钢桁梁桥综述

合集下载

浅谈钢-混凝土组合桁梁桥的种类与应用

浅谈钢-混凝土组合桁梁桥的种类与应用

浅谈钢-混凝土组合桁梁桥的种类与应用钢-混凝土组合结构能够发挥钢结构和混凝土各自的优点,是当今桥梁工程中的一个重要的结构形式。

无论是跨越天堑的特大桥,还是横跨溪流的小跨径桥,钢—混凝土组合结构桥梁都可应用于其中。

现代桥梁工程发展至今,钢—混凝土组合结构已经有较为广泛的应用,是继钢结构、钢筋混凝土结构、预应力混凝土结构、砖石混凝土结构之后的第五大类结构。

一.钢-混组合梁桥的组成钢-混组合梁桥可按照不同的钢梁组成形式大致分为:钢—混凝土组合板梁桥、钢—混凝土组合箱梁桥与钢—混凝土组合桁梁桥(以下简称“组合桁梁桥”)。

以下将对这几种钢混组合梁桥的结构及受力特点进行介绍。

1.钢—混凝土组合板梁桥这种形式的组合梁桥的钢主梁主要是工字形截面钢梁,关于这种桥型,我国早期的桥梁中有些应用,但跨度有限,因此目前应用较少。

钢主梁和混凝土桥面板通过剪力连接件组合,共同工作。

工字型的钢板梁一般由3块钢板焊接而成。

为了充分发挥钢材的抗拉能力强的特性,工字梁的下翼缘可以适当加厚或加宽,有时为了满足施工需要,在各个主梁之间设置横向支撑。

2.钢-混凝土组合箱梁桥在大跨度的组合梁桥中,组合箱梁桥是常采用的截面形式。

,该桥有钢筋混凝土翼板和箱型钢梁组成,两者通过连接件连接。

与工字型截面的组合钢板梁桥相比,组合箱梁的抗扭刚度较大,因此适合在高跨比较大或扭转较大的跨线桥和弯桥中使用。

目前我国的组合箱梁桥大多应用于城市立交桥、高速公路跨线桥等。

钢-混凝土组合箱型梁发展出了一种新形式——波形钢腹板组合梁桥。

与传统的混凝土箱梁相比,波形钢腹板组合梁桥用波形的钢腹板代替了混凝土腹板。

上部是混凝土顶板,顶板内常会设置体内索以施加预应力,同样混凝土底板也会设置体内索。

有的波形钢腹板桥会在箱内设置体外索施加预应力。

这种结构能有效利用施加的预应力,同时能够防止腹板的局部失稳。

3.钢-混凝土组合桁梁桥钢桁架与混凝土板相组合,可以形成钢-混凝土组合桁梁桥,混凝土桥面板在这种结构中作为受力的一部分,可以节省钢材的使用,并能提高整体刚度和降低桁高。

单线铁路钢桁梁桥(西南交大钢桥课程设计)

单线铁路钢桁梁桥(西南交大钢桥课程设计)

第一章 设计资料第一节 基本情况1设计规范:《铁路桥涵设计基本规范》( TB10002.1-2005)、《铁路桥梁钢结构设计规范》 ( TB10002.2-2005 )。

2、结构外形尺寸:计算跨度L=80+(50-50) × 0.2=80,若L=80m 需改为L=92m ,钢梁分为10个节间,节间长度 d =L/10=9.2m ,主梁高度H=11d/8=11 × 9.2/8=12.65m ,主梁中心距B=6.4m ,纵梁中心距为b=2.0m ,计算得到的纵梁宽度为B 0 =5.95m 。

桥面,人行道两侧。

3 材料:主要桁架构件材料为Q345q ,板厚为 40mm ,高强度螺栓为40B ,精制螺栓为BL3,轴承铸件为ZG35II ,滚轮轴为35#锻钢。

4 活荷载等级:中等活荷载。

5 静载(1) 主桁架计算桥面p 1 =10kN/m ,桥面p 2 =6.29kN/m ,主桁架p 3 =14.51kN/m , 领带 p 4 =2.74kN/m ,检查设备 p 5 =1.02kN/m ,螺栓、螺母和垫圈 p 6 = 0.02 (p 2 + p 3 + p 4 ),焊缝 p 7 = 0.015 (p 2 + p 3 + p 4 );(2)纵梁和横梁的计算横梁(每根线)p 8 =4.73kN/m (不包括桥面),横梁(每根)p 9 =2.10kN/m 。

6 抗风强度W 0 =1.25kPa ,K 1 K 2 K 3 =1.0。

7、工厂采用焊接,工地采用高强度螺栓,人行道支架采用直径22mm 、直径23mm 的精制螺栓。

高强螺栓设计预紧力P=200kN ,防滑系数μ 0 =0.45。

第二部分设计1 、主桁架受力计算; 2、主桁梁截面设计3弦拼接计算及下弦端节点设计; 4. 挠度校核计算及上弯度设计;第三节 设计要求1 主桁架力计算结果和截面设计计算结果汇总于表中。

2 主要桁架力计算表项目包括:l 、α、Ω、ΣΩ、p 、Np 、k 、Nk 、1+μ、1+μf、(1+μ)Nk、a 、η、纵向风、桥架影响风和弯矩,制动力和弯矩,NI ,NII ,NIII ,NC ,疲劳计算力Nnmin ,Nnmax ,弯矩Mnmin ,Mnmax ;3 建议使用 Microsoft Excel 电子表格辅助计算主桁架力。

钢桁梁课件

钢桁梁课件
列车提速后,为了增加桥梁的横向刚度,减
少横向振幅, 新的标准设计,两主梁的中心 距,单线6.4m;双线10.0m。

第二章 桥面系梁格构造与连接
组成:纵梁、横梁及纵梁之间的联结系组成 我国铁路下承式各种跨度的栓焊钢桁梁标准设计, 其桥 面系采用统一布置及统一尺寸(P245-246,图7-2-2— 7.2.3) (1)纵梁与横梁 板梁—跨度小于6m时,纵梁也有用大号工字钢 做成的 铁路桥纵梁上翼缘直接承受桥枕压力,纵梁的 上翼缘宽度不宜小于240mm。
(3)同一杆件两端的螺栓排列应尽量一致,以减少部件 的类型和便于安装时的互换。 (4)应避免不同平面内的栓钉钉头发生冲突。所有工地 安装螺栓的位置,均应考虑施工时螺栓扳手工作的 空间。 (5)立柱与上弦杆的连接要考虑拼装吊机在上弦工作时 的荷载,端节点的构造要考虑悬臂拼装和连续拖拉 多孔钢桁梁时,相邻二孔钢桁梁之间临时连接杆件 的设置。 (6)节点内不得有积水、积尘的死角及难于油漆和检查 的地方。
第三章 节点构造
连接位于主桁、纵联、横联三个正交平面内的杆件 构造形式 外贴式 内插式 全焊式
杆件两侧放 节点板然后 用铆钉或高 强螺栓把杆 件连接起来
内插式—节点板预先在工厂用坡口焊缝和弦杆腹板焊 成整体,在两块节点板中间插入腹杆,并用栓钉连 接起来
全焊节点—全焊节点工地焊缝太多,焊接变形不易控 制,目前应用还不够广泛
主桁结构
主桁节点
桥面系
纵梁与横梁的连接
上平纵联
上平纵联、横联、桥门架
下平纵联、下平纵联与主桁节点的连接
中间横联、桥面
3.下承式栓焊简支钢桁梁荷载传递途径 ①竖向荷载:主要是列车竖向荷载,包括列车的动 力荷载。 竖向荷载纵梁 横梁 主桁节点 主桁杆件 支座 墩台。 ②横向水平荷载:包括风力、列车横向摇摆力、曲 线桥的离心力。 横向水平荷载由平纵联承受,作用在上平纵联上的 横向水平力先传给桥门架,再由桥门架传到支座和 墩台上去,下 平纵联直接通过支座传给墩台。

《钢桥设计》3 钢桁架桥

《钢桥设计》3 钢桁架桥
– 作用在上平纵联上的横向风力分布荷载 (kN/m)
wup W[0.5 0.4 H 0.2 h (1 0.4)]
– 作用在下平纵联上的横向风力分布荷载(kN/m)
wlow W [0.5 0.4 H 1.0 h (1 0.4)]
– 风荷载强度
W K1K2 K3W0
5.4 主桁杆件内力计算 5.4.2 横向附加力作用下主桁杆件内力计算
• 桥上有车时
– 作用在上平纵联上的横向风力分布荷载 (kN/m)
wup w1up w2up
w1up 0.8W[0.5 0.4 H 0.2 h (1 0.4)] w2up 0.8W 0.2 3.0 (1 0.4)
5.4 主桁杆件内力计算 5.4.4 由于横向框架效应所引起的主桁杆件内 力计算
• 横向框架 横向联结系、主桁竖杆及横梁组成 附加力矩 在竖杆的下端点 上部横联与竖杆连接处
5.4 主桁杆件内力计算 5.4.5 主桁内力组合及主桁架杆件内力计算
• 主桁架内力组合通常有三种形式
– 主力单独作用:设计容许应力为 [ ] – 主力+横向附加力:设计容许应力为 1.20[ ]
– 桥门架 平面刚架,腿杆下端 嵌固在下弦端节点上
– 作用在桥门架上的水平力
上平纵联传来的横向附加力,即上平纵联作为简支桁架的 支座反力
– 附加反力的方向随风向而改变,故和主力作用下的内力组 合时应取其最不利组合
5.4 主桁杆件内力计算 5.4.3 纵向制动力作用下主桁杆件内力计算
• 纵向荷载 因制动或启动而产生的制动力或牵引力 • 制动力的传递路径
• 对公路桥,上、下平纵联上的横向附加力只有横向 风力

2-钢桥第二讲——结构体系

2-钢桥第二讲——结构体系

顶板下缘焊有纵横向加劲肋,形成正交异 性桥面板。 所谓正交异性板,是指加劲肋垂直相交, 但因加劲肋间距、刚度等参数不同,其力学 性能在顺桥向、横桥向有很大差异的肋板, 比较省钢,非常适宜于承受局部轮载。
典型钢箱 梁构造图
海沧大桥钢箱梁节段
青马大桥钢箱梁截面 形式及吊装
钢箱梁作为加劲梁
大跨度斜拉桥、悬索桥的加劲梁属多点弹性支 承的连续梁,梁的受弯特性退化,荷载传递作 用突出; 为便于抗风,大跨度桥常采用扁平钢箱梁; 加劲箱梁得梁高取决于斜拉索(吊杆)间距, 而不取决于跨度,因此,梁高可以作得很小, 高跨比h/L通常在1/300~1/400。 桥面铺装可采用混凝土,也可采用沥青,但沥 青铺装层施工要求极高。
典型截 面构造 (多多罗)
典型截 面构造 (诺曼底)
钢箱梁作为结构
简支、连续钢箱梁以受弯为主,通常做成等 高梁(但钢板厚度可变),高跨比h/L通常在 1/20~1/30。 为提供更宽桥面,常采用大挑臂钢箱梁,挑 臂宽度可达3~5m。 为使受力合理,施工方便,当桥宽较大时, 常采用分离式双(三)箱得截面形式。 为便于养护、增强耐磨性,常采用混凝土桥 面铺装。
钢桁梁曾经是大跨度拱桥、悬索桥的唯一型 式,目前与钢箱梁平分秋色。
2、基本构造
一般由两片主桁架、上平纵联、下平纵联、桥 门架、桥面系构成; 竖向传力途径:桥面系节点主桁支座; 水平传力途径:上、下纵联主桁弦杆桥门 架支座; 桁架结构型式很多,铁路上常采用下承式平行 弦带腹杆的三角形体系;公路上常采用下承式平 行弦三角形体系;
构件常采用H截面、当构件截面尺 寸较大时也可采用箱形截面; 主桁的拉杆、压杆截面高度应相 等,压杆的长细比不宜超过100; 早期,构件连接采用铆接,现常 用高强螺栓连接(需要专门的节 点板);并向整体节点方向发展 (节点整体制造,构件对焊); 公路桥面系多采用钢筋混凝土结 构;铁路桥面系多采用钢桥面系。

钢桁梁桥施工实习报告

钢桁梁桥施工实习报告

一、实习背景随着我国桥梁建设技术的不断发展,钢桁梁桥因其跨越能力强、施工速度快、质量轻、强度高等优点,在桥梁工程中得到广泛应用。

为了深入了解钢桁梁桥的施工工艺和过程,我于2023年在某钢桁梁桥施工现场进行了为期一个月的实习。

二、实习内容1. 施工现场概况本次实习的钢桁梁桥位于我国某城市,是一座连接两岸的重要交通枢纽。

桥梁全长为500米,主跨径为120米,采用钢桁梁结构。

施工现场环境复杂,周边交通繁忙,对施工安全、质量和进度提出了较高要求。

2. 施工工艺流程(1)基础施工:首先进行基础开挖,然后进行钢筋绑扎、模板安装和混凝土浇筑,确保基础稳定。

(2)支架安装:根据设计要求,安装支架,确保支架的强度、刚度和稳定性。

(3)钢桁梁制作:在工厂进行钢桁梁的预制,确保钢桁梁的质量和精度。

(4)钢桁梁运输:将预制好的钢桁梁运输至施工现场。

(5)钢桁梁吊装:采用吊车将钢桁梁吊装至预定位置,并进行精确对位。

(6)钢桁梁焊接:对钢桁梁进行焊接,确保焊接质量。

(7)桥面施工:完成钢桁梁焊接后,进行桥面施工,包括桥面板铺设、伸缩缝安装等。

3. 施工难点及解决措施(1)基础施工:由于地质条件复杂,基础施工难度较大。

解决措施:采用地质钻探技术,准确掌握地质情况,优化基础设计方案。

(2)支架安装:支架安装过程中,要求支架的强度、刚度和稳定性。

解决措施:采用高强度钢材,确保支架的质量。

(3)钢桁梁吊装:钢桁梁吊装过程中,要求吊装精度高、安全可靠。

解决措施:采用先进的吊装设备和技术,确保吊装过程安全、高效。

(4)焊接:焊接过程中,要求焊接质量高、外观美观。

解决措施:采用先进的焊接设备和技术,加强焊接质量控制。

三、实习收获1. 了解钢桁梁桥的施工工艺和过程,掌握了钢桁梁桥施工的基本知识和技能。

2. 了解了施工现场的管理和协调工作,提高了自己的组织协调能力。

3. 深入了解了施工过程中的安全、质量和进度控制,提高了自己的安全意识和责任感。

钢桥的主要结构形式与受力特点

钢桥的主要结构形式与受力特点

钢桥的主要结构形式与受力特点钢桥是使用钢材作为主要结构材料的桥梁。

钢材具有高强度、耐候性好、施工方便等优点,因此在桥梁建设中得到广泛应用。

钢桥的主要结构形式以及受力特点如下:一、主要结构形式1.桁梁桥:桁梁桥是一种常见的钢桥结构形式,桁梁是由上下面板、纵向梁、纵向加劲肋组成的刚性板梁结构。

桁梁桥具有自重轻、承载能力强、结构稳定等优点,广泛应用于公路桥梁建设中。

2.悬索桥:悬索桥是由一根或多根悬索拉起桥面板的桥梁,主要由悬索、主塔、锚固构件、桥面板等组成。

悬索桥的主要受力特点是悬索负责承受桥面板的自重和交通荷载,主塔和锚固构件负责将荷载传递到地基上。

3.斜拉桥:斜拉桥是通过倾斜的钢缆将桥面板悬挑在主塔两侧的桥梁。

斜拉桥的主要特点是桥面板悬挑长度大、开间大、造型美观等。

4.梁桥:梁桥是由若干跨中为简支梁或连续梁的桥墩和桥面板组成的桥梁。

梁桥的主要结构特点是桥面板由钢材制成,梁和桥墩一般由混凝土制成。

二、受力特点1.自重:钢桥的自重是指桥梁本身的重量。

由于钢材的密度相对较小,钢桥的自重相对较轻,使得桥梁在设计和建设过程中更加灵活和方便。

2.交通荷载:钢桥需要承受行驶在桥面上的车辆的荷载。

钢材具有高强度和刚性,可以承受较大的交通荷载,使得钢桥具有较大的承载能力。

3.温度变化:钢材的热胀冷缩系数较大,受温度变化的影响较为明显。

因此,在设计和施工过程中,需要考虑钢桥在不同温度下的膨胀和收缩,采取相应的措施以保证桥梁的安全和稳定。

4.风荷载:钢桥容易受到风的影响,需要考虑对风荷载的抵抗能力。

一般采取增加桥梁的抗风措施,如加装防风挡板、增强桥墩的抗风能力等。

5.地震荷载:地震是一个重要的桥梁荷载,对钢桥的性能和安全有一定的影响。

在设计和建设钢桥时,需要充分考虑地震荷载,采取相应的抗震措施,以确保桥梁的安全性。

综上所述,钢桥的主要结构形式包括桁梁桥、悬索桥、斜拉桥和梁桥等,其受力特点主要包括自重、交通荷载、温度变化、风荷载和地震荷载。

钢桥设计基本知识-钢桁架梁桥[详细]

钢桥设计基本知识-钢桁架梁桥[详细]
杆件交汇的地方称为节点,纵向两节点之 间称为节间,用节点板(gusset plate)及高强 螺栓连接各主桁杆件。
竖向荷载的传力途径是:
荷载通过桥面传给纵梁,由纵梁传给横梁,再 由横梁传给主桁节点,然后通过主桁的受力传给支 座,最后由支座传给墩台及基础。
钢桁梁除承受竖向荷载外,还承受横向水平荷载 (风力、列车横向摇摆力和曲线桥上的离心力)。由水 平纵向联结系直接承担并向下传递。
•最小板厚限值; •H形腹板、翼缘厚度及二者的厚度比 ;
•局部稳定所需的板件宽厚比;
(四)主桁杆件的刚度要求 为了防止过大的挠度和振动,杆件有最大长细比限值。
8
主桁的主要尺寸是指:主桁高度(简称桁高)、节间 长度;斜杆倾度及两主桁的中心距,这些尺寸的拟定对 桁梁桥的技术经济指标起着重要作用。
(1)桁 高 从用钢量; 挠度; 满足建筑限界的要求。 (2)节间长度 节间长度对桁梁桥的用钢量有一定影响。节长较短 ,纵梁、横梁数量增多;但梁的截面可小,主桁腹杆也 相应变短。一般下承式桁梁节间长度为5.5—12m,或 为桁高的0.8—1.2倍。
制 造 、
• •
节点板形状应简单端正,不得有凹角。 标准设计的节点板。
安 装 和
• •
同一杆件两端的螺栓排列应尽量一致。 应避免不同平面内的栓钉钉头发生冲突。所有工地安装螺

栓的位置,均应考虑施工时螺栓扳手工作的空间。
护 • 节点内不得有积水、积尘的死角及难于油漆和检查的地方。
20
第二节 桁梁桥构造
• 杆件进入节点板的第一排螺栓数,可适当少布置几个,以减少杆件的截面削

弱。
力 • 弦杆在节点中心中断时,一般均需添设弦杆拼接板。 • 所有杆件应尽量向节点中心靠拢,连接螺栓应布置紧凑,使节点板平面尺寸 小些,也有利于降低节点刚性次应力和增加节点板在面外的刚度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。

其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。

与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。

本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。

由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。

(2)易于修复和更换。

(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。

(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。

(5)造价较高。

(6)抗压能力强,整体性好。

三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。

其上部结构由多孔钢桁梁和钢板梁组成。

建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。

20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。

其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。

1995年建成通车的孙口黄河大桥位于京九铁路线上,是一座跨越黄河的双线铁路桥,正桥为下承式连续钢桁梁桥,主桁采用三角形钢桁架,标准节间常12m,桁高13.6m,桁宽10m;上、下弦杆和支点处斜杆采用箱型截面,其余腹杆为工字型截面;主桁与节点板焊接成整体在预制厂进行,该桥系中国首次采用整体节点构造。

在建成孙口黄河大桥的基础上,与1999年在长东铁路一桥上游(南)30m处,平行建成了长东铁路二桥,该桥采用三角桁架整体节点栓焊结构,从设计和建造技术上较一桥都有很大改进。

2000年竣工通车的芜湖长江大桥为公铁两用桁架低塔斜拉桥,其主梁首次大规模采用预应力钢筋混凝土桥面板和钢桁架共同受力的板桁组合结构。

芜湖长江大桥以其大规模,新技术和一流的质量,成为中国桥梁史上继武汉、南京、九江长江大桥之后的第四座里程碑。

以上几座桥在我国的经济建设中发挥着巨大作用,在新中国桥梁建设中具有里程碑式的作用。

近年来,为满足铁路运输的需求,有时要求新建铁路桥梁通行能力从双线发展到四线甚至六线。

在我国一些大跨度钢桁体系中开始应用四线三桁或四线双桁的结构形式。

加之空间有限元分析技术的不断完善和施工水平不断提高,也使设计值对大跨度结构的空间受力特性有了明确的认识。

四、钢桁梁桥的施工方法1、钢桁梁桥的传统施工方法和特点1.1走行吊机施工法将主梁部分在工厂或工地附近整孔拼装, 完成工地连接后, 用走行吊机将主梁逐孔起吊, 架设在桥台桥墩之间, 然后再依次安装桥面系、平纵联等。

这个方法在城市高架桥的架设中得到广泛应用, 而且在高水位的河面上架桥, 使用这种方法也很适宜。

1.2门吊施工法在桥梁上方设置门吊, 将组装好的整孔主梁逐孔起吊, 放置在桥墩、台间, 然后依次安装桥面系和平纵联。

1.3浮吊施工法在工厂岸边或桥梁工地附近岸边将整孔桥梁组拼好, 然后用浮吊将其吊起, 并将浮吊拖曳航运至桥位, 将梁在桥台、桥墩上架设就位。

这是在河上或海上架设长大桥时经常使用的一种施工方法。

1.4悬臂施工法用移动式刚腿转臂起重机, 一面拼装, 一面逐渐向前推进。

悬臂法架设钢梁是在桥位上不用临时脚手架支撑, 而是将杆件依次悬拼至另一墩(台)上。

悬拼一孔中未设临时支墩的叫全悬臂拼装。

若在桥孔中设置一个或一个以上的临时支墩的叫半悬臂拼装。

近年来, 悬臂拼装工艺逐步完善。

其特点是不受桥渡水文条件、通航、流水、墩高和季节的限制, 而且其专用辅助结构和辅助设备费用较少。

在悬臂拼装期间, 桥梁施工人员对桥渡区段自然环境的干扰也较少。

以下情况适宜采用悬臂法架设钢梁:跨径大, 桥高, 通航河流水深流急;有流冰或有较多木排的河流;钢梁的结构图式有利于悬臂架设的, 如连续桁梁、悬臂桁梁以及多孔简支桁梁等。

2、传统钢桁梁架设方法在桥梁施工中的应用改进与发展在实际的钢桁梁架设过程中, 仅仅采用以上所介绍的施工方法中的一种是很少见的, 大多数钢桁梁的架设至少同时采用2 种或2 种以上的施工方法。

并且在施工工艺上进行了更符合实际情况的创新与改进, 进而使得社会、经济效益显著。

2.1悬臂施工法目前, 悬臂拼装、半悬臂拼装和双向对称平衡拼装仍是钢桁桥建造的主要方法之一。

近几十年来,国内外许多特大桥都采用这种方法建造。

随着钢桥结构的发展, 悬臂拼装工艺也在逐步完善。

钢桁梁在悬臂架设中, 随着悬臂长度的增大, 伸臂端的下挠度和悬臂支撑处附近的杆件应力将达到最大值, 甚至超过允许范围, 所以降低钢梁架设应力和伸臂端挠度, 保证钢梁架设时的稳定性, 是悬臂架设法中的主要问题。

为了减少桁架内力和伸臂端挠度, 在伸臂前方桥墩处伸出支撑托架(或称墩旁托架),使伸臂接近前方桥墩时, 提前得到支撑。

2.2浮托施工法半浮半拖的架设方法, 此法取浮运施工法和纵向拖拉施工法2 种施工方法的优点, 针对工程实际情况, 经过变通的行之有效的施工方法。

半浮半拖施工法是在浮船上建立临时支墩, 用卷扬机和导链牵引拖拉架梁, 主要适合水深速缓、通航情况一般的情形, 并且可以避免钢梁悬臂太长和危险性大。

与拖拉架设相比, 浮拖架设只需增加1 个浮墩, 使钢梁两支点受力既保证钢梁的稳定性, 又易控制挠度和应力变化, 而浮拖所用的器材易拼装、易控制、占用河道面积小、时间短、操作起来安全便捷。

在钢桁梁桥架设过程中, 越来越多的架设方法可供人们选择。

通过查阅参考国内外有关文献, 对钢桁梁架设施工方法及其发展情况做以总结, 可以预见,现代钢桁梁桥的施工, 在传统施工方法的基础上, 力求新工艺和新技术, 不断进行优化改进, 使得钢桁梁桥的架设施工方法不断进步发展。

五、整体节点5.1整体节点在钢桥中的应用钢桥整体节点作为近年来出现的新型构造,在大跨度桥梁中得到了广泛的应用。

整体节点是以栓为主向以焊为主,继而向全焊接发展的重要技术过渡,它一改从前利用大量螺栓连接钢梁的做法,而是改用焊接技术来连接钢节点,提高了钢梁工业化制造过程,方便了工地安装,改善了工地工作条件。

它有整体性好,节省钢材和高强度、造型美观、方便工地安装、提高钢梁工厂化制造程度等优点,在我国近年来修建的很多大桥中得到了应用。

据统计,采用整体节点较普通栓焊结构钢梁节省高强度螺栓达34%,从而获得了较好的经济效益,使我国的钢桥建造技术提高到一个新的水平。

因此,采用整体节点已成为大跨度钢桁梁桥的发展趋势。

5.2钢桥整体节点的强度问题钢桥的整体节点汇交的杆件众多、构造复杂、受力很大,处于典型的空间复杂受力状态,节点的承载安全性是桥梁结构整体安全性的关键。

目前常规的钢桥节点设计规范对于这种大型复杂的整体节点并不适用,对于这种大型节点的疲劳和静力承载力分析设计规范也没有规定。

更重要的是,钢桥的整体节点为焊接结构,焊缝密集,既有对接焊缝,又有棱角焊缝和角焊缝。

对于采用整体节点的大跨度钢桁梁桥,因其承受较大的动荷载作用,与整体节点密切相关的焊接材料、焊接工艺、各种焊接接头、交叉焊缝、杆件节点外拼接接头等细节的疲劳强度,以及整体节点的疲劳强度控制结构设计。

对于它的疲劳性能的研究目前还处于起步阶段,由于引起节点疲劳破坏的因素很多,而空间有限元等理论分析难以准确把握节点的实际受力情况和它的疲劳承载力。

故目前在工程中,为了保证大桥运营安全可靠,结构设计经济合理,对于这种整体节点大多都要结合实际情况进行验证性的静载和疲劳性能的试验研究。

此外,对这一新型构造的静载和疲劳性能也有必要做深入的研究。

5.3整体节点的静力承载力和疲劳承载力国内对整体节点的静力和疲劳承载力正处于发展阶段,从目前的试验研究来看,只要整体节点的构造设计地合理,一般能满足静力和疲劳承载力要求。

六、正交异性板6.1正交异性板的发展近年来,由于高速铁路发展的需要,出现了多种新桥型,如斜拉桥、钢桁拱桥、钢箱系杆拱桥,出于减震、降噪、结构受力和耐久性的需要,钢桥桥面系也开始采用混凝土面板、正交异性板方案。

其中,正交异性板钢桥面具有整体性能好、结构高度低、自重轻、承载能力大、施工周期短、行车舒适性能好等优点,半个多世纪以来渐渐地被广泛地应用于日本、欧洲各国及美国等国家中大跨度及超大跨度钢结构桥梁的建设。

6.2正交异性板的受力问题正交异性板越来越多地应用于我国高速铁路桥梁上,一系列的问题也渐渐涌现出来。

正交异性板纵梁的设置及其与横梁的连接构造细节目前业界有较大的争议。

部分设计人员认为轨下设置纵梁对桥面整体受力有帮助。

部分专家认为纵梁宜小不宜大,甚至可不设纵梁,以免纵、横梁交界处横梁腹板产生应力集中,引起疲劳开裂。

国内为许多科研机构和学者都对正交性板的受力特点、计算方法、结构形式等做了许多的研究,但绝大多都集中在公路桥梁上了。

高速铁路桥梁不管是行驶速度、列车荷载,还是对桥梁桥面的冲击力等均远远超过了公路桥梁。

因此,对于正交异性板的各种性能,高速铁路桥梁有了更多更高的要求。

尽管今年来已建和在建或正在设计中的正交异性板整体桥面的铁路桥梁较多,但总体来说,还缺少系统的研究,缺少时间的考研,桥面系的结构体系总类较多,构造细节差异较大,目前尚无标准。

七、结语钢桁梁桥结合了钢材和桁架结构的优点,广泛应用于大中跨桥梁及超大跨桥梁中。

且在钢桁梁桥架设过程中, 越来越多的架设方法可供人们选择。

通过查阅参考国内外有关文献, 对钢桁梁架设施工方法及其发展情况做以总结, 可以预见, 现代钢桁梁桥的施工, 在传统施工方法的基础上, 力求新工艺和新技术, 不断进行优化改进, 使得钢桁梁桥的架设施工方法不断进步发展。

并且,整体节点和正交异性板整体桥面的应用,提高了钢桁梁桥整体性、承载能力,减轻了桥梁自重。

然而整体节点和正交异性板的研究正处于发展阶段,对于它们的受力特点、计算方法等尚无统一标准。

相关文档
最新文档