2018年TI杯手势识别

2018年TI杯手势识别
2018年TI杯手势识别

2018年TI杯大学生电子设计竞赛手势识别装置(D题)

2018年7月23日

手势识别装置(D题)

【本科组】

摘要

手势识别作为人机交互的重要组成部分,其研究发展影响着人机交互的自然性和灵活性。

为了满足手势识别的设计要求,本次设计使用以测量电路为核心的系统。主要由五个模块组成,包括测量电路模块、传感器模块、显示模块、控制模块、电源模块组成。控制模块采用的是独立按键和MSP430F5529单片机,用以控制工作模式(训练和判决);测量电路模块采用的是MSP430F5529单片机;传感器模块采用的是FDC2214电容传感器;显示模块采用12864LCD液晶显示屏;电源模块采用220V转5V的USB接口输出模块。本装置通过FDC2214电容传感器和MSP430F5529单片机测量频率值,再通过频率值判断手势,并显示在LCD液晶显示屏上。

关键词:手势识别MSP430F5529FDC2214 12864LCD

目录

一、系统方案 (1)

1.测量电路模块的选择 (1)

2.显示模块的选择 (1)

3.传感器模块 (1)

4.电源模块 (2)

5.方案确定 (2)

二、理论分析与计算 (2)

1.理论分析 (2)

2.计算 (2)

三、电路与程序设计 (3)

1.电路设计 (3)

(1)系统总体框图 (3)

(2)控制模块系统框图 (4)

2.程序设计 (4)

(1)程序流程图 (4)

(2)判决的流程图 (4)

四、测试方案与测试结果 (5)

1.测试方案 (5)

(1)硬件测试 (5)

(2)软件仿真测试 (5)

(3)硬件软件联调 (5)

2.测试条件与仪器 (5)

五、测试结果 (6)

1.测试结果 (6)

2.误差分析 (6)

六、心得 (6)

七、参考文献 (7)

附录:电路原理图 (8)

一、

一、系统方案

本设计主要由五个模块包括测量电路模块、传感器模块、显示模块、控制模块、电源模块。

1. 测量电路模块的选择

方案一:采用MSP430系列单片机

MSP430系列单片机采用1.8~3.6V电压,超低功耗,运行速度快,处理能力强大,具有高效的开发环境。MSP430系列单片机中CPU与模拟设备的结合,使得校准、调试都变得非常方便。[1]

方案二:采用51系列单片机

51系列单片机应用最广泛的8位单片机比较容易上手,有较为完善的按位操作系统,功能较完备。虽然 I/O 脚使用简单,但高电平时无输出能力,有些功能增加了硬件和软件的负担,运行速度过慢,保护能力很差,容易烧坏。

通过比较,我们选择方案一,采用MSP430F5529单片机作为控制模块。

2. 显示模块的选择

方案一:采用OLED液晶显示屏

OLED液晶显示屏抗震性能更好;视角范围大;响应速度快;发光效率高,功耗低;厚度可以小于1毫米,并且重量轻;成本低;但是寿命较短。

方案二:采用LCD液晶显示屏

LCD液晶显示屏显示信息量大,显示质量高,低电压低功耗;使用寿命较长。

通过比较,我们选择方案二,采用LCD液晶显示屏作为显示模块。

3. 传感器模块

我们采用FDC2214作为传感器。利用FDC2214的工作原理可实现手势接近和识别的功能,如图1.1所示,黄色部分称为“FDC2214的传感平面”,该平面为导体材质,当人手接近该平面时,传感端的电容发生了变化,这就会导致LC电路振荡频率的变化,从而反映出手势接近,以及手势的判定。

图1.1 传感器模块设计图

4. 电源模块

采用220V转5VUSB接口输出的接线板作为电源模块。

5. 方案确定

本设计采用5V电源给MSP430F5529单片机和FDC2214电容传感器供电。MSP430F5529单片机外接按键,来控制工作模式。MSP430F5529单片机外接FDC2214电容传感器,获取频率值,再通过频率值判断手势,并通过LCD液晶显示屏显示。

二、理论分析与计算

1.理论分析

传感平面的面积越大、手势与传感平面的距离越小,感应的频率变化越大,系统会越灵敏,但同时也可能引入越多的噪声。

2.计算

图2.1 被测电容器与LC电路图

设被测电容器的容抗为X C1,LC 电路中电容器的容抗为X C ,LC 电路中电感器的感抗为X L ,频率为f 。

根据振荡电路的条件有:容抗等于感抗。即 X C1+X C =X L (2.1)

式中X C1=1/(2πfC 1),X C =1/(2πfC ),X L =2πfL ,其中C1为被测电容、C 为电容器电容、L 为电感器的电感。

因此可得

1

f 4221-=LC C

C π (2.2)

可见,在芯片每个检测通道的输入端连接一个电感和电容,组成LC 电路,被测电容传感端(图3.1中灰色标识部分即为被测电容)与LC 电路相连接,将产生一个振荡频率,根据该频率值可计算出被测电容值。

三、电路与程序设计

1. 电路设计

(1)系统总体框图

图3.1 系统原理图

(2)控制模块系统框图

图3.2 控制模块原理图2.程序设计

(1)程序流程图

图3.3 测量电路程序流程图

图3.4 控制电路程序流程图(2)判决的流程图

图3.5 判决的流程图

根据设计要求,手势不同,测量电路能根据FDC2214传回的数据,与没有手势时的数值比较,CH1—CH6数值变化个数为z,CH7数值变化个数为x。

当x=1时,z等于0、1、2、3、4、5对应的手势分别为石头、1、2/剪刀、3、4、5/布。

当x=0时,表示没有手势输入。

四、测试方案与测试结果

1. 测试方案

(1)硬件测试

检查各个螺丝接口和硅胶黏合物件是否连接牢固、电路焊接口有无虚焊现象。

(2)软件仿真测试

通过CCS软件进行程序编译,检查有无程序上的编译或语法错误。再通过软件进行仿真,检查是否达到预期结果。

(3)硬件软件联调

硬件测试和软件仿真测试完成并达到测试标准后,将程序写到单片机,测试并记录5组相同的手势的判决结果和每一次的判决时间,并计算判决的准确率(百分比)以及平均时间。

2.测试条件与仪器

测试条件:5V电源供电。

测试仪器:秒表。

五、测试结果

1.测试结果

表5.1 判断结果表

2.误差分析

手掌放置的位置不对是引起误差的主要来源。手掌放置的位置不对,导致通道测出的频率值异常,从而导致测出的结果出错。

六、心得

经过四天三夜的努力奋斗,从最初的选材,到对材料进行切割、焊接、钻孔等加工,再到程序的编写调试。小组三人齐心协力,克服了设计中的种种问题。本次设计使用到的单片机MSP430F5529对于我们来说是一个比较熟悉的单片机,也就相对的容易上手。而反观FDC2214未曾接触过,所以显得陌生,经过这些天的学习也掌握了它的使用方法,这让我们收获十分巨大。对于一些元器件的使用也更加的熟练,本次设计全方面的考验了小组的配合能力,从硬件到软件再到报告,小组三人相互配合协作,使我们三人都能在这些方面上有所提高。

七、参考文献

[1]郑煊,刘萌,张鹍.MSP430单片机应用技术[M].北京:清华大学出版社,2014.

[2]吴建平.传感器原理及应用[M].北京:机械工业出版社,2009.

[3]肖志红.平板式电容传感器测量电路研究[J].现代电子技术,2004(17):105-106+108.

[4]蒙文舜,杨运经,刘云鹏.电容传感器的原理及应用[J].现代电子技术,2003(07):78-81.

[5]陈晓东,苏宛新,邢忠宝,王化龙.基于单片机的OLED显示器的应用[J].微计算机信

息,2006(05):5-6+82.

[6]路凯,李小坚.手势识别研究概述[J].西安文理学院学报(自然科学版),2006(02):91-94.

附录:电路原理图

1.系统总体原理图

图8.1 系统总体原理图

2.FDC2214电容传感器

图8.2 FDC2214电容传感器原理图

3.MSP430F5529单片机

图8.3 MSP430F5529单片机原理图4.12864LCD液晶显示屏

图8.4 12864LCD液晶显示屏

非接触式电子设计—手势感应、手势识别芯片IC

非接触式的好处:健康、安全和便利 如果接触式按键和触摸屏工作正常,为什么要替换它们呢?其实,红外线系统不会取代现有的系统,而是增强用户使用体验。增强的集成度和小型化正在改变客户使用电子产品的方式。现如今人们随身携带着智能手机、个人媒体播放器、电子书和平板电脑,“计算机”不再仅仅使用于用户家中或办公桌面。 咖啡馆、餐厅、健身房、巴士站、飞机候车厅,甚至卫生间正在成为新一代嵌入式电子产品的使用环境。在这些不同的操作环境中,用户的手有时会被占用、变脏、出汗或沾有食物 - 所有这些条件不利于触摸屏操作。如果客户是在健身房阅读电子图书,希望在跑步机上一边跑步一边翻页,这将更容易通过非接触式手势识别来翻页,而不是物理接触触摸屏或按下一个小按钮。 阿达电子公司 ADD01S、ADD01T手势识别芯片设有HMI人机对话接口,芯片内部集成最基本的手势识别和照明调光的控制功能,用户无需增加额外的单片机以及复杂的软件工作,是一款完整功能的手势识别解决方案,适用于所有类型的照明应用中,也可广泛应用于开关、探测物体、调光等多种非接触式的手势感应产品中。除此之外,该手势识别解决方案也为用户预留有一定的空间,可根据实际的需求进行一些个性化的设计和优化。 无需看到即可控制设备有很多好处。例如,一个非接触式界面,可以让汽车司机使用非接触式挥手实现安全的启动/结束通话或调整音量,而不需要找到复杂仪表上的调整按钮。并非所有的设备需要带触摸屏的复杂图形显示,非接触式用户界面能够提供新颖和差异化的操作方式。 多-LED感应系统可以基于用户是否接近系统而改变系统操作。机顶盒或HVAC控制面板显示器可以保持关闭,直到系统检测到一定距离内的用户才打开,这能有效降低功耗。电视也可以基于手势输入打开或关闭、公共场所的小型视频广告牌可以基于用户的靠近或远离而改变显示内容,可以使用手势输入与潜在客户交流,这是一种比采用触摸屏更卫生的方法。这种“环境感知”电子产品能够使终端产品更加智能, 同时也更加省电。 融合多-LED接近感应器和主机MCU(例如阿达电子公司的电容式触摸感应微控制器)的设计,打开了灵活使用电容式触摸和红外线非接触式技术实现用户界面的大门。主机触摸感应MCU提供必要的计算能力去解释红外线感应器的输出,帮助调整非接触式手势的时序和灵敏度。MCU还可以用于感应器的实时配置,

手势识别技术综述

手势识别技术综述 作者单位:河北工业大学计算机科学与软件学院 内容摘要: 手势识别是属于计算机科学与语言学的一个将人类手势通过数学算法针对人们所要表达的意思进行分析、判断并整合的交互技术。一般来说,手势识别技术并非针对单纯的手势,还可以对其他肢体动作进行识别,比如头部、胳臂等。

但是这其中手势占大多数。本文通过对手势识别的发展过程、使用工具、目的与市场等进行综述,梳理出手势识别发展的思路,让读者对手势识别有一个总体上的认识,同时也可以让读者在此基础上进行合理想象,对手势识别的未来有一个大体印象。 Abstract: Gesture recognition is an interactive technology using mathematical arithmetic to the analysis,judge and assembly meaning that people want to convey which belongs to computer science and Linguistics.In general, gesture recognition technology is not for simple gestures expressed by hands ,it can also aim to other body movement recognition, such as the head, arm and so on. But the gesture accounted for most of the analysis. In this paper, by describing the development process, tools used , objective and market of gesture recognition , we can sort out the ideas of the development of gesture recognition, and let readers have an overall understanding of gesture recognition. At the same time, it can let the reader imagine that on hand gesture recognition based on reason ,and have a general impression of its future. 1.定义 说到手势识别,首先要对手势识别中的手势有一个清晰的认知。手势在不同的学科中有不同含义,而在交互设计方面,手势与依赖鼠标、键盘等进行操控的区别是显而易见的,那就是手势是人们更乐意接受的、舒适而受交互设备限制小的方式,而且手势可供挖掘的信息远比依赖键盘鼠标的交互模式多。在学术界,人们试图对手势定义一个抽象、明确而简洁的概念以为手势及其应用的研究提供依据。1990年Eric Hulteen和Gord Kurtenbach曾发表的题为“Gestures in Human-Computer Communication”中定义:“手势为身体运动的一部分,它包括一部分信息,而且是一种能被观察到的有意义的运动。挥手道别是一种手势,而敲击键盘不是一种手势,因为手指的运动没有被观察,也不重要,它只表示键盘

基于STM32的手势识别控制器的设计

0 引言 操作控制器作为一种人机交互设备有着广泛的应用,比如在日常生活中,各种家电玩具的遥控器、触摸屏等,在工业生产领域各种仪器仪表设备的操作、设置和校验等。传统的操作控制器主要是通过人机接触的方式进行操作,比如按键,触摸屏等,这种操作方式容易产生静电,对于敏感的精密仪器设备影响较大,产生干扰[1]。有些设备会安置在高温高压或者有辐射的环境中,人机接触会给人体带来伤害,安全性低。市面上有些仪器仪表配有手持操作设备可以通过无线通信的方式进行操作,这种方式成本高,手持操作设备携带不方便。本文基于ARM 处理器芯片和光学数组式传感器设计了一种非接触的手势识别操作器,可将手势动作转化为控制信号,对于目标设备进行操作,安全便捷,可靠性高,具有广泛的应用场景[2]。 1 系统总体设计 本文设计的手势识别操作控制器系统总体分为三大模块,如图1所示,分别是手势检测模块,系统控制模块,和信号传输模块。 手势检测模块的主要任务是实时感应监测范围内的手 势活动,将感应到的手势活动信息转化为电信号并传输给控制系统模块。控制系统模块的功能是根据接收到的手势检测模块的电信号,经过处理识别具体的手势动作并转化为数字信号生成控制信息,通过信号传输模块对于目标设备进行操作[3]。 2 系统硬件设计 2.1 手势检测模块 手势识别传感器模块采用了采用原相科技(Pixart)公司的PAJ7620U2芯片,芯片结构如图2所示,该芯片内部集成了光学数组式传感器,以使复杂的手势和光标模式输出,可以检测出九种手势动作,支持上、下、左、右、前、后、顺时针旋转、逆时针旋转和挥动的手势动作识别,以及支持物体接近检测等功能。芯片结构功能如图所示,该芯片具体积小、灵敏度高、支持中断输出、兼容3.3V/5V 系统、使用方便等特点。 手势检测模块电路设计如图3所示,通过两个3.3V 超低压差稳压芯片,给PAJ7620芯片供电,外部分供电电源使用5V。IIC 通信时钟线IIC_SCL、IIC 通信数据线IIC_SDA 和中断输出引脚配有4.7引上拉电阻用于稳定信号输出。PAJ7620内部自带LED 驱动器,传感器感应阵列、目标信息提取阵列和手势识别阵列。PAJ7620工作时通过内部LED 驱动 器,驱动红外LED 向外发射红外线信号,当传感器阵列在有效的距离中探测到物体时,目标信息提取阵列会对探测目标进行特征原始数据的 获取,获取的数据会存在寄存器中,同时手势识 are operated by recognizing gesture movements. The application shows that the design is easy to operate, small size, high security, and can be widely used in scenarios.Key words : gesture recognition; sensor; STM32; operator 图1 系统结构图

基于手势识别的智能电视交互专利技术综述

基于手势识别的智能电视交互专利技术综述 智能电视具有操作系统,支持第三方应用资源实现功能扩展,支持多网络接入功能,具备人机交互、与其他智能设备进行交互等。随着计算机视觉的发展和人机交互的需要,手势识别研究取得了蓬勃的发展,通过手势识别对智能电视进行控制和操作,能够更轻松、高效地使用电视设备。文章利用专利数据库对智能电视手势识别技术进行了数据统计和分析,对该领域的专利申请趋势等情况做了归纳总结。 标签:智能电视;手势识别;发展状况;专利 Abstract:Intelligent TV has the operating system,which supports the third party application resources to realize the function expansion,supports the multi-network access function,has the man-machine interaction,and carries on the interaction with other intelligent devices. With the development of computer vision and the need of human-computer interaction,the research of gesture recognition has made great progress. By controlling and operating intelligent TV through gesture recognition,one can more easily and more efficiently use TV equipment. This paper makes use of patent database to analyze the data of intelligent TV gesture recognition technology,and summarizes the trend of patent application in this field. Keywords:intelligent TV;gesture recognition;development status;patent 引言 电视是家庭娱乐休闲必不可少的家用电器。如今,电视依然是最为普及的信息传播载体,用户在观看普通节目的同时,还可以上网、娱乐等。从用户的角度出发,通过自然简单、人性化的方式完成交互,无疑是用户完成电视操作的最佳方式。而手势具有直观、自然、丰富的特点,是一种符合人们日常习惯的交互手段,是表達信息和特定意图的良好载体,由于手势具有上述特性,因此在对智能电视进行操控中得到了良好的运用,实现了对智能电视自然灵活地操作。 1 基于手势识别的智能电视控制技术发展状态分析 1.1 技术分解 本文通过检索获得的专利申请进行统计分析,对基于手势识别的智能电视控制所涉及的具体技术和应用领域进行分解。 根据手势采集设备可以将手势识别系统大致分为基于数据手套和基于视觉的两种手势识别系统。其中,数据手套通过多个传感器反馈各关节的数据,并通过位置跟踪器返回人手所在的三维坐标,从而获取手势在三维空间中的位置信息和手指的运动信息。通过数据手套可以直接获取人手在三维空间中的位置和运动

三种简单手势识别

简单手势识别

一、背景 随着计算机的发展,人机交互技术由传统的鼠标键盘时代发展到了以语音输入、动作识别等技术为代表的自然交互时代n1。特别是视觉计算技术的发展,使计算机获得了初步视觉感知的能力,能“看懂”用户的动作。手势识别作为一种直观自然的输入方式,把人们从传统接触性的输入装置中解放出来,可以以一种更自然的方式与计算机交互,使计算机界面变得更加易‘引。 手势主要分为静态手势和动态手势两种,动态手势可以看作是连续的静态手势序列。动态手势具有丰富和直观的表达能力,与静态手势结合在一起,能创造出更丰富的语义。利用动态手势识别构建新型的交互界面,是新一代的人机交互界面对输入方式自然性的要求,可以弥补传统交互方式的不足。基于视觉和手势识别研究正处于蓬勃发展的阶段,仍存着的许多值得研究的问题。研究基于视觉的动态手势识别对于构建更加好友的人机交互界面很有意义。

二、手势识别概述 2.1、手势识别的概念 手势是姿势的一个子集,姿势这个概念没有精确的定义。一般认为,手势概念经过人的手转化为的手势动作,观察者看到的是手势动作的图像。手势的产生过程如图2-1所示。 图2-1 手势的产生过程 手势识别的过程则找一个从图像V到概念动作G的变换而,如图2-2所示。

2.2、手势识别流程 随着计算机的发展,人机交互技术由传统的鼠标键盘时代发展到了以语音输入、动作识别等技术为代表的自然交互时代n1。特别是视觉计算技术的发展,使计算机获得了初步视觉感知的能力,能“看懂”用户的动作。手势识别作为一种直观自然的输入方式,把人们从传统接触性的输入装置中解放出来,可以以一种更自然的方式与计算机交互,使计算机界面变得更加容易。 手势主要分为静态手势和动态手势两种,动态手势可以看作是连续的静态手势序列。动态手势具有丰富和直观的表达能力,与静态手势结合在一起,能创造出更丰富的语义。利用动态手势识别构建新型的交互界面,是新一代的人机交互界面对输入方式自然性的要求,可以弥补传统交互方式的不足。基于视觉和手势识别研究正处于蓬勃发展的阶段,仍存着的许多值得研究的问题。研究基于视觉的动态手势识别对于构建更加好友的人机交互界面很有意义。

基于FDC2214的手势识别系统设计与实现

? 159 ? ELECTRONICS WORLD ? 技术交流 系统采用了STM32作为核心控制芯片,使用FDC2214芯片获取电容值,通过滤波后,与样本数据对比,找到最短的k 个样本,判断其类型数量,达到识别手势的目的。 1.总体设计 系统总体设计框架如图1所示,采用了STM32F103ZET6作为核心控制芯片,而核心检测芯片则采用的是TI 公司的FDC2214来处理极板与手之间的容值。得到的数据通过卡尔曼滤波和knn 算法来判断出不同手势之间的区别。 以独立按键来调节菜单和录入手势模板,通过oled 显示屏做出反馈并显示结果。 将手势录入一边,系统会自动处理好数据,再进入判决模式就 可以识别手势。 图1 系统总体设计框架 2.系统硬件设计 2.1 控制部分 本系统的控制核心采用了STM32单片机,它具有72M 主频,64K RAM 和512K ROM ,拥有多达14个定时器,自带PWM ,ADC ,DA,实时时钟等功能。非常满足作为嵌入式系统的控制需求。2.2 检测部分 电容检测部分是整个系统中最为重要的一部分,它决定了系统的识别率高低与否,整个系统的数据采样与检测都是建立在电容检测芯片的准确性上,因此选取TI 公司的FDC2214芯片来做为电容检测芯片,这是一种非接触式电容传感器,还有一个重要特性就是采用了EMI (抗电磁干扰)架构,因此它可以屏蔽高噪声环境干扰,在复杂环境确保传感器数据的准确性(周孟强,刘会衡,基于FDC2214手势识别装置的设计与实现:电子制作,2019)。2.3 极板部分 极板采用的是三层结构,最下面一层使用亚克力板,主要用作 的oled 显示屏,它小巧精致,分辨率高,相比液晶屏幕它更加节能,非常适合作为系统的显示模块。 输入部分由4个独立按键组成。4个独立按键分别作为切换键,确认键,返回键和系统复位键。 2.5 供电部分 电源部分采用了两块锂电池作为电源,使用稳压模块将电压降为5v 并后接入整个系统。 3.系统软件设计 软件系统流程图如图3所示。3.1 数据滤波算法设计数据滤波是去除噪音干扰的有 基于FDC2214的手势识别系统设计与实现 杨凌职业技术学院 陈 阳 图2 极板实物图支撑。中间一层使用铝箔胶带作为极板的金属层。最上面一层采用硬质透明塑料膜,有防止手直接和铝箔接触和保护极板的作用(郭霞,谭亚丽,申淼,基于FDC2214的手势识别系统:传感器与微系统,2018)。这样的设计好处在于可以很方便的自行调整和更换极板上的铝箔来达到不同的检测要求。2.4 人机交互部分 人机交互部分由显示部分和按键输入组成,分别采用oled 显示屏和独立按键组成。 显示部分采用了0.96 英寸 图3 系统软件流程图 效方法,本系统采用卡尔曼滤波算法,这是一种当下使用非常广泛的滤波算法,它有计算量小,易于计算机实现等特点(张辉,卜雯意,施豪,基于FDC2214电容传感器的手势识别装置的设计与实现:巢湖学院学报,2018 )。将极板上采集的数据进行实时的处理,将数据中 图4 系统整机实物图的噪音清除,把误差降到最小。3.2 数据分类算法 kNN (k 最近邻算法)是一种数据分类方法,在学习模式下,将多次手势进行采样并滤波后,获取其特征向量作为样本数据,之后进入判定模式,系统会实时采样当数据稳定后,得到其特征向量,计算其特征向量与样 本数据之间的欧氏距离,找到相 距最短的k 个样本,判断其类型,即可识别手势(张硕,基于KNN 算法的空间手势识别研究与应用:吉林大学,2017)。 表1 石头,剪刀,布手势测试结果 手势实测结果石头石头正确石头石头正确石头石头正确石头石头正确石头石头正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确剪刀剪刀正确布布正确布布正确布布正确布布正确布布 正确 正确率:100%

基于摄像头的手势识别技术初步版本

基于摄像头的手势识别技术 1、手势识别的概念 手势是姿势的一个子集,姿势这个概念没有精确的定义。一般认为,手势概念经过人的于转化为的于势动作,观察者看到的是于势动作的图像雎1。手势的产生过程如图1-1所示。 图1-1 手势识别的过程则找一个从图像V到概念动作G的变换而,如图下所示。 2、手势识别流程 手势识别流程包手势图像获取、手势分割、手势特征提取、手势识别四大部分,如图2-1所示。 图2-1

3. 手势建模 在手势识别框架中,手势模型是一个最基本的部分。根据不同的应用背景,于势识别采用的模型会有不同,而对于不同的手势模型,采用的手势检测与跟踪算法、特征提取、识别技术也会有差别。手势建模主要分为基于表观的手势模型与基于三维的于势模型。 基于表观的手势建模是一种二维建模,从二维平面观察得到的平面图像信息描述于的特征。 基于表观的手势模型主要包括基于颜色的模型与基于轮廓的模型两种。 基于颜色的手势模型是把手势图像看作像素颜色的集合,通过提取手部的颜色的特征来描述手势。 基于颜色的手势模型的常用特征是颜色直方图。基于轮廓的手势模型是把手看作一个轮廓,通过提取手部图像中手的轮廓的几何特征来描述手势。 4. 手势检测与跟踪 手势检测与跟踪是手势识别处理流程中最前端的处理部分,它处理从摄像头获取到手势图像(序列),从中检测和分割手势对象。如果是动态手势识别,还要对手进行跟踪。 基于运动信息的方法: 基于运动信息的方法是假设在视频中只有手是运动物体。 其中一种方法是背景减法。 它要求背景静止不变,把视频中的每帧与背景相减,背景相同的部分变为零,不同的部分就认为是运动的物体,即手。

关于计算机视觉的手势识别综述

关于计算机视觉的手势识别综述 蒋指挥 (江苏科技大学江苏镇江 213022) 摘要:计算机技术的高速发展也产生了许多新领域,在此对以计算机视觉为基础的手势检测识别技术展开综述。主要阐述该技术的发展历程、实现方法、研究现状以及其存在的不足之处和发展方向。结果表明简单的可穿戴设备的手势识别和深度视觉传感器的手势识别和多方法交叉融合的手势识别是未来该领域的发展方向。 关键词:计算机视觉;手势识别;人机交互 A survey of gesture recognition in computer vision//Jiang Zhi Hui Abstract;With the rapid development of computer technology, a lot of new fields have been developed. In this paper, the technology of gesture detection and recognition based on computer vision is reviewed. This paper describes the development of the technology, the realization method, the research status and its shortcomings and development direction. The results show that the simple wearable device for hand gesture recognition and depth vision sensor for hand gesture recognition and multi method cross fusion for gesture recognition is the future direction of the development of the field. Key words:Computer vision; gesture recognition; human-computer interaction 计算机在我们的生活中越来越不可或缺,我们同时也对计算机提出了更高的要求,计算机视觉的手势识别正是对计算机应用拓展的重要途径,例如现在的VR技术,就是应用了手势识别才实现的。ABIResearch公司高级分析师约书亚·弗拉德(JoshuaFlood)指出:“免提操作或手势识别很快将成为高端旗舰智能手机、媒体平板电脑和智能眼镜区别于其他同类产品的一个关键因素。三星电子最新推出银河S4已经将这项技术用于其手机中,并以其全新的用户体验获得用户交口称赞。此外,在一系列新型智能眼镜产品即将发布之时,不难想象这类技术将被采用。”其实手势识别技术涵盖了许多领域,比如物理学、生物学等,实现手势识别的方式有很多种从一开始的二维手型识别、二维手势识别到后来的三维手势识别,正是计算机视觉技术的发展使得手势识别的实现方式更加多样。但目前的技术仍然很繁琐,冗杂的可穿戴设备就直接影响了使用者的舒适感,其还有很大的发展空间。 1、手势识别的发展历程及其实现方法

2019年全球主要手势识别技术系统细分行业分析

2019年全球主要手势识别技术系统细分行业分析 1、以数据手套为输入设备的手势识别系统 目前使用广泛的人机交互设备是数据手套(DataGlove)。数据手套反馈各关节的数据,并经一个位置跟踪器返回人手所在的三维坐标,从而来测量手势在三维空间中的位置信息和手指等关节的运动信息。这种系统可以直接获得人手在3D空间中的坐标和手指运动的参数,数据的精确度高,可识别的手势多且辨识率高。缺点是数据手套和位置跟踪器价格昂贵,有时也会给用户带来不便,如持戴的手部出汗等。 由于神经网络很适合用快速、交互的方式进行训练,可用于静态手势和动态手势的输入,网络连接的权值也可以根据情况调整,各种用户都能适应手势识别系统。它的缺点是对设备的依赖性高,一旦需更换数据手套,则须重新训练网络。 2、以摄像机为输入设备的手势识别系统 输入设备可用单个或多个摄像头或摄像机来采集手势信息,经计算机系统分析获取的图像来识别手势。摄像头或摄像机的价格相对较低,但计算过程较复杂,其识别率和实时性均较差。其优点是学习和使用简单灵活,不干扰用户,是更自然和直接的人与计算机的交互方式。 目前较成功的实现手势识别的系统,均为依据手掌轮廓区域的几何特征,如手的重心及轮廓、手指的方向和形状等进行分析完成识别,或根据手掌的其他特征,如手掌的运动轨迹、手掌的肤色及纹理等进行分析识别。 手势模型的选取在手势识别系统中,对确定识别范围起着关键性作用。模型的选取往往跟具体应用有关, 不同的应用目的选取不同的模型。比如,对于某个给定的目的,可以先建立简单粗糙的模型,而后再跟据需要建立精细有效的手势模型,这对于实现自然的人机交互是必须的,可使绝大部分手势都能被系统正确的识别出来。 目前,手势模型有基于表观的手势模型和基于3D模型的手势模型。前者通过分析手势在图像(序列)里的表观特征给手势建模,它是建立在手(臂)图像的表观之上的。后者的建模方法则略有不同,其先对手和臂的运动姿态建模,然后再估计手势模型参数。 图表1:同一手势的5种模型图 资料来源:蒂华森咨询

基于手势识别的人机交互综述

基于手势识别的人机交互综述 摘要:近年来,得益于虚拟现实、人机界面技术、计算机视觉等领域的发展,基于手势识别的人机交互技术得到大力的推动。本文就基于手势识别的人机交互技术展开综述。首先概括手势交互的涉及领域,回顾其发展史和国内外研究现状。接着阐明它的基本界定和分类,并在此基础上分析其热点关键技术。然后实例讨论了几种类型手势交互的典型应用。最后给出了结论。 关键词:虚拟现实;手势交互;计算机视觉;手势识别;特征跟踪 1.引言 人机交互技术通过输入、输出设备,以有效的方式实现交互主体与交互客体的对话。当前的人机交互技术已经从过去交互主体适应交互客体,发展为交互客体不断地适应交互主体的习惯和以交互主体为中心的新阶段[1,2,3,4]。以用户为中心的,新型、自然的人机交互技术逐渐成为开发者和科研工作者的关注重点。这类交互方式要求输入与输出能够最大限度地符合交互主体的行为习惯,并能够在交互主体的脑中顺利构建交互环路。由于手势具有极强的信息表述功能,加之人手操作行为本身就是人与世界相互作用的主要方式,因此,基于手识别的人机交互技术相关研究有着重要的理论价值和应用价值。基于手势识别的人机交互技术涉及计算机科学、认知心理学、行为学等诸多方面的知识。本文不能面面俱到,仅就手势交互的基本问题:手势语义的分类,以及当前发展概况、研究热点技术和典型系统应用等相关问题进行综述。 2.研究现状 目前,基于视觉的手势交互已被广泛的研究,由于手势本身的多义性及时空差异性,加之手形变的高维度及视觉问题本身的不适定性,基于视觉的手势识别一直是一项极富挑战性的究课题[5]。需要解决的核心问题是对手形的识别,对手势的跟踪等。传统的方法主要分为两大类:(1)基于模型(model-base)的方法;(2)基于表征(appearance-based)的方法[6]。这些方法及其衍生算法极大程度地依赖于计算机科学中虚拟现实、机器视觉、模式识别、人机交互等多个领域的交流与合作。相关的国际会议:CHI、ICCV、CVPR、ICAT、IEEE VR 为研究者提供了一个能充分交流的空间,并吸引了越来越多的研究人员共同参与合作。此外,学科之间的交流也吸引了心理学研究人员的共同参与。他们以从用户为中心出发,为基于手势交互研究和开发提出了宝贵意见[7]。纵观手势交互的发展历程,其研究重点也从早期简单的系统框架、低层特征提取[8]、手形模板匹配[8]等问题转变到关节式物体跟踪[9,10, 11]、跟踪性能评价[12]、操作型手势解析[14]等问题上。我国在基于手势识别的人机交互领域的研究近年来得到了长足的发展。研究机构集中在国内的研究所和高校的科研单位。目前国内手势交互的研究成果主要有:中国科学院软件研究所[15]的研究中,对二阶自回归过程动力学模型(Auto-Regressive Process, ARP)进行训练和学习,进而建立基于ARP 的预测模型,实现了人手运动的鲁棒性跟踪,在出现跟踪丢失的情况下在后续序列中可以自动恢复正确跟踪。中国科学院自动化研究所模式识别实验室提出一种基于区域的多连接体(手指)的三维运动跟踪算法[13],用多约束融合的方法以及手指的运动特性,建立多刚体的三维运动描述,通过三类基本约束条件,把跟踪问题归结为一个约束误差优化问题。清华大学的崔锦实博士,提出一种基于回归-优化方法的关节式物体的姿态估计方法[16]。该方法把回归分析与全局优化搜索相结合,保证了估计的精度和连续性;针对现有滤波器在高维非线性多峰

基于FDC2214设计的手势识别系统

- 75 - 第2期 2019年1月No.2January,2019 现介绍一种利用电容及谐振等原理,基于FDC2214非接触式电容传感器设计的手势识别系统的方法[1],该设计方案简单、动态响应速度快、稳态精度高、抗干扰能力强,将此方法应用在人工智能、无人驾驶、智能家居等某些方面,取得了很好的控制效果。1 设计方案及工作原理1.1 设计方案 采用FDC 传感器的一个通道,每个通道的两个输入端各接一个铜板,相当于电容板的两个极板,两个极板并排放置,通过一个通道的频率值判断手势,具体如图1所示。 图1 总体方案框图 1.2 工作原理 FDC 电容传感器4个通道每个通道接一个LC 谐振回路,且每个通道接两个铜板,相当于电容极板,根据电容定义: 4k S C d επ= (1)当介电常数ε或者极板间距离d 变化,电容也变化。手 势变化导致C 变化,LC 的谐振频率变化[2] ,FDC2214电容传 感器将频率转换为数字量,每一个电容值对应一个确定的数字量,具体如图2所示。2 核心部件电路设计2.1 电源电路设计 系统单片机需要3.3 V 电源供电,而FDC2214EV M 板采用2.7~3.6 V 供电,综合测试方便等各种因素,最 终采用220 V 交流电压经过变压器、整流电路、滤波器、 稳压电路产生5 V 供电电压,为防止芯片损坏以及获得较大的电路输出,采用7805系列芯片输出5 V 电压,然后通过AMS1117_3.3稳压芯片产生3.3 V 。 图2 测试原理图 2.2 FDC2214电路设计 FDC2214采用2.7~3.6 V 供电,激励频率为10 kHz ~ 10 MHz ,设计中采用AMS 1117系列产生3.3 V 电压,采用AMS1117系列稳压芯片产生3.3 V 供电电压。用40 M 有源晶振作为输入激励频率,4个通道分别接LC 谐振电路,电路如图3所示。 图3 FDC2214应用电路 3 系统软件设计 软件设计原理框图如图4所示[3]。 作者简介:黄冬梅(1968— ),女,辽宁岫岩人,教授,硕士;研究方向:嵌入式系统设计,新能源应用技术。 摘 要:文章采用TI 公司FDC2214非接触式电容传感器设计的手势识别系统,系统依据电容并联求和及LC 谐振原理,通过 FDC 测量返回信号的频率计算出相应的电容,从而达到通过测量电容变化进而感知手势变化的一种测量方式。此外,当环境以及人员变化时,该系统具备重新学习以适应变化的环境和人物,且系统抗干扰能力强。该系统的设计机理有望应用在未来无人驾驶、人工智能等方面。关键词:FDC2214;MSP430F5529;手势识别基于FDC2214设计的手势识别系统 黄冬梅1,王树鑫2 (1.哈尔滨职业技术学院 机电工程学院,黑龙江 哈尔滨 150080;2.哈尔滨工业大学 计算机学院,黑龙江 哈尔滨 150001) 无线互联科技 Wireless Internet Technology

2019年全球手势识别技术系统行业竞争分析

2019年全球手势识别技术系统行业竞争分析 重点手势识别技术系统企业市场份额 图表1:2016年我国手势识别技术系统主要品牌市场份额 数据来源:国家统计局手势识别技术系统行业市场集中度 图表2:2016年我国手势识别技术系统行业市场集中度分析 数据来源:国家统计局行业竞争群组 新进入者越来越多,竞争越来越激烈。对于整个手势识别技术系统行业来说,也是存在着新进入者的威胁的。由于行业技术壁垒和资金壁垒都不算很高,随时都可能有新的更大

规模的资金的企业进入,高新技术产品替代普通产品威胁大。 在手势识别技术系统市场上,大企业的产量都在全行业的总产量中占较大份额,从而产量和价格的变动都会对其他竞争对手以至整个行业的产量和价格产生举足轻重的影响。从而每个手势识别技术系统厂商在采取某项行动之前,必须首先推测或掌握自己这一行动对其他厂商的影响以及其他厂商可能做出的反应,考虑到这些因素之后,才能采取最有利的行动。整体来看,手势识别技术系统企业对价格的控制能力较强。 潜在进入者 新进入者在给行业带来新生产能力、新资源的同时,将希望在已被现有企业瓜分完毕的市场中赢得一席之地,这就有可能会与现有企业发生原材料与市场份额的竞争,最终导致行业中现有企业盈利水平降低,严重的话还有可能危及这些企业的生存。竞争性进入威胁的严重程度取决于两方面的因素,这就是进入新领域的障碍大小与预期现有企业对于进入者的反应情况。 进入障碍主要包括规模经济、产品差异、资本需要、转换成本、销售渠道开拓、政府行为与政策(如国家综合平衡统一建设的石化企业)、不受规模支配的成本劣势(如商业秘密、产供销关系、学习与经验曲线效应等)、自然资源(如冶金业对矿产的拥有)、地理环境(如造船厂只能建在海滨城市)等方面,这其中有些障碍是很难借助复制或仿造的方式来突破的。预期现有企业对进入者的反应情况,主要是采取报复行动的可能性大小,则取决于有关厂商的财力情况、报复记录、固定资产规模、行业增长速度等。总之,新企业进入一个行业的可能性大小,取决于进入者主观估计进入所能带来的潜在利益、所需花费的代价与所要承担的风险这三者的相对大小情况。 规模经济形成的进入障碍: ①表现于企业的某项或几项职能上,如在生产、研究与开发、采购、市场营销等职能上的规模经济,都可能是进入的主要障碍。 ②表现为某种或几种经营业务和活动上。 ③表现为联合成本,即企业在生产主导产品的同时并能生产副产品,使主导产品成本降低,这就迫使新加入者也必须能生产副产品,不然就会处于不利地位。 通过规模经济,能够合理的降低成本以及提高市场竞争力,因此手势识别技术系统行业对规模化的要求在逐渐的提高。由于手势识别技术系统行业的规模的提高,这也给潜在进入者造成一定的进入壁垒。同时政策的要求也给新进入者造成一定的限制。这些因素在一定程度上降低了手势识别技术系统领域的竞争力度。 替代品威胁 两个处于同行业或不同行业中的企业,可能会由于所生产的产品是互为替代品,从而在它们之间产生相互竞争行为,这种源自于替代品的竞争会以各种形式影响行业中现有企业的竞争战略。 首先,现有企业产品售价以及获利潜力的提高,将由于存在着能被用户方便接受的替代品而受到限制; 第二,由于替代品生产者的侵入,使得现有企业必须提高产品质量、或者通过降低成本来降低售价、或者使其产品具有特色,否则其销量与利润增长的目标就有可能受挫; 第三,源自替代品生产者的竞争强度,受产品买主转换成本高低的影响。总之,替代品价格越低、质量越好、用户转换成本越低,其所能产生的竞争压力就强;而这种来自替代品生产者的竞争压力的强度,可以具体通过考察替代品销售增长率、替代品厂家生产能力与盈利扩张情况来加以描述。

手势识别技术原理及解决方案

手势识别对于我们来说并不陌生,手势识别技术很早就有,目前也在逐渐成熟,现在大部分消费类应用都在试图增加这一识别功能,无论是智能家居,智能可穿戴以及VR 等应用领域,增加了手势识别控制功能,必能成为该应用产品的一大卖点。手势识别可以带来很多的好处,功能炫酷,操作方便,在很多应用场合都起到了良好的助力功能。 手势识别技术的发展 说起手势识别技术的发展,可以粗略分为两个阶段:二维手势识别以及三维手势识别。 早期的手势识别识别是基于二维彩色图像的识别技术,所谓的二维彩色图像是指通过普通摄像头拍出场景后,得到二维的静态图像,然后再通过计算机图形算法进行图像中内容的识别。二维的手型识别的只能识别出几个静态的手势动作,而且这些动作必须要提前进行预设好。 相比较二维手势识别,三维手势识别增加了一个Z轴的信息,它可以识别各种手型、手势和动作。三维手势识别也是现在手势识别发展的主要方向。不过这种包含一定深度信息的手势识别,需要特别的硬件来实现。常见的有通过传感器和光学摄像头来完成。 手势识别的关键技术 手势识别中最关键的包括对手势动作的跟踪以及后续的计算机数据处理。关于手势动作捕捉主要是通过光学和传感器两种方式来实现。手势识别推测的算法,包括模板匹配技术(二维手势识别技术使用的)、通过统计样本特征以及深度学习神经网络技术。

根据硬件实现方式的不同,目前行业内所采用的手势识别大约有三种: 1、结构光(Structure Light),通过激光的折射以及算法计算出物体的位置和深度信息,进而复原整个三维空间。结构光的代表产品有微软的Kinect一代。不过由于以来折射光的落点位移来计算位置,这种技术不能计算出精确的深度信息,对识别的距离也有严格的要求。 2、光飞时间(TIme of Flight),加载一个发光元件,通过CMOS传感器来捕捉计算光子的飞行时间,根据光子飞行时间推算出光子飞行的距离,也就得到了物体的深度信息。代表作品为Intel带手势识别功能的三维摄像头。 3、多角成像(MulTI-camera),现在手势识别领域的佼佼者Leap MoTIon使用的就是这种技术。它使用两个或者两个以上的摄像头同时采集图像,通过比对这些不同摄像头在同一时刻获得的图像的差别,使用算法来计算深度信息,从而多角三维成像。 简单介绍两个手势识别解决方案: 1、基于NXP LPC824 和Vishay VCNL4020 的手势识别方案 推出基于NXP LPC824 和Vishay VCNL4020 的手势识别方案,可以判断手势运动的

手势识别综述

手势识别综述 【摘要】介绍了手势识别的定义、分类,手势识别的过程,动态手势识别的过程。 【关键词】手势建模;傅里叶描述子;动态手势 1手势定义和分类 通常在人机交互领域手势定义为:人类通过手掌和手指的不同姿势组合形成的具有特定含义的信息的集合体称为手势。 手势通常可以分为操作性手势和交流性手势:如钢琴伴奏家在弹奏钢琴时的手指动作属于操作性手势,通过十个手指的不同组合,在键盘上发出不同声音形成乐曲的弹奏,只有操作的含义,不含有视觉上信息。马路上交警指挥路况时手上的动作属于交流性手势,通过司机观察交通警察手上不同动作理解警察的意思,含有视觉上的信息。 按照手势在表达的信息中所处的地位分为自主性手势和非自主性手势:哑语演示时表演者手上的手势动作完全表达了哑语表演者的思想,手势在语义交流中占主导地位,属于自主性手势,演员表演节目时有时为了更好的表达情感会用手势加深语义表达,但是手势只是为了更好表达意思,起到对演员表达思想的补充,这种手势动作这属于非自主性手势,在语义表达中不占主导地位。按照手势在交流活动中手势的作用对象分为离心手势和向心手势:比如说话人在下命令时手指向受命人这种手势属于离心手势,例如交通警察在交通管制中的手势属于离心手势,当听到某消息时听者会有相应的情感反应这时的手势属于向心手势,例如小朋友表示不同意时摇手即为向心手势。当操作者利用手势表达思想的时候有两种方式,一种是手臂不动完全通过手指和手掌的运动来表达操作者的意思,还有一种是忽略手指的运动,通过手的运动轨迹来表达思想。当我们做研究时会遇到手和手指同时运动的情况这时为了分类方便,需要做相应约束,当手是动的应忽略手指的动作,反之如果手指在动这时应忽略手的运动轨迹。因为基于表观的手势识别最终面临的是手的2D图像如果手和手指的运动同时考虑的话会给分类造成不必要的麻烦。 2手势识别的分类 按照对手势数据采集的方式分为数据手套型和摄像头型。 2.1数据手套 虚拟现实中重要组成部分,是一种通用的人机接口他可以将手指的复杂动作通过传感器反应到虚拟环境中去,在虚拟环境中真实再现手部动作。数据手套使用的效果关键是手套能不能将手指、手掌、手腕的弯曲真实的以数据形势反演到系统数据库中,让系统根据模型对手势进行有效识别,由于手部软组织和计算复杂性,数据手套的计算速度总是存在延时,同时从人机交互的角度手套佩戴也十分不方便,如果多人使用还存在卫生等问题,因此数据手套目前来说只是应用在试验阶段,真正推广到社会应用还有很多问题要解决。例如由海军某课题组开发的某型飞机训练仿真系统采用了数据手套,将人的动作如拉升飞机操纵杆通过数据手套反应到系统中,但是不足之处是手套存在一定的延时,通常第二个动作都准备做了,第一个动作系统往往还没执行,这和真实的飞机操作存在很大的差别,但是要想系统及时接受数据手套传感来的数据,往往对系统的中央处理器要求很高,需要大量投入经费和人力,存在一定的矛盾。因此数据手套在虚拟仿真中往

手势识别智能小车创意书

2014年重庆大学生 “合泰杯”单片机应用设计竞赛参赛 作品创意书 作品名称:手势智能小车 参赛学校:重庆工商职业学院 系名称:电子信息工程学院 指导老师:刘旭飞老师 参赛学生1:易虹羊 参赛学生2:胡照华 参赛学生3:姚正兰 2014年12月26日

作品创意书 一、摘要 智能小车作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。智能小车能够实时显示时间、速度、里程,具有自动寻迹、寻光、避障功能,可程控行驶速度、准确定位停车,远程传输图像等功能。手势控制智能小车的移动,小车具有自动循迹、避障等功能。提供一种更有趣、更方便的服务。 二、作品介绍 基于目前的普遍情况来看,多数智能小车遥控方式包括无线电遥控、红外线遥控和超声波遥控等。随着计算机的广泛应用,人机交互(Human Computer Interaction,HCI)已成为人们日常生活中的重要部分。人机交互的最终目标是实现人与机器自然的交流,因此手势识别研究顺应了发展需求。 1、国外手势识别研究状况 目前,手势识别已被广泛研究,尤其是基于视觉的手势识别。韩国Inda大学和Korea Polytechnic大学的JongShill Lee、YouongJoo Lee 等人用熵分析法从背景复杂的视频流中分割出手势区域并进行手势识别。使用链码的方法检测手势区域的轮廓,最后计算出从手势区域的质心到轮廓边界的距离。该系统课识别6种手势,平均识别率超过95%;6个人分别做每个手势的识别率平均达到90%—100%。印度研究者Meenaskshi Panwar 在视觉手势识别的基础上提出了一种基于结

基于深度图像技术的手势识别方法

龙源期刊网 https://www.360docs.net/doc/636642489.html, 基于深度图像技术的手势识别方法 作者:付学娜 来源:《电子技术与软件工程》2015年第04期 所谓手势是指人手或手臂同人手结合而产生的动作或姿势,作为人机交互的一项重要技术,手势识别通过在人手安置相关的硬件设备,并通过硬件设备中的计算模块对人手的位置和速度等信息进行获取,对于识别过程中的定位和跟踪均都具有良好的指导和保障作用。本文通过对手势识别系统与深度图像的成像原理进行阐述,进而结合手势区域分割的相关理论,对基于深度图像技术的手势识别方法展开了深入研究。 【关键词】深度图像技术手势识别圆形轨迹像素值变化点 随着科技的不断发展,基于视觉的手势识别已成为新一代人机交互中的核心技术。在借助相关图像信息的基础上,计算机可以对人手的各种姿态信息以及不同的手势信息尽心准确识别,有效提高了识别的速度与质量。本文以基于深度图像技术的手势识别作为研究对象,通过对手势识别系统及深度图像成像原理进行分析,从手势区域分割以及手势特征提取两方面出发,对深度图像技术下手势识别的方法做出了详细分析。 1 手势识别系统与深度图像成像原理 基于深度图像技术的手势识别系统主要包括了手势、深度图像、手势区域分割、手势特征提取以及手势识别和人机交互等,深度图像以非接触测量的方式对场景中的深度信息进行采集,而所采集的深度信息具有较强的稳定性和可靠性,即不受物体(人手)自身颜色、背景环境和纹理特征等因素的影响。本文以微软的Kinect作为图像采集和获取深度信息的工具,进而对手势识别展开分析。 基于Kinect下的深度图像技术下所采集的640×480深度图像信息的速度可达30f/s,且信息的分辨率维持在5mm左右,在应用方面具有较强的合理性。通过在相关场景采集的场景深度值进行转换,使其转移到灰度值空间,并使深度图像中所有的像素点灰度值大小与实际场景中不同的深度值相对应,进而显示成像。值得注意的是品拍摄区域与深度摄像头之间的距离与图像中的灰度值呈现出明显的负相关关系,即灰度值越大,距离越近。 2 基于深度图像技术的手势识别 2.1 手势区域分割 虽然具有相同深度的像素点,其在深度图像中所具有的灰度值也具有较高的一致性,但由于在每次对人手手势进行拍摄时,人手同深度摄像头间的距离存在差异。因此,无法利用单一的固定阈值对手势区域进行分割,故本文以灰度值直方图作为主要研究方法,进而确定出相关背景及手势区域分割的阈值。由于人手做出相关姿势的区域距离深度摄像头较近,且相对于整

相关文档
最新文档