动力气象学 PPT课件

合集下载

第八章大气波动的稳定性问题 动力气象学课件(共66张PPT)

第八章大气波动的稳定性问题 动力气象学课件(共66张PPT)

dd2y2 (uddc2yu2 k2)0
(y1) (y2) 0通道Rossb波y 的情况
这是齐次方程,会有零解; 求取非零解的条件——本征值问题。 假设系数为常系数,那么可求本征值; 但是现在为变系数的,这样的本征值问题在 数学(shùxué)上是不可解的
第三十五页,共66页。
而我们现在不要求解,只要(zhǐyào)知道 Ci是否等于0的条件
T(z0)z
第十六页,共66页。
ddw tT g(d )z
N2
T g(d
)gln
z
dwN2z
dt
N2 0,力作负功,扰 ,动 层减 结弱 是稳定的 N2 0,力不作功,层 性结 的是 ;中 N2 0,力作正功,扰 能动 量得 而到 增强,层 定
第十七页,共66页。
§4 惯性(guànxìng)稳定度 科氏力作用(zuòyòng)下,惯性振荡的稳定性问题
雷利:1920’s,层流不稳定(wěndìng)问题; 郭晓岚:1949,提出正压不稳定(wěndìng)理论
雷利解:令:
cC r iC i, r i i
第三十六页,共66页。
那md e么d 2 ) :2 (r nu y à1 ic d d 2 2 u iy [ C 1 r( id d 2 C u i2) yu ( r u i C r i) c 2 ik 2 C i] ( rr i ii)i 0
Ci 0
波动不开展(kāizhǎn),波动稳定
Ci 0
第十一页,共66页。
重力内波、惯性波:受力机制很清楚;一 般直接(zhíjiē)从振荡看是否稳定,由此,
可以得到:静力稳定度、惯性稳定度。
而Rossby波的产生机制(jīzhì)是β-效应, 从涡旋场〔涡度方程(fāngchéng)〕讨论 Rossby波,而没有具体讨论其振荡受力 情况; 一般从Ci是否等于0判别其稳定性。

动力气象学第1章.ppt

动力气象学第1章.ppt
2006 24、贺海晏,简茂秋,乔云亭,动力气象学,气
象出版社,2010 25、刘式适,刘式达,大气动力学(第二版),
北京大学出版社,2011
§1.1 基本假设 连续流体介质假设——质点力学的应用。 大气运动的速度、气压、密度和温度等物理量以及这 些场变量都是时间和空间的连续函数; 理想气体(无凝结); 动力过程和热力过程相互作用; 大气为可压缩连续流体
大气的“低频变化”;大气环流的遥相关。
球面大气中罗斯贝波的经向频散并建立了大圆定理 (霍斯金斯等,1981年);罗斯贝波铅直传播(恰尼等, 1961年);提出了E-P通量概念;研究了大气对外源 强迫的响应,分析了低频变化的各种可能的起因等 等,从而促进行星波理论的新发展,为月、季度和 短期气候预报提供了理论基础。
15、Gill,大气-海洋动力学,海洋出版社,1988 16、叶笃正,李崇银,王必魁,动力气象学,科 学出版社,1988。 17、吕美仲,彭永清,动力气象学教程,气象出 版社,1990 18、巢纪平,厄尔尼诺和南方涛动动力学,气象 出版社,1993 19、余志豪,杨大升等,地球物理流体动力学, 气象出版社,1996
§1.2 地球大气的运动学和热力学特性
大气是重力场中的旋转流体。
大气运动一定是准水平的;静力平衡是大气运动的重 要性质之一;科里奥利力的作用。
大尺度运动中科里奥利力作用很重要。中纬度大尺度 运动中,科里奥利力与水平气压梯度力基本上相平 衡——地转平衡。
地球旋转角速度随纬度的变化,与每日天气图上的西 风带中的波动有关。
§1.4 动力气象学的发展简史与发展动向
18世纪,力学、物理学、化学和数学等基础科学的发 展,观测仪器地陆续发明,气象科学由纯定性的描述 进入了可定量分析的阶段,这是气象科学发展过程中 的一次飞跃。

动力气象-总复习PPT160页

动力气象-总复习PPT160页
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
动力气象-总复习
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是

2019年动力气象学第四章.ppt

2019年动力气象学第四章.ppt

0

位涡守恒
4.大尺度大气运动 且是均质大气--热力作用?

k
Const
d dt
(
1


a


ln

)

0

d dt
(
a
z
ln

)

0
5.位涡守恒的应用 气柱爬越高原:
d ln 2 0
dt
d ln 1 0
dt
ln ln 1 ln 2 d ( a ) 0

df
v
(
w

w )
dy
x y
(p x

y

p y

x
)
F
Z
v u
x y

① ( f ) V
f V
散度项
=v u V 105 s 1 f 104 s 1
x y L
2)物质环线是闭合的,“环流” 表示流体随闭合环线运动的趋势, 描述了涡旋的强度。 是积分量。
3.“涡度”的定义


V
速度的旋度
1)刚体的运动形式有:平动,转动; 流体的运动形式有:平动,转动和形变, 涡度表示的是流体涡旋运动的强度。
2)“涡度”是欧拉观点下的,是微
分量。
3)可证:



2
(涡度=2倍角速度)。
例:地球在垂直向的牵连涡度为:
f 2sin
(二)大尺度大气涡旋运动 1.大涡尺度度大主气要运是动在是垂准直水方平向运上动,,即所:以

k
2.绝对涡度 =相对涡度+牵连涡度:

动力气象学课件3第三章_1

动力气象学课件3第三章_1

dz
dv dt
dy)
1
p z
dz
1
p y
dy
p
RTp
p
B RTp
Ap
C RTp
Bp
D RTp
Cp
A D
R
Tp
p
dC dt
R(TBC
TDA ) ln
p0 p
(图3.12)
❖ Hadley环流正是由赤道和极地之间的 温差所造成的斜压不稳定所引起。
2、地球自转
❖ 大气是在自转的地球上运动着,地球自转产生的地 转偏转力迫使运动空气的方向偏离气压梯度力方向。
第三章 大气环流
§3.2 控制大气环流的基本因子
❖ 太阳辐射 ❖ 地球自转 ❖ 地面摩擦(角动量) ❖ 地表不均匀(海陆、大地形)
1、太阳辐射
热力环流的物理解释: Bénard实验
T1
图3.10 热力对流的Benard实验
T2
δT=T2-T1
❖ 当δT较小时,热量从下层隔板 扩散到上层流体--热传导
p1
RT
p1 y
p1
g[H1(z) H0 (z)] T
RT 2
y
(3.2) (3.3)
❖ 温度梯度的南北差异导致了气压梯度力,气 压梯度力最终驱动了大气,导致了风。
环流的形成
dw dt
1
p z
g
dv
1
p
F
(3.4)
dt y
C (vdy wdz) V L (3.6)
dC dt
(
dw dt
❖ 大气是低粘性、可压缩流体,温度和 气压的改变可能引起膨胀或收缩。结 果,低纬大气因净得热量不断增温并 膨胀上升,极地大气因净失热量不断 冷却并收缩下沉。

动力气象学课件第4章自由大气中的平衡运动

动力气象学课件第4章自由大气中的平衡运动
1 正压大气:空气密度的空间分布只是气压的函数 (;P) 2 斜压大气:密度的空间分布与气压、温度有关(即不仅仅
由气压p决定)。








二、地转风的垂直变化
1 地转风的垂直切变
1
p坐标系下:
Vg f kp
23
1
对P求偏导数:Vg/pf kp p ,并结合静力方程
RT
p P
V g/pP RfkpT
这时,流线与轨线重合。
例子:以常速度 C向东移动的圆形
系统,移动过程中流线形状保持不变。
8
以速度 C移动的观测者所测得的风向
V=2C
角的个别变化率应为零,即
t tC• h0
可求得风向角的局地变化率为
t C• h CsKco s V=C/2
KT Ks(1VCh cos)
Rs RT(1VCh cos)
0
,即系统中心是低压,如右图。
梯度风:
f f 2 4KT P
n
VG
2KT
13
b)反气旋式流场(轨迹):KT 0,n指向圆外
因为 fVG 0和 KTVG2 0,故:
P n
0

P nLeabharlann 0最终取决于前两项的相对大小。
i)

KTVG 2f VG0,则
P n
0

系统中心是高压,如右图(大中尺度的情形)。
梯度风大小:
VG
f
f2 4KT
P n
2KT
反常反气旋 |科氏力|<|离心力|
15
2)梯度风与地转风相对大小
地转风:fVg
1

动力气象学概要课件

动力气象学概要课件

数值模式是大规模数值计算中用来描述和预测大气系统的软解方案、数据输入和输出等模
块。
数值模式广泛应用于天气预报、气候模拟和环境评估等领域。
03
数值模式的误差和不确定性
数值模式的误差主要来源于模式分辨率、物理过 程参数化和初始条件等方面。
不确定性主要表现在模式输入数据的误差、模式 本身的不完善以及计算误差等方面。
为了减小误差和不确定性,需要不断提高数值模 式的精度和可信度。
数值模式的未来发展和挑战
随着计算机技术的不断发展,数值模式的分辨率和计算能力将得到进一步 提高。
未来数值模式将更加注重物理过程参数化的改进和精细化,以更准确地模 拟和预测大气系统的行为。
同时,随着大数据和人工智能技术的发展,如何利用这些技术提高数值模 式的精度和效率也是未来发展的重要方向。
航空气象服务
提供航空气象预报、机场天气预报、航空气象观测和报 告等服务,保障航空安全。
航海气象服务
提供航海气象预报、海洋气象观测和报告等服务,保障 航海安全。
THANK YOU
感谢各位观看
03
大气的运动和变化
大气的热力和动力学过程
总结词
描述大气中热力和动力学过程对大气的运动和变化的影响。
详细描述
大气的热力和动力学过程是大气运动和变化的主要驱动力。这些过程包括温度 差异引起的对流、风速差异引起的湍流等。这些过程通过能量传递和物质迁移 等方式,影响大气的运动和变化。
大气中的波动和涡旋
动力气象学概要课件
目录
• 动力气象学简介 • 大气的基本结构和特性 • 大气的运动和变化 • 动力气象学的数值模拟和预测 • 动力气象学的应用和实践
01
动力气象学简介

《动力气象》课件

《动力气象》课件

动力气象的应用案例
航空航天
动力气象在航空航天领域的天 气预报和飞行安全中发挥着重 要作用。
能源
动力气象用于可再生能源的规 划、风能、太阳能等的资源评 估和利用。
气候研究
动力气象帮助科学家了解和预 测气候变化,为应对气候变化 提供依据。
动力气象的基本原理
1 气象要素与动力学关系
了解气象要素与动力过程的基本概念,掌握气象要素对动力过程的影响。
常用的动力气象指标
1 风场和涡度指标
通过分析风场和涡度数 据,可以了解大气的运 动和湍流现象。
2 温度和湿度指标
温度和湿度是描述大气 状态的重要指标,对动 力气象有着重要影响。
3 大气层结指标
大气层结的变化对于气 象现象的发生和发展具 有重要意义。
动力气象预报技术
1
数值模式和动力模拟
运用数值模式和动力模拟进行天气的预测和模拟,提高预报准确性。
2
数据分析和观测技术
通过数据分析和观测技术获取气象数据,为预报提供可靠的基础。
3
预报系统的评估和改进
对预报系统进行评估和改进,不断提高预报技术和准确性。
《动力气象》PPT课件
动力气象是研究大气运动和天气现象相互关系的跨学科领域。本课件将深入 探讨动力气象的概念、原理、指标、预报技术与应用案例,帮助您全面了解 这一重要领域。
主题背景介绍
概念与重要性
动力气象研究大气运动和天气现象之间的关 系,对于天气预报、气候变化等具有重要意 义。
应用领域
动力气象在航空航天、能源、气候研究等领 域有广泛应用,对社会经济发展具有重要影 响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( x, t ) A cosk ( x ct)
波动的复数表示形式:
根据欧拉公式: ei cos i sin
( x, t ) Re[ Aei ( kxt ) ]
实际应用时常略去Re:
( x, t ) Aei ( kxt )
得到如下符号关系式:
2 n 2 i , 2 (i ) ,......, n (i ) n t t t 2 n 2 ik , 2 (ik ) ,......, n (ik ) n x x x
2 n i ( kxt ) 2 iAe i, 2 (i ) ,..... n (i ) n t t t 2 n 2 ik , 2 (ik ) ,..... n (ik ) n x x x
( x, y, t ) Aei (kxlyt )
kx ly t
T 2

2 k L

2 L k
2 2 Lx , Ly k l
L c k T

Lx Ly cx , c y k T l T

c cg ck k k
二、傅立叶原理,简谐波的复数表示
实际大气扰动不是单纯的简谐波,可以看成是各种不同频 率、不同振幅的简谐波的叠加
( x, t ) An coskn ( x cnt ) n
n 1

实际扰动虽然是许多谐波组成,但往往只有几个谐波分量是主要的,其 频率、振幅虽然不同,但动力学性质往往一样。因此如果想得到定性的 结果,分析一个典型的谐波分量就足够了
y A cos[k ( x ct) ]
2 / T L c k 2 / L T

• 按振动方向与波动传播方向的关系,可分为横波与纵波两 大类。
– 若质点振动方向与波的传播方向一致,此种波动称为纵波 – 若质点振动方向与波的传播方向垂直,此种波动称为横波;
波长、相速、周期三者关系:
i F Ae 引入复振幅:
( x, t ) Fei ( kxt )
三、群速度
• 实际大气中的扰动可以看成许多不同振幅、不同频率的简 谐波叠加而成,这种合成波称为波群或波包 • 谐波分量之间位相会有差异,因而出现振幅相抵消或叠加 的现象
•廓线形状会发 生改变 •波群的传播速 度与单个谐波 的相速不同
动力气象学
主 要 内 容
• 波动的基本概念
• 小扰动法
• 大气中的基本波动

波动是大气运动的一种重要形式
经典流体力学关于波动的讨论结
果能否直接用来讨论大气波动?为什
么?大气运动的哪种特点造成的?
大气波动的基本类型: 声波 惯性波 重力波 Rossby波 讨论波动的方法:
小扰动法 线性方程组 标准波型解 频散关系
θ const . 的点构成的面称为等位相面。
vi)位相相同的各点组成的面称为等位相面,等位相面的移速称为相速c
x kx t 0 c lim x 0 t k
在相对原坐标系以速度C运动的运动坐标系中,观察到波的廓线是 不随时间变化的,所以相速也是波廓线移动的速度
群速:波群的传播速度
• 考虑两列振幅相同,频率和波数略有差异的简谐波 振幅F,频率分别为 , ,波数 k k , k k
f ( x, t ) F [ei[( k k ) x ( )t ] ei[( k k ) x ( )t ] ] f ( x, t ) 2 F cos(k x t )ei ( kxt )
c
L c ,L T
例、空气 c1=340m· s-1 水 c2=1450m· s-1 求频率为200Hz的声波在空气和水中的波长。 c 解:由 L

空气中 水中
340 L1 = =1.7m 200
c1
1450 L2 = =7.25m 200
c2
结论:同一频率的声波,在水中的波长比在空气中 的波长要长。
弹性振动(大气的可压缩性) 惯性振荡(旋转性) 浮力振荡(层结性) β效应
相速、群速等
§1 波动的基本概念
一、波动的数学模型、波参数
• 简谐振动方程:
d2y dt 2 y c1 sint c2 cost A cos(t ) 2 y 0 ( 2 K / M )
c gx , c gy k l
y
y
K
x
Ly
t
kx ly t
cx: 在x方向观察到的等位相面移动速度 cy: 在y方向观察到的等位相面移动速度
四、频散关系式
( x, t ) Aei ( kxt )
对t和x求各阶微分:
• 简谐振动稳定的传播所形成的波动称为简谐波
i)
y A cos(kx t )
振幅:物体离开平衡位置的最大位移
ii) A cos[kx (t T ) ] A cos(kx t ) 上式成立的条件:
T 2
T
2

周期:空间固定位置上的点完成一次全振动所需时间
波包迹 如果把波包视为无线电中的低频调幅波,那么合成波列就是高频载波
L 2 ,c k k
Lm
cg
2π δk
k k
(ck ) k c ck k
一维平面波
推广
二维平面波
( x, t ) Aei ( kxt )
kx t
T 2
iii)波长L:相邻两个同位相点之间的距离
A cos[k ( x L) t ] A cos(kx t ) 2 L k
iv)波数k:2π距离内包含了多少个波长
z
L
x
o
k
2 L
v) 位相θ: 波在x轴上各点各时刻的位置,α为初位相;
y A cos(kx t )
相关文档
最新文档