,A2型题,A1/A2型题]正常肌肉在针电极停止活动后,插入活动()A.持续时间少于100msB.持续时间少于200msC.持续时间少于300msD.持续时间少于400msE.持续时间少于500ms [问答题,简答题]调整抄表段应依据哪些信息? [单选]铁路电话交换网有些号码用于特殊业务,如113表示人工记录台,()故障申告电话。A.110B.117C.116D.112 [单选]以下哪项不是体外受精胚胎移植的适应证?()A.不明原因性不孕B.宫颈因素不孕C.子宫内膜异位症D.双侧输卵管阻塞E.子宫内膜结核 [单选]“钢船时期”的代表作“龙威”号被编入北洋舰队后,改名为“()”号,成为北洋八大远之一。A、威远B、平远C、定远D、镇远 [单选]下列各项中,影响企业当期营业利润的是()A.处置房屋的净损失B.经营出租设备的折旧费C.向灾区捐赠商品的成本D.火灾导致原材料毁损的净损失 [填空题]文学的审美教育作用有______________、______________和______________。 [名词解释]电子数据交换 [单选,A2型题,A1/A2型题]对于一组正态分布的资料,样本含量为n,样本均数为X,标准差为S,该资料的医学参考值范围为()。A.X±1.96SB.X±t0.05,vS/nC.X±1.96S/nD.P2.5~P97.5E.lg-1(X±1.96S) [单选]当地面效应存在时,飞机如何产生与商有地面效应时相同的升力?()A.相同的迎角B.减小迎角C.增大迎角

2020年中考复习——条件开放型问题专题训练(二)(有答案)

2020年中考复习——条件开放型问题专题训练(二)(有答案)

1
19.
解:由符号
(
)的定义
(
) = 1+ 可得:
( 1 ) = 1+1 =
1,
+1
从而发现 ( ) + ( 1 ) = 1,
10 / 11
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。—— 达尔文
所以
(
1 2014
)
+
(
1 2013
)
+
(
1 2012
)
+

+
(
1 3
)
+
(
1 2
)
2. B
解:A、若添加 = ˊ ˊ,可利用 SAS 进行全等的判定,故本选项错误; B、若添加 = ′ ′,不能进行全等的判定,故本选项正确; C、若添加∠ = ∠ ′,可利用 ASA 进行全等的判定,故本选项错误; D、若添加∠ = ∠ ˊ,可利用 AAS 进行全等的判定,故本选项错误;
3. B
解:∵ ∠1 = ∠2 ∴∠ =∠ ∴ ,C,D 都可判定△ ∽△ 选项 B 中不是夹这两个角的边,所以不相似,
5. C
解:A、当∠ = ∠ 时,又∵ ∠ = ∠ ,∴△ ∽△ ,故此选项错误; B、当∠ = ∠ 时,又∵ ∠ = ∠ ,∴△ ∽△ ,故此选项错误; C、当 = 时,无法得到△ ∽△ ,故此选项正确; D、当 = 时,又∵ ∠ = ∠ ,∴△ ∽△ ,故此选项错误.
6. D
解:由图片可知,E 视点的盲区应该在三角形 ABD 的区域内.
7. B
解:说法①符合平行四边形的定义;说法②符合平行四边形的判定定理 4;说法③由 // 和∠ = ∠ ,可判断出 = 或 // ,也正确;说法④可举出等腰梯形

中考复习备战策略第二部分专题三开放型问题

中考复习备战策略第二部分专题三开放型问题

考点知识梳理
中考典例精析
考点训练
3.判断型开放题:称判定几何图形的形状大小、 图形的位置关系、方程(组)的解的情况或判定具有某种 性质的数学对象是否存在的开放型问题为判断型开放 题,又称存在型探索题.解题的基本思路是:先假设 结论“存在”,然后从条件出发进行计算或推理论证, 直接找出或证得符合条件的结论,若推理所得的结论 与已知条件或相关定理相一致,则说明其存在;否则, 说明其不存在.
方法总结 添加条件时,首先分析具备了哪些条件,然后按照 三角形全等的判定方法确定缺少的条件.
考点知识梳理
中考典例精析
考点训练
考点二 结论开放型 例 2 (2013·吉林)如图,AB 是⊙O 的弦,OC⊥AB 于点 C,连接 OA,OB.点 P 是半径 OB 上任意一点,连 接 AP.若 OA=5 cm,OC=3 cm,则 AP 的长度可能是 _______cm(写出一个符合条件的数值即可).
考点知识梳理
中考典例精析
考点训练
【点拨】因为 OC⊥AB,所以由垂径定理,可得
AC=BC.在 Rt△AOC 中,OA=5 cm,OC=3 cm,由
勾股定理,可得 AC=4 cm,所以 AB=8 cm.因为
AO≤AP≤AB,所以 5 cm≤AP≤8 cm,当点 P 与点 O
重合时,AP=AO=5 cm;当点 P 与点 B 重合时,AP
考点知识梳理
中考典例精析
考点训练
二、填空题(每小题 4 分,共 20 分) 6 . (2013·娄 底 ) 如 图 , AB = AC , 要 使 △ABE≌△ACD , 应 添 加 的 条 件 是 ∠C = ∠B( 或 ∠AEB=∠ADC 或∠CEB=∠BDC 或 AE=AD 或 CE =BD) (添加一个条件即可).

中考数学专题复习题:开放性问题

中考数学专题复习题:开放性问题

2019-2020年中考数学专题复习题:开放性问题开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一条件开放型例1 (xx·巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE是平行四边形,然后根据矩形的判定方法,得出EH与BH应满足的条件.【解答】方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(xx·湘潭)如图,直线a、b被直线c所截,若满足,则a、b 平行.2.(xx·内江)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).3.(xx·六盘水)如图,添加一个条件:,使△ADE∽△ACB.(写出一个即可)4.(xx·娄底)先化简,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.5.(xx·邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,请添加一个条件,使得四边形ABCD为矩形,并说明理由.题型之二结论开放型例2 (xx·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(xx·滨州)写出一个运算结果是a6的算式 .2.(xx·赤峰)请你写出一个大于0而小于1的无理数 .3.(xx·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(xx·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(xx·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:0.5 0.6 0.7 1.0 1.2 1.6 1.9质量/kg1 8 15 18 5 1 2数量/条然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号. (1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).题型之三综合开放型例3 (xx·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x,y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】、方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.33482 82CA 苊37332 91D4 釔/29826 7482 璂24021 5DD5 巕28933 7105 焅 34653 875D 蝝 20534 5036 倶32153 7D99 継 030090 758A 疊B。

中考数学中的开放性问题(PPT)3-2

中考数学中的开放性问题(PPT)3-2
专题复习:中考中的开放性问题
开放题的类型主要有:(1)条件开放;(条件不唯一) (2)结论开放;(结论不唯一) (3)条件与结论均开放。 (条件与结论均不唯一)
开放题一般出现在填空题中,但有时也在解答题中出现, 且分值较高。
星的冰质卫星,如土卫五,它的表面可能覆盖着冰水。卡戎的直径约为英里,正好约为冥王星的一半,表面积约为|,8,平方千米,表面布满了冰冻的氮和甲烷。 与冥王星不同的是,卡戎的表面看起来可能是被冻结的不易挥发的水。卡戎表面温度约为-℃,密度为.克/立方厘米cm,显示组成成分中,岩石占了一半多, 冰则比一半少一点。其表面大气仅约为.毫巴左右,是地球表面大气浓度的万分之一,稀薄到几近于无,现时科学家正努力研究冥卫一的表面,以确定该卫星 有没有;炒股入门知识大全 股票技术指标大全 炒股入门基础知识教程 股票入门基础知识教程 学习股票入门知识 ;大气层。“新视野号” 在美国东部时间月日晚:分,拍摄距离约为9万英里,传回的照片上可以看出,“卡戎”北极为深色区域。该区域被研究人员称为“魔多”(Mordor)。奥尔 金表示,深色或代表着该区域表面覆盖着一层“薄薄的物质”。地位争议冥王星-卡戎的质心落在这两个天体之外,因此其中一个并不是真正绕着另一个在公 转,而且两者的质量是可以相互比较的,因此卡戎不适合被当作冥王星的卫星。取而代之的是双矮行星,应随着冥王星一起重分类。在国际天文学联合会的
年会中有一项草案是年行星重定义,建议行星必须绕着太阳运转,并且有足够大的重力使本身成为球体。在这样的草案下,卡戎有资格成为行星,因为草案
明确定义卫星的条件是系统的重心必须在主要的天体内部。但最后的重分类将冥王星归类为矮行星,但却没有正式的定义行星的卫星,使卡戎的身分变得很 不明确。(迄今,卡戎仍未被国际天文学联合会列入矮行星的认可名单中)国际天文学联合会的行星标准规定:在一个绕恒星公转的多天体系统中,如果主天 体是行星,次天体也是球状,又满足一定的条件也可称为行星,也就是主天体和次天体之间的引力中心不在主天体的内部。这样卡戎星就符合这个条件。冥

中考数学复习专题3:开放性问题(含详细参考答案)

中考数学复习专题3:开放性问题(含详细参考答案)

中考数学复习专题三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。

专题:开放型。

分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。

2019-2020年中考数学复习 专题复习 开放性问题

2019-2020年中考数学复习 专题复习 开放性问题

2019-2020年中考数学复习 专题复习 开放性问题开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E,F ,连接BE,CF.(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH=FH 或∠EBH=∠FCH 或∠BEH=∠CFH 等.选择EH=FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH=CH. 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH(SAS).(2)如图,当BH=EH 时,四边形BFCE 是矩形.理由如下:∵BH=CH ,EH=FH,∴四边形BFCE 是平行四边形. 又∵BH=EH,∴EF=BC. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△ACB.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式 .2.(2013·赤峰)请你写出一个大于0而小于1的无理数 .3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).题型之三综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x,y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x(千米),则车费为y(元).该函数图象就是表示y 随x的变化过程.(2)①出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.解:①由图象得:出租车的起步价是8元.设当x>3时,y与x的函数关系式为y=kx+b,由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y=2x+2.②当y=32时,32=2x+2.解得x=15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系,要求:(1)指出变量x 和y 的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A ,B 两地间的距离为15千米,甲从A 地出发步行前往B 地,20分钟后,乙从B 地出发骑车前往A 地,且乙骑车比甲步行每小时多走10千米.乙到达A 地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A 地到B 地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC(或AB ∥DC)3.∠ADE=∠C(答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x-3<7得x<5. 取x=1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B=90°或∠BAC+∠BCA=90°,或OB=OA=OC 或AB 2+BC 2=AC 2等. 以∠B=90°为例说明.理由: ∵AB=CD,AD=BC ,∴四边形ABCD 是平行四边形. 又∵∠B=90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.4π 3.(1)△ABE ≌△CDF ,△ABC ≌△CDA.(2)∵AF =CE ,∴AE =CF. ∵AB ∥CD ,∴∠BAE =∠DCF.又∵∠ABE =∠CDF ,∴△ABE ≌△CDF.4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如:此函数的解析式为y=kx(k >0), ∵此函数经过点(1,1),∴k=1.∴此函数可以为:y=1x;②设此函数的解析式为y=kx+b(k<0),∵此函数经过点(1,1),∴k+b=1,k<0.∴此函数可以为:y=-x+2,y=-2x+3,…;③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×1 50=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min 的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x 2-5x-3=0,解得x 1=3,x 2=-12. 经检验知x=3符合题意,∴x=3.∴甲从A 地到B 地步行所用时间为3小时. 3.(1)设y=k x, ∵A(1,10)在图象上,∴10=1k.即k=10. ∴y=10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km/h 的速度去县城,那么小明从家去县城所需的时间y=10x(h ).2019-2020年中考数学复习 专题复习 数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一 整体思想例1 (2014·内江)已知1a +12b =3,则代数式254436a ab bab a b-+--的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab 之间的关系,即可解决问题. 【解答】∵1a +12b=3, ∴22a bab+=3,即a+2b=6ab. ∴254436a ab b ab a b -+--=225324a b ab a b ab +--++()()=125184ab abab ab --+=714ab ab -=-12. 方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2014·安徽)已知x 2-2x-3=0,则2x 2-4x 的值为( )A.-6B.6C.-2或6D.-2或302.(2014·乐山)若a=2,a-2b=3,则2a 2-4ab 的值为 .3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( 2014·菏泽)已知x2-4x+1=0,求()214xx---6xx+的值.类型之二分类思想例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】如图1,以点B为直角顶点,BD为斜边上的中线,在Rt△ABD中,可得BD∴原直角三角形纸片的斜边EF的长是如图2,以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=∴原直角三角形纸片的斜边EF的长是故填方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(2014·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()cm或或cm2.(2014·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3,-3)是一平行四边形的顶点,则D点的坐标为 .4.(2014·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点Pcm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).6.(2013·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 .7.(2014·襄阳)在□ABCD中,BC边上的高为4,AB=5,,则□ABCD的周长等于 .类型之三转化思想例3 (2014·滨州)如图,点C在⊙O的直径AB的延长线上,点D在⊙O上,AD=CD,∠ADC=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D点在圆上,连接OD,证明OD与CD垂直即可;(2)连接OD,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差.【解答】(1)证明:连接OD.∵AD=CD,∠ADC=120°,∴∠A=∠C=30°.∵OA=OD,∴∠ODA=∠A=30°,∴∠ODC=120°-30°=90°, ∴OD ⊥CD.又∵点D 在⊙O 上,∴CD 是⊙O 的切线. (2)∵∠ODC=90°,OD=2,∠C=30°,∴OC=4,∴S △COD =12OD ·CD=12×2×, S 扇形OCB =2602360π⨯⨯=23π,∴S 阴影=S △OCD -S 扇形OCB 23π. 方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2014·泰安)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A.(2π-1)cm 2 B.(2π+1)cm 2 C.1 cm 2 D. 2π cm 22.(2013·潍坊)对于实数x,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[410x +]=5,则x 的取值可以是( ) A.40 B.45 C.51 D.563.(2014·菏泽调考)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成a bc d,定义a b c d =ad-bc ,上述记号就叫做二阶行列式,若11x x +- 11xx -+=8,则x= . 4.(2014·白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(2014·凉山)如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底 4 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.6.(2014·枣庄)图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B 的最短距离为 cm.类型之四数形结合思想例4 (2014·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= 25t2;③直线NH的解析式为y=-52t+27;④若△ABE与△QBP相似,则t=294秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】①根据图2可得,当点P到达点E时点Q到达点C,BC=BE,故①小题正确;②当0<t≤5时,设y=at2,将t=5,y=10代入求得a=25,故②小题正确;③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y=-52t+552,故③小题错误;④∵∠A=90°,而点P在运动过程中,∠BPQ≠90°,∠PBQ≠90°,∴△ABE与△QBP相似,Q点在C点处,P点运动到CD边上,∠PQB=90°.此时分△ABE∽△QBP和△ABE∽△QPB两种情况,当△ABE∽△QBP时,则ABQB=AEQP可知QP=154,可得t=294,符合题意;当△ABE∽△QPB时,ABQP=AEQB,可知QP=203>4,不符合题意,应舍去.故④小题正确.因此答案选B.方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(2014·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(2014·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a ,b(a>b),则a-b 等于( )A.7B.6C.5D.45.(2014·枣庄)如图,在边长为2a 的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a 2+4B.2a 2+4aC.3a 2-4a-4D.4a 2-a-2类型之五 方程、函数思想例5 (2014·泰安调考)将半径为4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r ,圆柱的侧面积为S ,建立S 与r 之间的函数关系式,利用函数的性质确定S 取最大值时r 的值.【解答】∵将半径为4 cm 的半圆围成一个圆锥,∴圆锥的母线长为4,底面圆的半径为2,高为设圆柱底面圆的半径为r,高为h ,侧面积为S ,根据题意,得2r =h=.∴S=2πr (-)(r-1)2.∴当r=1时, S取最大值为.方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2014·安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4D.52.(2014·武汉)如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 .3.(2014·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(2014·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .参考答案类型之一整体思想1.B2.123.64.原式=()()()()21464x x x xx x---+-=224244x xx x-+-.∵x2-4x+1=0,∴x2-4x=-1.∴原式=224244x xx x-+-=1241-+-=-23.类型之二分类思想1.C2.53.(5,9)或(11,-9)或(-5,3)4.(3,4)或(2,4)或(8,4)5.t=2或3≤t≤7或t=86.(0,12)或(0,-12)提示:当点C在y轴的上方时,如图,作BD⊥AC于D,与y轴交于点E.∵∠BCA=45°,∴∠CBD=∠BCA=45°,∴BD=CD.∵∠CDE=∠ADB=90°,∠CED=∠BEO,∴∠ECD=∠ABD,∴△CED≌△BAD,∴EC=AB=10.设OE=x,∵∠COA=∠BOE=90°,∴△BEO∽△CAO,∴104x+=6x,x=2或x=-12(舍去),∴OC=OE+CE=2+10=12,∴点C(0,12).当点C在y轴的下方时,同理可求得点C(0,-12).故答案为(0,12)或(0,-12).7.12或20提示:如图1所示.∵在□ABCD中,BC边上的高为4,AB=5,,∴,AB=CD=5,,∴AD=BC=5,∴□ABCD的周长等于20.如图2所示.∵在□ABCD中,BC边上的高为4,AB=5,,∴EC=AC2-AE2=2,AB=CD=5,BE=AB2-AE2=3, ∴BC=3-2=1,∴□ABCD 的周长等于1+1+5+5=12. 则□ABCD 的周长等于12或20. 故答案为:12或20.类型之三 转化思想1.A2.C3.24.125.206.( 提示:如图所示.△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,cm ),∴BE=12,在Rt △ACE 中,cm ),∴从顶点A 爬行到顶点B 的最短距离为(故答案为:(类型之四 数形结合思想1.A2.B3.B4.A5.C类型之五 方程、函数思想1.C提示:设BN=x,则依据折叠原理可得DN=AN=9-x.又D 为BC 的中点,∴BD=3.在Rt △NBD 中,利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2,解得x=4,即BN=4.故选择C.2.4提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=3x ,则BD=x ,在Rt △OCE 中,∠COE=60°,则OE=32x ,CE=2x ,则点C 坐标为(32x ,2x),在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=12x ,DF=2x ,则点D 的坐标为(5-12x ,将点C 的坐标代入反比例函数解析式可得x 2,将点D 的坐标代入反比例函数解析式可得k=2x-4x 2,则4x 2=2x-4x 2,解得x 1=1,x 2=0(舍去),故k=4×12=4. 3.54提示:由根与系数的关系得到:x 1+x 2=-2m ,x 1x 2=m 2+3m-2, 原式化简=3m 2-3m+2=3(m-12)2+54. ∵方程有实数根,∴Δ≥0,m ≤23. 当m=12时,3m 2-3m+2的最小值为54.提示:延长MB 至G 使GB=DN ,连接AG.∴△ADN ≌△ABG.∵CN+CM+MN=2,CN+CM+DN+BM=2, ∴MN=MG.∴△AMN ≌△AMG.要使△AMN的面积的最小,即△AGM的面积最小.∵AB=1,所以MG最小,即MN最小.在Rt△CMN中,周长一定,当△CMN为等腰直角三角形时,斜边MN最小.设CM=x,则,∴∴∴△AMN。

中考数学复习开放性问题3[人教版]

中考数学复习开放性问题3[人教版]

专题复习:中考中的开放性问题
开放题的类型主要有:(1)条件开放;(条件不唯一) (2)结论开放;(结论不唯一) (3)条件与结论均开放。 (条件与结论均不唯一)
开放题一般出现在填空题中,但有时也在解答题中出现, 且分值较高。
条件开放:
例1 如图,已知∠1= ∠2,要 使 △ABE≌ △ACE,还需
C
BD=AC
F
∠ A=∠B
B
学生练习:已知D是△ABC的边AB上的 一点,连结CD。问满足什么条件时, △ACD与△ABC相似?
(1)AD:AC=AC:AB
D
(2)∠ACLeabharlann = ∠BB(3) ∠ADC= ∠ACB
A C
结论开放:
例3 如图,已知⊙ O内切于四边形ABCD,AB=AD,
连结AC,BD,由这些条件你能推出哪些结 论? ∠ABD= ∠ADB, AC⊥BD, BC=CD。
(2001年丽水) 平面上,经过两点A(2,0),B(0,-1)
的含抛字物母线 系有数无)数:条,请写y 出1一x条2 确 1定的抛物线解析。式(不
4 y ax2 bx c(a 0)
像上述这种答案不唯一的问题,我们把它 称为
开放题。
近年来,数学中考中连续出现了这类开放题, 这类开放题知识面广,综合性强,故不可忽视。
(写出三个即可)
A
∠ BCA=∠ACD ∠BAC= ∠ CAD △ABC≌ △ACD …
O
B
D
C
例4 (2002台州)用三种不同方法把平行四边形面积 四等分(在所给的图形中画出你的设计方案,画图工
具不限)
例5 见练习题解答题的第1题;
方法开放 图形开放
学科开放
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考复习——条件开放型问题专题训练(三)班级:___________姓名:___________ 得分:___________一、选择题1.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不.恰.当.的是()A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE2.已知(x+a)(x+b)=x2+mx−6,若a,b都是整数,则m的值不可能是()A. 1B. −1C. −5D. −73.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB//CD的条件的个数有()A. 1B. 2C. 3D. 484.△ABC中,∠ABC=30°,边AB=10,边AC可以取的值是5、7、9、11之一,满足这些条件的互不全等的三角形的个数是A. 4B. 5C. 6D. 75.如图,BD是四边形ABCD的对角线,若∠ABD=∠C=90°,则添加下列条件仍不能判断△ABD∽△DCB的是()A. AD//BCB. AD⊥CDC. BD2=AD·BCD. BD平分∠ADC6.如图,下列能判定AB//CD的条件有().①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;⑤∠B+∠BAD=180°;⑥∠B=∠D.A. 1个B. 2个C. 3个D. 4个7.▱ABCD的对角线AC,BD相交于点O,下列条件中不能判定它是菱形的为()A. AB=ADB. AC⊥BDC. ∠BAD=∠ADCD. CA平分∠BCD8.如图,已知∠B=∠E=90°,BF=EC,要使AC=DF,则应添加的条件是().A. 只能添加∠A=∠DB. 只能添加∠ACB=∠DFEC. 只能添加AB=DED. A或B或C9.如图,在△ABC中,AB=AC,点D,E在BC上,连接AD,AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为()A. BD=CEB. AD=AEC. DA=DED. BE=CD10.已知√20n是整数,则满足条件的最小正整数n为()A. 20B. 2C. 4D. 5二、填空题11.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是(请尽可能多的填写正确答案)12.如图,P为∠AOB内一点,PC⊥OA于C,PD⊥OB于D,要使PC=PD,需要添加一个条件,这个条件是____________.(不添加任何字母和图形)13.如图,∠1=∠2,要利用“AAS”得到△ABD≌△ACD,需要增加的一个条件是_____________.14.△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件_________,若加条件∠B=∠C,则可用_________判定.15.如图,已知AD//BC,要使四边形ABCD成为平行四边形,需要增加的一个条件是:.(只填一个你认为正确的条件即可,不添加任何线段与字母)16.如图所示,已知在△ABC中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是____________.(只需填上一个正确的条件)17.如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是________.18.从−5,−3,−1,0,+2,−4,+6这7个数中任取出3个,按照要求编写出满足下列条件的算式,但每个算式中,每个数只能用一次.(1)使3个数的和最小的算式是________;(2)使3个数的积最大的算式是________.三、解答题19.如图,下面4个条件:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C.请你以其中两个为已知条件,剩下的两个中的一个为结论,组成一个正确的命题.(1)______ (写成⊗⊗→⊗的形式,至少写2个);(2)选取其中一个加以证明.20.如图,在△ABC中,D,E分别是AB,AC的中点,连接DE并延长DE至点F,使EF=DE,连接CF.(1)求证:四边形DBCF是平行四边形;(2)探究:当△ABC满足什么条件时,四边形ADCF是矩形,并说明理由.21.已知二元一次方程:①y=4−x;②2x−y=2;③x−2y=1.请你从这三个方程中选择你喜欢的两个方程组成一个方程组,并求出这个方程组的解.22.如图,在△ABC中,AB=AC,D是BC边上一点,DE⊥AB,DF⊥AC,垂足分别为E,F.请添加一个条件,使DE=DF,并说明理由.解:添加条件是___________________________(写一个即可),理由是:23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B,F,C,E在同一直线上),并写出四个条件: ①AB=DE, ②BF=EC, ③∠B=∠E, ④∠1=∠2.请你从这四个条件中选出三个作为已知条件,另一个作为结论,组成一个真命题,并给予证明.已知条件:.结论:(均填写序号).证明:答案和解析1.B解:AB=AC,AD=AE,A.若BD=CE,则根据“SSS”,△ABD≌△ACE,恰当,故本选项错误;B.若∠ABD=∠ACE,则符合“SSA”,不能判定△ABD≌△ACE,不恰当,故本选项正确;C.若∠BAD=∠CAE,则符合“SAS”,△ABD≌△ACE,恰当,故本选项错误;D.若∠BAC=∠DAE,则∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,符合“SAS”,△ABD≌△ACE,恰当,故本选项错误.2.D解:由题意可知:ab=−6,a+b=m,∴a、b是6的因数,∴a=1,b=−6,a=2,b=−3,a=3,b=−2,a=6,b=−1a=−1,b=6,a=−2,b=3,a=−3,b=2,a=−6,b=1,∴m的值可能是±1,±5,3.C4.C5.D解:∵AD//BC,∴∠ADB=∠DBC,∴当∠ABD=∠C,∠ADB=∠DBC时,△ABD∽△DCB(有两角对应相等的三角形相似),故A不符合题意;∵AD⊥CD,∴∠ADB+∠BDC=90°,∵∠BDC+∠DBC=90°,∴∠ADB=∠DBC,∴当∠ABD=∠C,∠ADB=∠DBC时,△ABD∽△DCB(有两角对应相等的三角形相似),故B不符合题意;当BD2=AD·BC,即BDBC =ADBD时,∠ABD=∠C,△ABD∽△DCB(有两角对应相等的三角形相似),故C不符合题意;当BD平分∠ADC时,∠ADB=∠BDC,∠ABD=∠C,△ABD∽△CBD(有两角对应相等的三角形相似),故D不符合题意;6.C7.C8.D9.C解:A.添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B.添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C.添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意;D.添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意.10.D11.±4x,4x4,−4x2,−1解:∵4x2±4x+1=(2x±1)2,∴加上的单项式可以是±4x.4x4+4x2+1=(2x2+1)12.OC=OD解:添加OC=OD.理由:连接OP,在Rt△OCP和Rt△ODP中,{OC=OD,OP=OP∴RtΔCOP≌RtDOP,∴PC=PD.13.∠ACD=∠ABD解:∵∠1=∠2,∴∠ADB=∠ADC,又∵AD=AD,∴当∠ACD=∠ABD时,△ABD≌△ACD(AAS);或BD=CD时,△ABD≌△ACD(SAS);或∠BAD=∠CAD时,△ABD≌△ACD(ASA).符合题意的只有当∠ACD=∠ABD,△ABD≌△ACD(AAS),14.AB=AC;AAS解:如图,添加AB=AC,∵AD⊥BC,AD=AD,AB=AC,∴△ABD≌△ACD(HL).已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.15.AD=BC解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB//CD或∠A=∠C 或∠B=∠D.16.∠BAD=∠CAD解:BD=CD,理由是:∵AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(SAS),∴BD=CD,17.∠A=∠B(答案不唯一)解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或∠ADC=∠BEC或CE=CD,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,18.(1)(−5)+(−3)+(−4);(2)(−5)×(−4)×6.解:(1)和最小的算式为:(−5)+(−3)+(−4);(2)积最大的算式为:(−5)×(−4)×6.19.解:(1)①②→④①④→②(2)①②→④.证明:∵AE=AD,AB=AC,∠A为公共角,∴ΔACD≌ΔABE,∴∠B=∠C.解:(1)假设由①②为条件,有∠A为公共角,∴ΔADC≌ΔAEB ,可得∠B =∠C ,即结论④正确,若①④为条件,则由ASA 可得ΔADC≌ΔAEB ,得出AB =AC ,结论②正确,故答案为①②→④,①④→②;20. (1)证明:∵D ,E 分别是AB ,AC 的中点,∴DE =12BC ,DE//BC ,又∵EF =DE ,∴DF =DE +EF =BC ,∴四边形DBCF 是平行四边形;(2)解:当AC =BC 时,平行四边形ADCF 是矩形,理由如下:连接AF ,DC ,∵D 是AB 的中点,∴AD =BD ,∵四边形DBCF 是平行四边形,∴CF =BD ,CF//AB ,DF =BC ,∴AD = //CF ,∴四边形ADCF 是平行四边形,∵AC =BC ,DF =BC ,∴AC =DF ,∴四边形ADCF 是矩形.21. 解:选取方程①和②,可得{y =4−x①2x −y =2② 把①代入②得,2x −(4−x)=2解得x =2 把x =2代入①得,y =4−2=2,∴方程组的解为{x =2y =2.22.解:添加的条件是BD=CD.理由如下:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,又∵BD=CD,∴△BED≌△CFD,∴DE=DF.23.情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,{AB=DE ∠B=∠E BC=EF,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵{∠B=∠E ∠1=∠2 AB=DE,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC−FC=EF−FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,{∠B=∠E BC=EF ∠1=∠2,∴△ABC≌△DEF(ASA),∴AB=DE.。

相关文档
最新文档