大跨径桥梁的施工技术

合集下载

大跨径连续桥梁施工技术探究

大跨径连续桥梁施工技术探究

大跨径连续桥梁施工技术探究一、大跨径连续桥梁的技术特点大跨径连续桥梁一般指跨度在100米以上的桥梁,其技术特点主要表现在结构形式、施工难度和安全要求等方面。

1. 结构形式:大跨径连续桥梁的结构形式一般采用钢筋混凝土连续梁或钢桁梁,较短跨度的桥梁多为简支梁或连续刚构梁。

这些结构形式在工程实践中被证明具有较好的承载能力和变形性能,能够满足大跨度桥梁对于承载和变形的要求。

2. 施工难度:由于大跨径连续桥梁跨度较大、结构复杂,所以其施工难度较大。

首先是梁体施工的难度,由于梁体体积大、重量重,需要采用大型起重设备进行梁体吊装,同时对于梁体的预应力张拉、模板支撑等工序也需要高度的施工技术水平。

其次是梁体的整体拼装难度,梁体的拼装需要保证拼缝的准确度和施工质量,在条件限制下提高施工效率。

再次是梁体的预应力施工,对于梁体的预应力张拉、锚固等工序需要保证预应力的准确性和安全性,确保梁体的受力性能。

3. 安全要求:大跨径连续桥梁作为重要的交通设施,其安全性要求极高。

在施工过程中需要保证梁体的承载能力、变形性能和耐久性能,同时需要保证施工的安全性和施工人员的安全。

大跨径连续桥梁的施工工艺主要包括梁体制作、梁体吊装、梁体拼装、预应力施工等工序。

1. 梁体制作:梁体制作是大跨径连续桥梁施工的首要工序,包括混凝土梁体的浇筑、预应力筋的设置、模板拆除等工序。

在梁体制作过程中需要保证梁体的质量和几何尺寸,严格控制混凝土的配合比和浇筑质量。

同时需要保证梁体的预应力筋张拉和锚固工序的准确性,提高梁体的受力性能。

2. 梁体吊装:梁体吊装是大跨径连续桥梁施工的关键环节,需要采用大型起重设备进行梁体的吊装作业。

在梁体吊装过程中需要保证梁体的稳定性和安全性,严格控制吊装工艺,确保梁体的准确安装到设计位置。

3. 梁体拼装:梁体的拼装是大跨径连续桥梁施工的重要工序,需要保证梁体的拼缝的准确度和施工质量,并且需要在条件限制下提高施工效率。

在梁体拼装过程中需要保证梁体的几何尺寸和受力性能。

大跨径连续桥梁施工技术要点及质量控制措施分析

大跨径连续桥梁施工技术要点及质量控制措施分析

大跨径连续桥梁施工技术要点及质量控制措施分析摘要:桥梁作为重要的交通运输项目,其在当前的交通环境下所承载的地位比较突出,并在规模不断扩大的前提下对具体的施工工艺提出了更严格的要求。

为了确保桥梁的施工品质,进一步延长其使用寿命,施工单位需要将大跨径连续桥梁的作业模式有效贯彻下去,根据其所呈现的施工特点对具体的技术应用举措加以规范。

关键词:桥梁施工;大跨径连续桥梁;施工技术1大跨径连续桥梁施工技术概述1.1主要方法(1)悬臂拼接施工操作。

主要是指在桥墩结构的两侧各设置一段吊架,并结合工程项目平衡处理的原则,保证混凝土预制件拼接的及时性,在完成相应施工作业环节后进行预应力处理,有效避免安全隐患现象的留存和蔓延。

(2)悬臂浇筑处理机制为了保证工程单元的科学性和合理性,要事先在桥墩结构的两侧设置工作平台,伴随施工作业的开展逐步提升浇筑混凝土梁体的预应力参数,以维持整体应力体系的平衡性,提高大跨径连续桥梁施工技术水平。

浇筑作业结束后,按照拆除模板、安装锚具等工序完善具体流程,从而提升加固效果。

无论是何种处理方式,施工作业人员都要充分调研现场施工的环境要素,并结合现场的实际需求开展对应的作业,确保桥梁施工项目质量效果和成本效益管理工作最优化。

2桥梁工程大跨径连续桥梁施工技术的关键技术及应用2.1工程概况某桥梁工程项目右线总长度为1.84km,属于大跨径连续桥梁。

在实际施工过程中,为保障桥梁整体的安全性和稳定性,桥梁主体和分段施工中采用了C50标号混凝土,对于强度要求较低的桥梁防护墙施工则采用了C40标号混凝土,并且在混凝土搅拌过程中加入了适当的微膨胀剂,桥梁工程全流程严格遵循国家标准与行业规定进行。

2.2基础施工2.2.1大型沉井首先,明确桥梁整体结构形式、尺寸大小、位置参数以及各结构的相对位置等诸多方面内容,进而确保大型沉井各项参数的科学性和合理性。

其次,大型沉井作业主要包括有隔墙、底板梁、凹槽等部分,由于项目中大跨径连续桥梁的整体规模相对较大,所以其所采用的大型沉井的深度也会较深[3]。

桥梁施工中大跨径连续桥梁的施工技术

桥梁施工中大跨径连续桥梁的施工技术

桥梁施工中大跨径连续桥梁的施工技术大跨径连续桥梁的施工技术是桥梁工程中的重要组成部分,它涉及到桥梁的设计、施工、监测等一系列工作。

大跨径连续桥梁一般指梁跨长度大于等于50米,是现代桥梁工程的重要技术之一。

在大跨径连续桥梁的施工中,施工技术的选用将直接影响到桥梁的质量、成本和工期。

本文将重点介绍大跨径连续桥梁的施工技术及其特点。

一、大跨径连续桥梁的设计特点1.1 长度大:大跨径连续桥梁的主梁梁跨长度通常大于50米,甚至达到数百米。

1.2 结构复杂:大跨径连续桥梁的梁体一般采用预应力混凝土斜拉桥、悬索桥等结构形式,设计和施工难度较大。

1.3 现场浇筑:大跨径连续桥梁的主梁多采用现场浇筑工艺,需要大型模板、输送设备等,具有一定的施工难度。

2.1 施工前的准备工作在进行大跨径连续桥梁的施工前,需要进行充分的准备工作,包括现场勘测、施工方案设计、施工组织设计等。

特别是要进行桥墩、墩台等桥梁部件的基础加固和防水处理,以确保施工安全和施工质量。

2.2 施工设备的选择和使用在大跨径连续桥梁的施工中,需要使用大型起重机、混凝土搅拌站、模板支架等大型设备,以保证施工的顺利进行。

还需要使用钢绞线、张拉设备等专用设备,以确保桥梁的施工质量。

2.3 现场浇筑工艺2.4 预应力施工技术大跨径连续桥梁的主梁多采用预应力混凝土斜拉桥、悬索桥等结构形式,需要进行预应力加固工艺。

在进行预应力施工时,需要注意张拉力、锚固长度、预应力损失等因素,保证桥梁结构的安全性和稳定性。

2.5 安全监测系统在大跨径连续桥梁的施工中,需要安装安全监测系统,对桥梁结构的变形、应力等参数进行实时监测。

一旦发现异常情况,需要及时进行调整和处理,以确保桥梁施工的安全性和稳定性。

2.6 现代化施工管理技术在大跨径连续桥梁的施工中,需要采用现代化施工管理技术,包括信息化管理、精细化施工、智能化监测等。

通过这些技术手段,可以提高施工效率和施工质量,降低施工成本和工期。

道路桥梁施工中的大跨径连续施工技术应用方法

道路桥梁施工中的大跨径连续施工技术应用方法

道路桥梁施工中的大跨径连续施工技术应用方法道路桥梁是连接城市和乡村的重要交通设施,而在道路桥梁的建设过程中,大跨径连续施工技术的应用方法对于提高工程质量、缩短工期、降低成本具有重要意义。

本文将针对大跨径连续施工技术的应用方法进行分析和探讨。

一、大跨径连续施工技术的概念大跨径连续施工技术是指在桥梁建设过程中,通过一系列的连续施工工艺和施工措施,实现大跨度桥梁结构的连续施工,从而达到加快施工进度、减少对交通的影响、提高工程质量的目的。

二、大跨径连续施工技术的应用方法1. 桁架搭设桁架搭设是大跨径连续施工技术的关键环节之一。

在桥梁建设过程中,首先需要搭建一座临时性桁架,用于支撑和连接建筑材料和工程机械,以便进行后续的工程施工。

桁架搭设的关键要点包括:选址确定、桁架结构设计、材料选用、工程机械配备等。

通过科学合理的桁架搭设,可以实现大跨度桥梁结构的安全施工和连续施工。

2. 预应力技术预应力技术是大跨径桥梁施工中的重要施工技术之一。

预应力技术是指在桥梁结构中预先施加一定的张力,以改善结构的受力性能和变形性能。

预应力技术主要包括:预应力筋的选材、预应力筋的布置、预应力筋的张拉、预应力筋的锚固等。

预应力技术的应用可以有效地提高桥梁的承载能力和抗震性能,保证大跨径桥梁结构的安全和可靠。

3. 混凝土浇筑混凝土浇筑是大跨径桥梁施工中的重要环节之一。

在桥梁结构施工过程中,需要对桥梁结构的各个部位进行混凝土浇筑,以形成整体结构。

混凝土浇筑的关键要点包括:施工方案设计、混凝土材料配比、浇筑工艺控制等。

通过科学合理的混凝土浇筑,可以保证大跨度桥梁结构的质量和耐久性。

4. 跨步推进技术跨步推进技术是大跨径连续桥梁施工中的创新技术之一。

通过跨步推进技术,可以实现大跨度桥梁结构的连续施工,从而缩短工程周期,降低施工成本。

跨步推进技术的关键要点包括:推进方案设计、推进机械选择、推进工艺控制等。

通过科学合理的跨步推进技术,可以实现大跨度桥梁结构的安全、高效、经济的施工。

大跨度桥梁施工中的悬臂施工技术

大跨度桥梁施工中的悬臂施工技术

大跨度桥梁施工中的悬臂施工技术大跨度桥梁是现代桥梁工程中常见的一种类型,它的跨度通常较长,要求对施工技术有着较高的要求。

在大跨度桥梁的施工中,悬臂施工技术是一种常用的方法,它可以有效地提高施工效率,降低施工成本,保证桥梁工程的质量和安全。

本文将详细介绍大跨度桥梁施工中的悬臂施工技术,以及其在实际工程中的应用。

一、悬臂施工技术的原理悬臂施工技术是一种在桥梁梁体上以一定的悬挑长度施工的方法。

在桥梁梁体上架设起重设备和施工平台,通过这些设备和平台,可以对悬挑部分进行混凝土浇筑、预应力张拉、构件安装等工作,从而实现大跨度桥梁的施工。

悬臂施工技术在施工过程中采用连续、分段式工序,可以有效地减少对现场施工的影响,提高施工效率。

1. 灵活性强:悬臂施工技术可以根据桥梁梁体的实际情况进行调整,可以在桥梁不同的位置使用不同的悬挑长度,灵活性强。

2. 施工效率高:悬臂施工技术可以将施工的重要工序集中在悬挑工作面上进行,不受季节和气候等影响,可实现全天候作业,从而提高施工效率。

3. 施工安全性高:悬臂施工技术可以避免对桥梁梁体的其他部分造成影响,减少对桥梁整体结构安全的影响,提高施工安全性。

4. 适用范围广:悬臂施工技术适用于各种大跨度桥梁类型的施工,可以根据实际需要进行调整,适用范围广。

三、悬臂施工技术在实际工程中的应用1. 预应力斜拉桥:预应力斜拉桥是大跨度桥梁中常见的一种类型,悬臂施工技术可以在斜拉桥主跨、辅跨和锚段等位置进行应用,通过悬挑施工实现斜拉索的张拉和桥面铺装等工序,提高斜拉桥的施工效率。

随着大跨度桥梁施工技术的不断发展,悬臂施工技术也在不断完善和创新。

未来,随着施工设备和施工工艺的进一步发展,悬臂施工技术将更加高效和智能化,为大跨度桥梁的施工提供更加便利和安全保障。

大跨径连续桥梁施工技术在桥梁施工中的应用策略分析

大跨径连续桥梁施工技术在桥梁施工中的应用策略分析

大跨径连续桥梁施工技术在桥梁施工中的应用策略分析摘要:随着社会经济的高速发展以及城市化建设的持续深入,社会已经进入到了全新的发展进程中,这也为各大社会行业的发展起到了良好的促进作用,而站在交通领域发展的角度上来看,桥梁工程已经成为了其中至关重要的构成部分,为了在根本上提升桥梁的整体施工效率与施工质量,就应当在内部合理的引入大跨径连续桥梁施工技术。

因此,文章首先对大跨径连续桥梁的基本概述加以明确;在此基础上,提出大跨径连续桥梁施工技术在桥梁施工中的具体应用措施。

关键词:大跨径连续桥梁;施工技术;桥梁施工;应用措施引言:在当前交通行业高速发展的背景下,公路系统的建设已经进入到了全新阶段中,这也进一步突出了大跨径桥梁施工技术的重要性,这主要是由于我国山地相对较多,而大跨径桥梁在结构上具备着多样化特征,完全可以应用在不同地形当中。

所以,在桥梁工程的开展进程中,就必须要提高对于大跨径连续桥梁施工技术的重视程度,在结合实际情况的基础上,针对施工技术的可行性展开深入分析,确保其能够在桥梁施工中更好的发挥出自身的实际作用。

一、大跨径连续桥梁的基本概述大跨径连续桥梁,其所指的主要就是桥梁的跨度超过了50m的桥梁,其大多都属于一种连续桥梁,简单来说,桥梁内部通常都是由独立化的连续梁段所构成,这部分梁段可以在后续通过预制混凝土来更好的连接在一起,从而形成更加完整的预应力混凝土箱梁桥。

而目前大跨径连续桥梁施工技术在应用过程中,其主要具备以下几种特征,首先是建设周期比较长,这也使得大跨径连续桥梁在建设过程中,需要结合实际情况展开详细设计,并编制出更加完整的施工方案,确保后续土方开挖以及桩基施工等工作内容可以顺利开展;其次则是整体施工难度相对较高,由于大跨径连续桥梁的整体跨度比较大,整体建设周期比较长,这也使其对于施工方面所产生的要求更加严格,在具体的施工建设阶段,还要确保内部所用的各类机械设备有着更强的稳定性,以此来提高施工的安全性,同时还应当重点针对悬臂段的施工进行安全控制;最后则是工程量比较大,其中涉及到了大量的混凝土浇筑以及土方开挖工作,这样也会逐步提高预制梁段的施工量[1]。

大跨度桥梁施工中的悬臂施工技术

大跨度桥梁施工中的悬臂施工技术

大跨度桥梁施工中的悬臂施工技术大跨度桥梁是指跨度超过一定长度的桥梁,一般跨度在100米以上称为大跨度桥梁。

大跨度桥梁的施工是一项复杂而又艰巨的任务,其中悬臂施工技术是施工过程中的重要环节。

本文将就大跨度桥梁施工中的悬臂施工技术进行介绍和分析。

悬臂施工是指在桥墩或桥塔上设置工作台,通过支模和临时支撑来搭建梁体,并进行浇筑的施工方法。

在大跨度桥梁的建设中,悬臂施工技术可以实现从一座桥墩或桥塔到另一座桥墩或桥塔的连续梁体浇筑,大大提高了工程施工效率,也能够有效减少对河流的封闭时间,降低对环境的影响。

在进行大跨度桥梁的悬臂施工时,首先需要对梁体的悬臂工作台进行设置和调整。

悬臂工作台是悬挑在桥墩或桥塔上的建造平台,用于放置支模和临时支撑,并为梁体的浇筑提供施工条件。

悬臂工作台的设置需要根据实际跨度和桥梁结构进行设计,考虑桥墩或桥塔的承载能力和稳定性,确保悬臂工作台的安全和可靠性。

在悬臂工作台设置完成后,接下来是支模的搭设。

支模是梁体浇筑的模板支撑结构,根据桥梁结构和梁体形状进行设计和制作,用于支撑和固定混凝土浇筑时的模板。

支模的搭设需要严格按照设计要求进行,并对支模的承载能力和稳定性进行计算和验算,确保支模在悬臂施工过程中能够安全可靠地支撑梁体的浇筑。

悬臂施工中的混凝土浇筑是一个关键环节,浇筑质量直接影响着梁体的安全和稳定。

在进行混凝土浇筑时,需要根据梁体的跨度和结构进行施工,采取适当的浇筑方法和措施,保证混凝土在浇筑过程中能够均匀流动和充实支模空间,最大限度地消除混凝土中的气孔和缺陷,确保梁体的质量和强度。

在悬臂施工过程中,还需要严格控制浇筑速度和浇筑厚度,确保浇筑的连续性和均匀性,避免出现冷缝和错台等质量问题。

为了保证混凝土的浇筑质量,通常会在浇筑现场设置专门的监控和检测设备,对混凝土的流动性、坍落度和硬化时间等进行实时监测和控制,及时发现和解决浇筑过程中的问题,保证梁体的质量和安全。

悬臂施工中的安全管理是至关重要的,施工现场要严格按照相关安全规范和操作规程进行操作,加强对临时支撑和支模的检查和维护,及时清理施工现场,确保工人的安全和施工作业的顺利进行。

桥梁施工中大跨径连续桥梁的施工技术

桥梁施工中大跨径连续桥梁的施工技术

桥梁施工中大跨径连续桥梁的施工技术桥梁是连接两岸的重要交通设施,而大跨度连续桥梁的施工技术更是桥梁工程中具有挑战性的一项技术。

大跨径连续桥梁一般指单跨度超过100米的桥梁,在施工中需要克服地形复杂、气候条件多变等诸多困难,因此其施工技术尤为重要。

本文将针对大跨径连续桥梁的施工技术进行详细介绍,以期对相关领域的工程技术人员提供帮助。

一、大跨度连续桥梁的特点1.1 跨度大大跨度连续桥梁的跨度一般在100米以上,有的甚至可达数百米,因此在施工中需要考虑巨大的施工荷载和结构变形等因素。

1.2 结构复杂由于大跨度连续桥梁的跨度大、跨数多,因此其结构相对复杂,施工难度较大。

1.3 施工环境恶劣大跨度连续桥梁常常横跨河流、深谷等地形复杂的地区,施工环境通常较为恶劣,对施工技术提出了更高的要求。

2.1 梁段制造大跨度连续桥梁通常采用预应力混凝土连续梁作为主体结构,因此在梁段制造上需要考虑制梁场地的选择、模板及预应力设备的布置、梁体浇筑等问题。

在现代桥梁施工中,预制工厂化生产梁段已经成为主流,可有效提高生产效率和质量。

2.2 施工工艺大跨度连续桥梁的施工工艺一般包括:梁模安装、预应力筋张拉、浇筑混凝土、调校及矫正、腊模拆除等工序。

在大跨度连续桥梁的施工中,需要严格控制各个工序的质量和时间,确保整个梁体施工的顺利进行。

2.3 施工设备大跨度连续桥梁施工中常见的设备包括:悬索吊车、施工架、模板支撑系统、预应力张拉设备、混凝土搅拌站等。

这些设备在大跨度连续桥梁的施工中发挥着重要作用,提高了施工效率和安全性。

2.4 安全措施由于大跨度连续桥梁的施工往往处于较高的空中,因此在施工中需要严格遵守安全操作规程,加强安全防护措施,确保施工人员的安全。

2.5 质量控制大跨度连续桥梁的质量和安全是施工中最重要的考虑因素之一,因此在施工过程中需要严格按照相关技术规范和标准进行质量控制,确保工程质量。

2.6 环境保护大跨度连续桥梁的施工常常位于风景秀丽的地区,环境保护工作尤为重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈大跨径桥梁的施工技术
摘要:随着交通事业的迅速发展和连续梁桥行车平稳舒适及跨越能力大的优点,连续梁桥已成为我国预应力混凝土大跨径桥梁的主要桥型之一,本文首先介绍了大跨径桥梁的特点,分析了其施工中应注意的问题。

关键词:大跨径桥梁;施工技术;桥面
abstract: with the rapid development of transportation industry and the continuous girder bridge driving smooth and comfortable and the advantages of great spanning capacity, continuous girder bridge prestressed concrete has become our country one of the main bridge of long-span bridges, this paper first introduces the characteristics of long-span bridges, analyzes the problems that should be paid attention to during construction.
key words: long-span bridges; construction technology; the deck.
中图分类号:tu74文献标识码:a文章编号:2095-2104(2013)一、大跨径桥梁的发展
近几十年来,在公路建设高速发展和城市新改建大规模开展的有力推动下,公路和市政桥梁数目高速增长,桥梁工程的规模也越来
越大,在桥梁建设飞速发展的同时,桥梁工程面临的各种事故和潜
在风险日益严重,如何使桥梁工程的决策尤其是工程关键问题的决
策更加科学,特别是如何认识和应对在桥梁建设和使用过程中可能出现的不确定因素是比较有代表性和普遍意义
为了确保桥梁正常合拢以及成桥线形符合设计要求,必须对该桥梁上部结构进行施工力学分析及现场施工控制。

桥梁施工控制是桥梁建设施工安全的保证。

因为每种体系的桥梁所采用的施工方法均按预定的程序进行。

施工中的每一阶段,结构的内力和变形是可以预计的,同时可通过监测手段得到各施工阶段结构的实际内力和变形,从而完全可以跟踪掌握施工进程和发展情况。

当发现施工过程中监测的实际值与计算的预计值相差过大时,就要进行检查和分析原因,这对工程事故的发生起到很好的预警作用。

因此为确保桥梁施工的安全,桥梁施工控制必不可少,尤其对造价昂贵的大跨度桥梁更为重要。

最后,桥梁施工控制是桥梁营运中安全性和耐久性的综合监测系统。

随着交通事业的发展,荷载等级、交通流量、行车速度等必然提高,有一些不可预测的自然破坏力也将会危及桥梁的安全,若在建设桥梁时进行了施工控制,并预留长期观测点,将会给桥梁创造终身安全监测的条件,从而给桥梁营运阶段的养护工作提供科学的、可靠的数据,给桥梁安全使用提供可靠保证。

二、大跨径桥梁施工中应注意的问题
1.几何变形控制大跨度连续梁桥自从开工到竣工必然会经历一
个漫长的过程,将受到许多确定和不确定的因素的影响,其中包括材料性能、施工精度、荷载、大气温度等。

在此诸多方面的影响下,桥梁结构在施工过程中的实际位置(立面标高、平面位置)将偏离预
期状态,使桥梁合拢困难,或成桥线形达不到设计要求,所以必须对桥梁实施几何变形控制,使桥梁在施工中的实际位置状态与预期状态之间的误差在容许范围内且成桥线形状态符合设计要求。

桥梁旋工控制中的几何控制总目标就是达到设计目标要求,最终结果的误差容许值与桥梁的规模、跨径大小、技术难度等有关,需根据具体桥梁的施工控制需要具体确定。

2.应力控制,桥梁结构在施工过程中以及在成桥状态的受力情况是否与设计相符合是施工监控要明确的一个重要问题。

通过结构应力测试来了解结构的实际应力状态,若发现实际应力状态与理论计算应力状态的差值超限就要进行原因查找和调控,使之在允许范围内变化。

结构应力比变形控制更加重要。

因为结构应力监测的好坏不像变形控制那样易于发现,若应力监测不力将会对结构造成危害,严重者将发生结构破坏。

因此,必须对结构应力实施严格监控。

3.结构刚度的影响,结构的刚度主要由结构材料的弹性模量e、截面几何特性a和l以及结构的支撑条件来决定。

在浏阳河大桥悬臂施工的过程中,通过临时固结,形成t构,然后在全桥合拢后拆除临时固结。

故在悬臂施工的过程中,支撑条件是不会改变的,而在中跨后期预应力索张拉后,主桥随即拆除临时固结,全桥实现体系转换,支撑条件发生改变,所以为了突出问题,我们暂时不考虑支撑条件的改变,只考虑悬臂施工阶段。

由于截面的几何特性直接影响到结构的自重,上节已经讨论过结构自重对桥梁的影响。

而对于弹性模量,由于在施工过程中,考虑到工期的原因,经常在混凝
土中添加早强剂等外加剂,从而使混凝土早早达到预应力张拉强度,完成预应力张拉,使得混凝土前期弹性模量的发展滞后于后期强度的发展。

另外混凝土的弹性模量取决于水泥石和集料的弹性模量以及水泥石和集料的相对数量,它都随加载时间、水化龄期、养护时间、收缩徐变的改变而变化。

在施工中,这些因素必然导致混凝土弹性模量实际值与设计值存在差别。

4.日照温度的影响某一时刻结构内部与表面各点的温度状态即为温度分布。

由于混凝土的导热系数比较小,当外表面温度发生变化时,内部温度存在明显的滞后现象,导致每层混凝土的热量扩散有较大的差异,形成明显的非均匀分布。

温度的不均匀分布,将导致温度应力的形成,温度应力对结构的变形和应力分布影响很大。

而实际的温度变化是相当复杂的,包括季节温差、日照温差、骤变温差、残余温差等,但对于桥梁施工过程中,温度的不均匀主要影响表现在挂篮的定位上,所以我们只探讨日照温差的影响。

在大跨度桥梁施工控制中,由于难以预料温度变化,所以在结构分析中不考虑温度效应。

对于r照温度的影响,通常的做法是选择夜间或者早晨进行挂篮定位。

但实际工程中,由于工期的紧迫,挂篮定位不能选择在温度比较均匀的早上进行。

三、影响施工控制中的因素
大跨径连续梁桥施工控制的主要目的是使施工实际状态最大限度地与理想设计状态(线形与受力)相吻合。

要实现上述目标,就必须全面了解可能使施工状态偏离理论设计状态的所有因素,以便
对施工实施有的放矢的有效控制。

1.结构参数,不论何种桥梁的施工控制,结构参数都是必须考虑的重要因素,结构参数是控制中的结构施工模拟分析的基本资料,其准确性直接影响分析结果的准确性。

事实上,实际桥梁结构参数一般很难与设计所用的结构参数完全吻合,总是存在一定的误差,施工控制中如何恰当地记入这些误差,使结构参数尽量接近桥梁的真实结构参数,是首先需要解决的问题。

结构参数主要包括结构构件截面尺寸、结构材料弹性模量、材料容重、材料热膨胀系数、施工荷载、预加应力或索力等内容。

2.施工工艺,施工控制是为施工服务的,反过来,施工的好坏又直接影响控制目标的实现。

除要求施工工艺必须符合控制要求外,在施工控制中必须计入施工条件非理想化带来的构件制作、安装等方面的误差,使施工状态保持在控制中。

3. 施工监测,监测是桥梁施工控制的最基本手段之一。

监测包括应力监测、变形监测等。

因测量仪器、仪器安装、测量方法、数据采集、环境情况等存在误差,所以,结构监测总是存在误差的。

在控制过程中,除要从测量设备、方法上尽量设法减小测量误差外,在进行控制分析时必须将其计入。

4. 温度变化,温度变化对桥梁结构的受力与变形影响很大,这种影响随温度的改变而改变,在不同时刻对结构状态(应力、变形)进行量测,其结果是不一样的,如果施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据,从而也难以保证控制的有效
性,所以,必须考虑温度变化的影响。

一般是将一天中的温度变化较小的早晨作为控制所需实测数据的采集时间。

但对季节温差和桥梁体内的温度残余影响要予以重视。

5.材料收缩、徐变,对混凝土桥梁结构而言,材料收缩、徐变对结构内力、变形有较大的影响,这主要是由于大跨径连续梁桥施工中混凝土普遍加载龄期短、各阶段龄期相差大等引起的,控制中要予以认真研究,以期采用合理的、符合实际的徐变参数和计一算模型。

收缩、徐变还将影响成桥后运营阶段的结构变形,这也是设定预拱度需要考虑的因素。

四、总结
近几年,随着桥梁建设的飞速发展,尤其是大跨径桥梁的优越性,因此深入研究桥梁施工控制理论,建立完善的桥梁施工控制技术系统和组织管理系统是今后桥梁建设事业发展迫切需要进行的工作。

相关文档
最新文档