工程力学专业介绍及发展方向

工程力学专业介绍及发展方向
工程力学专业介绍及发展方向

工程力学专业介绍及发展方向

摘要:工程力学是力学的一个分支,它主要涉及机械、土建、材料、能源、交通、航空、船舶、水利、化工等各种工程与力学结合的领域,分为六大研究方向:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与工程爆破。学制一般为四年,毕业后授予工学学士。就业面相当广泛,可以继续读博、从事科学研究、教师、公务员,或到国防单位工作,去外企等等。总的来说,工程力学专业具有现代工程与理论相结合的的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。

关键词:产生、专业介绍、研究方向、发展前景、就业

一、引言

工程力学是研究有关物质宏观运动规律,及其应用的科学。工程给力学提出问题,力学的研究成果改进工程设计思想。从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。[0]

(1)产生

工程力学作为力学的一个分支,是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。

在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;

在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;

由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。

在这样的背景条件下,促使了工程力学的建立。工程力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。

工程力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。

工程力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。

工程力学注重运算手段,不满足于问题的原则解决,要求作彻底的数值计算。因此,工程力学的研究力求采用高效率的运算方法和现代化的电子运算工具。

工程力学注重从微观到宏观。以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而工程力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是工程力学建立的主导思想和根本目的。

虽然工程力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。工程力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。[1]

(2)主要内容

工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。

工程力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。

工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等

物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。

近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,工程力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。[2]

(3)研究方向

(一)非线性力学与工程

主要研究非线性力学的基础理论和工程实用技术。研究土木建筑、水利水电、采矿、交通等部门中的地下峒室、采场、隧道、井巷、高层建筑基础、桥梁与基础、公路边坡、矿山边坡、水利水电坝基与边坡等工程在普通力场和耦合力作用下发生变形、位移和破坏的规律。通过现场监测、实验室模拟及计算机数值分析等综合研究,为工程设计和施工、实现工程设计优化、保证生产和施工安全提供科学依据。本研究方向致力于将现代前沿科学技术,如人工智能技术、灰色理论、数值模拟、非线性力学和不确定性分析技术等应用到岩土、结构材料力学分析和工程应用研究中来,不断提高工程设计和施工的科学水平。

(二)工程稳定性分析及控制技术

主要研究建筑结构、建筑地基、地下铁道、地下隧道、地下峒室、矿山井巷和岩土边坡、坝坡等结构和岩土工程的稳定性和可靠性分析、预测及其控制技术。通过现场监测、物理模拟及数值法计算,研究各种因素及其耦合作用对工程稳定性的影响,研究符合静、动力学和耦合特征的稳定性控制技术,特别是研究岩土体加固的作用机理、参数确定和新技术开发,新奥法在岩土工程中的应用。

(三)应力与变形测量理论和破坏检测技术

应力和变形状态及其分布规律是一切工程稳定性的最基本方法。应力和应变测量是了解工程中应力、变形与破坏状态及其分布规律的重要手段。本方向研究重点为以下列两个方面:

(1)地应力测量理论和技术。研究地应力测量的原理和方法,特别对目前国内外应用最广泛的应力解除法和水压致裂法在不连续、非均质、各相异性和非线性岩体中的工作性能进行系统的试验和研究。发展实用的测量和分析技术、仪器,以提高应力解除法和水压致裂法在复杂岩体和地质条件下的测量精度和可靠性。同时,发展新的地应力测量理论和监测技术、仪器。

(2)在无损检测技术。现代无损检测技术、岩土材料和工程结构内部损伤、破坏、寿命评估、反分析理论和技术方法。

(四)数值分析方法与工程应用

数值分析已经成为岩土工程开挖与结构建造动态过程模拟、工程结构优化设计和稳定性分析的最有利手段。本研究方向主要研究各种数值分析方法,包括有限元法、边界单元法、离散单元法、不连续变形分析法和问题反分析方法和优化设计等在岩土和结构工程中的应用。重点在于应用上述方法合理、准确地模拟和分析、解决岩土和结构工程中的实际问题。要求培养的人才必须具有坚实的数学、力学基础,通晓数值分析的基本原理和方法,有不断

发展现有的分析理论和技术,使之具有更加广泛的实用性和更高的精度的能力。同时还应具有编制实用程序软件的能力。

(五)工程材料物理力学性质

此研究方向以固体力学为基础,运用断裂力学、损伤力学和流变力学的新成就,研究岩土材料和建筑材料的力学性能。

研究完整岩石的力学性质,在室内试验基础上研究岩石的应力应变关系、岩石破坏类型及破坏机制、岩石强度准则;研究节理岩体的力学特性,研究结构面对岩石强度、变形的影响;研究岩石流变力学,岩石和岩体的流变特性;研究软岩的力学特性,研究膨胀岩的力学特性、膨胀机制,研究软岩、膨胀岩稳定性的控制。研究混凝土及人工复合材料的细观破坏机理与宏观断裂与强度,徐变、疲劳以及环境因素对材料性能和寿命的影响。根据现场试验和实验室试验的结果,运用相关的力学理论,以及概论统计、模糊数学、灰色理论、人工智能理论和不确定性分析理论等建立岩石、岩体和混凝土等材料的本构模型也是本方向的重要研究内容。

(六)工程动力学与工程爆破

研究冲击和动荷载对岩石的作用及其在岩体和地壳中引起的应力、应变、位移、裂隙和破坏等效应。在工程上主要研究凿岩、岩石破碎、桩基工程、地下开挖工程、岩爆、冲击地压、矿震和地震等与岩石动力学与工程有关的实际问题。

研究炸药与爆炸的基本理论;现代岩石爆破理论;地质结构面的力学特征与爆破作用;工程爆破(一般土岩爆破、大爆破、拆除爆破和特种爆破)的设计与施工;爆破的量测技术和爆破过程的计算机模拟。[3]

(4) 就业前景

就业单位:主要到各种工程(如机械、土建、材料、能源、交通、航空、船舶、水利、化工等)中从事与力学有关的科研、技术开发、工程设计和力学教学工作。去些民办的事业、企业单位从事产品的检测或开发,这类企业以机械、建筑等重工业行业为主,毕业生可在机械、土木、水利工程类企、事业单位从事设计、计算和强度分析等工作,在研制工程应用软件的高新技术公司中从事软件设计工作,在科技、教育部门从事科研、教学工作。也可以继续攻读力学、机械、土木与经济管理学科的研究生。工程力学这个专业最好以后考研究生。

目前已经就业的情况,工程力学专业的毕业生的去向有:1、学校和科研单位,选择研究所的人占了很大一部分比例。大多数是航空集团下属的研究所。这种单位的工资水平不是很高,但是也是比较安稳的。工作地点主要在沈阳、西安、北京、上海。去学校当老师的相对少一些,主要是由于目前硕士生的扩招,学校对老师的学历要求

也随之提高。2、继续读博,这也是很多工程力学硕士生的选择。而且很大一部分选择了继续在武大读博,除了武大的工程力学实力比较雄厚原因之外,导师因素和本身对硕士课题比较了解也是一个原因。由于硕士期间对课题有一定的理解,有利于博士期间展开研究。这一部分人将来博士毕业基本上是去学校当老师。3、国防单位,很大原因是南航在本科的时候招收了国防生,这些国防生读完了硕士就去部队工作了。

4、外企,一些人进了外企,比如三星、爱默生、福特等等。这些单位做的工作包括有限元计算,优化,软件开发等等。这种单位待遇相对好一些,当然劳动强度也高。

5、其他,除了以上这些去向,还有人选择考公务员,或者到和本科专业相关的单位,比如就有本科专业是土木工程的同学毕业后去建筑设计研究院。

因此,工程力学的就业面是比较广的。但是,如果要找个好工作还是比较难的,这里所谓的“好”综合了单位、待遇、工作地点等因素。如果除了有比较扎实的力学知识,还有别方面的知识,这样在就业的时候就比较有优势。比如熟练某种计算机语言、掌握了某个大型软件、或者会一门其它语言,甚至有一些艺术细胞(公司希望开发的产品除了功能强大,界面也要比较出色)。学校和科研单位选择研究所的人占了很大一部分比例,大多数是航空集团下属的研究所,这种单位的工资水平不是很高,但是也是比较安稳的,工作地点主要在沈阳、西安、北京、上海。[4]

二、结题

可以看到现代力学的工作领域是十分广阔的。它对工农业生产、交通运输、国防建设有着密切的关系, 可以说不可能设想不要现代力学就能实现四个现代化。现代力学工作者又和基础科学家一道, 并肩战斗, 推进开拓人对自然界的认识, 发展自然科学基础理论。[5] 望广大有志青年投身祖国建设,以一腔热血报效国家!

参考文献:

[0]百度-百科名片--工程力学

[1]来自大学力学论坛(https://www.360docs.net/doc/638144442.html,/thread-9235-1-1.html)

[2]《物理学简史》

[3]土木与环境工程学院(https://www.360docs.net/doc/638144442.html,/cn/35.html)

[4]百度百科《工程力学专业》(https://www.360docs.net/doc/638144442.html,/view/146139.htm)

[5] 报刊《工程力学》1984年9月第一卷第一期《论工程力学》钱学森、周培源、钱令希、郑哲敏、何广乾、陈宗基等编著。

来源于中国研究生教育专业排行——工程力学,更多扩展阅读-》工程力学是研究

理论与应用力学概述及就业前景

概述: 本专业培养掌握力学的基本理论、基本知识和基本技能,具有良好的科学素养,能在力学及各工程科学、计算机应用等相关科学领域从事科研、教学、技术开发和管理工作的高级专门人才。 一、专业基本情况 1、培养目标 本专业培养掌握力学的基本理论、基本知识和基本技能,能在力学及相关科学领域从事科研、教学、技术和管理工作的高级专门人才。 2、培养要求 本专业学生主要学习必需的数学、物理的基础知识,学习力学基础理论及某一专业方向的专门知识,加强实验能力和计算机应用能力的训练,注意培养理论分析能力和力学应用的能力。受到科学研究和工程技术应用的初步训练,具有良好的科学素养。毕业生应获得以下几方面的知识和能力: ◆掌握数学、物理的基础知识,具有较强的分析和演算能力; ◆掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法; ◆了解相近专业的一般原理和知识; ◆对本专业范围内科学技术的新发展有所了解; ◆了解国家科技、产业政策、知识产权等有关政策和法规; ◆掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 3、主干学科 力学。 4、主要课程 数学分析、高等代数、数学物理方法、计算方法、程序设计、普通物理学、理论力学、材料力学、弹性力学、流体力学等。 5、实践教学 包括生产实习、科研训练或毕业论文(设计)等,一般安排10—20周。主要专业实验:固体力学实验、流体力学实验。 6、修业时间 4年。 7、学位情况 理学或工学学士。 8、相关专业 数学与应用数学、物理学、应用物理学。 9、原专业名 理论与应用力学。 二、专业综合介绍 古希腊科学家阿基米德说:给我一个支点,我可以翘起整个地球。这就是一个经典而又古老的力学问题。理论与应用力学是基于数学、计算机科学等基础学科,研究一般力学问题的专业,介于理论研究和工程实际之间,分为流体力学和固体力学两个方向。它在强调研究理论问题的同时尽量将其运用到工程实际当中。力学与数学联系紧密,优秀的力学家本身就是数学家,比如牛顿。所以掌握

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

工程力学常用公式

公式: 1、轴向拉压杆件截面正应力 N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形 Ni i i F l l EA ?=∑ 3、伸长率: 1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式: T I ρρ τρ= ,最大切应力: max P P T T R I W τ= =, 4 4 (1) 32 P d I πα= -, 3 4 (1) 16 P d W πα= -,强度校核: max max []P T W ττ= ≤ 6、单位扭转角: P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段 轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力: 2 02T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -, sin 2cos 22 x y x ασστατα -= + 9、平面应力状态三个主应力: '2 x y σσσ+= + ''2 x y σσσ+= '''0σ= 最大切应 力 max ''' 2 σστ-=± =,最大正应力方位 02tan 2x x y τασσ=- - 10 、第三和第四强度理论: 3r σ= , 4r σ=

11、平面弯曲杆件正应力: Z My I σ= ,截面上下对称时, Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1) 64Z d I πα=- 矩形的抗扭截面系数:26Z bh W = ,圆形的抗扭截面系数:3 4(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力: max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max [] w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ= ± (3)弯扭变形杆件的强度计算: 3[]r Z σσ= = ≤4[] r Z σσ= = ≤

工程力学在材料中的应用

工程力学在材料中的应用 首先要了解什么叫工程力学,工程力学是干什么的? 工程力学一般包括理论力学的静力学和材料力学的有关内容,是研究物体机械运动的一般规律和有关构建的强度、刚度、稳定性理论的科学,是一门理论性和实践性都较强的专业基础课。 这里我们只对工程力学在材料中应用进行讨论,即材料力学。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形钻床立柱同时发生拉伸与弯曲两种变形。 在20世纪50年代出现了一些极端条件下的工程技术问题所涉及的温度高达几千度到几百万度压力达几万到几百万大气压应变率达百万分之一亿分之一秒等。在这样的条件下介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作需要用微观分析的方法阐明介质和材料的性质在一些力学问题中出现了特征尺度与微观结构的特征尺度可比拟的情况因而必须从微观结构分析入手处理宏观问题出现一些远离平衡态的力学问题必须从微观分析出发以求了解耗散过程的高阶项由于对新材料的需求以及大批新型材料的出现要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下促使了工程力学的建立。工程力学之所以出现一方面是迫切要求能有一种有效的手段预知介质和材料在极端条件下的性质及其随状态参量变化的规律另一方面是近代科学的发展特别是原子分子物理和统计力学的建立和发展物质的微观结构及其运动规律已经比较清楚为从微观状态推算出宏观特性提供了可能 材料力学研究的主要问题是杆件的强度、刚度和稳定性问题,因此,制成杆件的物体就应该是变形固体,而不能像理论力学中那样认为是刚体。变形固体的变形就成为它的主要基本性质之一,必须予以重视。例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须把组成杆件的各种固体看做是变形固体....。固体之所以发生变形,是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。在材料力学中,我们要着重研究这种外力和变形之间的关系。大多数变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复其原有形状和尺寸大小的特性,我们把变形固体的这种基本性质称为弹性..,把具有这种弹性性质的变形固体称为完全弹性体.....。若变形固体的变形在外力除去后只能恢复其中一部分,这样的固体称为部.分弹性体....。部分弹性体的变形可分为两部分;一部分是随着外力除去

工程力学公式大全

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力 : '2x y σσσ+= ,''2 x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

工程力学专业培养方案

工程力学专业培养方案 (2018版) 一、培养目标与规格 本专业培养学生成为具备良好的道德素质、文化素质、社会责任、国际视野,具有扎实的数学力学基础、试验测试分析、计算机应用与开发能力,有较强的创新意识与团队协作精神,能在航空航天、船舶海洋等国家重大战略需求领域从事与力学相关的科学研究或机械车辆、土木建筑、核能风能等其他领域从事科研、教学、科技与开发及管理工作的研究型、复合型人才。 工程力学专业的人才培养规格为研究型、复合型人才。 二、规范与要求 1.知识架构 A1文学、历史、哲学、艺术等的基本知识——要求学生在基础教育所达到的知识水平上实现进一步的提升。 A2社会科学学科的研究方法入门知识——借助于某一个学科的某些片断,通过短暂的学术探索,让学生接触到这个学科的研究方法,而不是要学生学习经过简化的、较为完整的学科概论或常识。 A3自然科学与工程技术的基础知识和前沿知识——这些知识应与社会和个人生活紧密联系,有助于学生提高科学素养和工程意识。 A4数学或逻辑学的基础知识——在基础教育水平之上,进一步培养学生的定量分析和逻辑思维能力。 A5掌握本专业所需物理、计算机等相关学科的基本理论、基本知识和基本技能。 A6了解现代力学的知识体系,理解力学学科认识世界的基本思路和方法,正确认识力学作为现代工程学科的重要性和发展能力。 A7掌握工程力学的知识体系。 A8掌握力学实验操作、进行实验分析和数据统计的方法。 A9掌握某些计算机的数值分析方法及其在力学学科领域内应用的技能。 2.能力要求 B1清晰思考和用语言文字准确表达的能力; B2发现、分析和解决问题的能力; B3批判性思考和创造性工作的能力; B4与不同类型的人合作共事的能力,和组织领导能力;

《工程力学》复习资料

《工程力学》复习资料 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-

平面汇交力系平衡的必要与充分条件是:_该力系的合力为零__。该力系中各力构成的力多边形_自行封闭__。 一物块重600N,放在不光滑的平面上,摩擦系数 f=,在左侧有一推力150N,物块有向右滑动的 趋势。F max=_____180N_____,所以此物块处于静 止状态,而其F=__150N__。 刚体在作平动过程中,其上各点的____轨迹形状 ______相同,每一瞬时,各点具有___相同____ 的速度和加速度。 在考虑滑动摩擦的问题中,物体处于平衡状态时主动力的合力与接触面法线间的最大夹角称为__摩擦角__. 某简支梁AB受载荷如图所示,现分别用R A、R B表示支座A、B处的约束反力,则它们的关系为( C )。 R B =R B D.无法比较 材料不同的两物块A和B叠放在水平面上,已知物块A重,物块B重,物块A、B 间的摩擦系数f1=,物块B与地面间的摩擦系数f2=,拉动B物块所需要的最小力为( A )。 A.0.14kN 在无阻共振曲线中,当激振力频率等于系统的固有频率时,振幅B趋近于( C )。 A.零 B.静变形 C.无穷大 D.一个定值 虎克定律应用的条件是( C )。 A.只适用于塑性材料 B.只适用于轴向拉伸 C.应力不超过比例极限 D.应力不超过屈服极限 梁的截面为T字型,Z轴通过横截面的形心,弯矩图如图所示,则有( B )。 A.最大拉应力和最大压应力位于同一截面C B.最大拉应力位于截面C,最大压应力位于截面D C.最大拉应力位于截面D,最大压应力位于截面C D.最大拉应力和最大压应力位于同一截面D 圆轴扭转时,表面上任一点处于( B )应力状态。

理论与应用力学专业

理论与应用力学专业本科培养方案 一、培养目标 培养德智体美全面发展与健康个性和谐统一、富有创新精神、实践能力和国际视野的高素质力学专业人才。 学生毕业后,能在力学及相关科学领域从事科研、教学、技术和管理工作。 二、业务培养要求 1.掌握数学、物理的基础知识,具有较强的分析和演算能力; 2.掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法; 3.了解相近专业的一般原理和知识; 4.对本专业范围内科学技术的新发展有所了解; 5.了解国家科技、产业政策、知识产权等有关政策和法规; 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 三、主干学科及主要课程 主干学科:力学。 主要课程:数学分析、高等代数、数学物理方法、科学计算方法、程序设计、普通物理学、理论力学、材料力学、弹性力学、流体力学、振动理论、计算力学、力学实验等。 四、专业特色及专业方向 本专业学生主要学习必需的数学、物理基础知识,学习力学基础理论及某些专业方向的专门知识,加强实验能力和计算机应用能力的训练,注意培养理论分析能力和力学应用的能力,接受科学研究和工程技术应用的初步训练,具有良好的科学素养。 五、学制 一般为4年。 六、学位授予 理学学士。 七、毕业合格标准 1.具有较好的思想和身体素质,符合学校规定的德育和体育标准。 2.通过培养方案的全部教学环节,总学分达到158学分(其中理论教学145 学分,实践教学8 学分,课外培养计划5学分)。

城市地下空间工程专业简介与就业前景分析

城市地下空间工程专业简介与就业前景分析 江学良 地下工程教研室 一、开设城市地下空间工程专业的主要理由 1、我国城市地下空间工程具有巨大的发展前景。 近二十年来,我国城市以前所未有的速度发展加快,规模不断扩大,人口急剧膨胀,不同程度地出现了建筑用地紧张、生存空间拥挤、交通阻塞,基础设施落后、生态失衡、环境恶化等问题,成为现代城市可持续发展的障碍。开发城市地下空间是解决这些问题,实现城市可持续发展的有效途径,是城市发展的重要方向。国外发达国家的城市建设经验充分证明了这点,联合国自然资源委员会也于1981年5月正式把地下空间确定为重要的自然资源。 2.城市地下空间工程专业具有学科体系的独特性和完整性。 在大土木工程专业中可设置城市地下空间工程专业方向。但是,城市地下空间工程专业既有自身特定的内涵,又是多个学科的结合点,具有交叉性、边缘性的特征。传统的土木工程专业,主要注重地面建筑、桥梁、交通、岩土等工程,没有真正以城市地下空间利用为主轴的系统的专业建制。城市地下空间工程专业涉及到城市规划、地下建筑学、地下结构、工程地质、水文地质和地下水力学、岩土力学、环境科学、地下通风以及其它相关的市政工程如城市交通等多领域、多学科。因此,在高等学校设置城市地下空间工程本科专业,培养城市地下空间开发和利用的新型人材,是适应我国城市现代化发展对人才要求,尽快提升我国城市地下空间开发和利用的水平,使我国城市发展走上健康和繁荣的必由之路。 3.我院已积累了土木工程、工程力学和城市规划等专业丰富的教学经验,为城市地下空间工程专业的教学提供了良好的基础。 我院在土木工程专业中,开设了有关力学、土力学以及地下工程的专业课程组,并且在城市规划专业中开设了有关地下工程规划方面的课程等,积累了土木工程、工程力学和城市规划等专业丰富的教学经验。我院从2010年开始在土木工程专业开设了城市地下空间工程方向,至今年6月份已有两届毕业生,为城市地下空间工程专业的教学提供了良好的基础。 4.城市地下空间工程建设急需大量的专业技术人才。 现有的城市规划、土木工程以及工程设计和管理人员没有受过城市地下空间工程建设的全面和系统的教育,缺乏对城市地下空间利用的认识和从事城市地下空间工程建设的系统知识,因此,在城市规划、工程设计和管理上,不能很好体现地下空间利用对城市现代化的重要性,不能很好地利用城市地下空间资源来建设现代化城市。因此,城市现代化建设急需大量受过城市地下空间工程专业知识系统教育的人材。随着我国第三波地铁建设高潮的到来,首先拉动的就是地下工程技术人才的需求。 二、城市地下空间工程专业的办学条件

6工程力学材料力学答案

6-9 已知物体重W =100 N ,斜面倾角为30o (题6-9图a ,tan30o =0.577),物块与斜面间摩擦 因数为f s =0.38,f ’s =0.37,求物块与斜面间的摩擦力?并问物体在斜面上是静止、下滑还是上滑?如果使物块沿斜面向上运动,求施加于物块并与斜面平行的力F 至少应为多大? 解:(1) 确定摩擦角,并和主动力合力作用线与接触面法向夹角相比较; 0.38 300.577 20.8 o f s o f t g f tg tg ?α?α ====∴= (2) 判断物体的状态,求摩擦力:物体下滑,物体与斜面的动滑动摩擦力为 ''cos 32 N s F f W α=?= (3) 物体有向上滑动趋势,且静滑动摩擦力达到最大时,全约束力与接触面法向夹角等于摩擦角; (4) 画封闭的力三角形,求力F ; ()()() ()sin sin 90sin 82.9 N sin 90o f f f o f W F F W α??α??= +-+= =- 6-10 重500 N 的物体A 置于重400 N 的物体B 上,B 又置于水平面C 上如题图所示。已知 f AB =0.3,f BC =0.2,今在A 上作用一与水平面成30o 的力F 。问当F 力逐渐加大时,是A 先动呢?还是A 、B 一起滑动?如果B 物体重为200 N ,情况又如何? (a) (b)

解:(1) 确定A 、B 和B 、C 间的摩擦角: 12arctg 16.7arctg 11.3 o f AB o f BC f f ??==== (2) 当A 、B 间的静滑动摩擦力达到最大时,画物体A 的受力图和封闭力三角形; ()() 1111 11sin sin 1809030sin 209 N sin 60A o o o f f f A o f F W F W ????= ---∴= ?=- (3) 当B 、C 间的静滑动摩擦力达到最大时,画物体A 与B 的受力图和封闭力三角形; ()() 2222 22sin sin 1809030sin 234 N sin 60A B o o o f f f A B o f F W F W ????++= ---∴= ?=- (4) 比较F 1和F 2; 12F F 物体A 先滑动; (4) 如果W B =200 N ,则W A+B =700 N ,再求F 2; () 2 2212 sin 183 N sin 60f A B o f F W F F ??+= ?=- 物体A 和B 一起滑动; 6-11 均质梯长为l ,重为P ,B 端靠在光滑铅直墙上,如图所示,已知梯与地面的静摩擦因 数f sA ,求平衡时θ=? W ?f

工程力学公式

轴向拉伸与压缩 正应力ζ=F N/A 正应变ε=Δl/l (无量纲) l/EA EA为抗拉(压)刚度 胡克定律Δl=F N ζ=Eε E为弹性模量 泊松比ν=【ε’/ε】横向比纵向 刚度条件:Δl=F l/EA <=[Δl] 或δ<=[δ] N 先计算每段的轴力,每段的Δl加起来即为总的Δl 注意节点是位移 P151 拉压超静定: 1按照约束的性质画出杆件或节点的受力图 2根据静力平衡列出所有独立的方程 3画出杆件或杆系节点的变形-位移图 4根据变形几何关系图建立变形几何关系方程,建立补充方程 5将胡可定律带入变形几何方程,/得到解题需要的补充方程 6独立方程与补充方程联立,求的所有的约束力 剪切 1剪切胡克定律η=GγG~MPa为剪切弹性模量,γ为切应变(无量纲)2 G=E/2(1+ν)ν泊松比 3剪切与挤压实例 校核铆钉的剪切强度 单剪(两层板)η=Fs/As =F/A F为一个方向的拉力 双剪(三层板)η=Fs/As =F/nA n整块板上所有的铆钉 校核铆钉的挤压强度 挤压ζc=Fc/Ac ζc=Fc/nAc=F/ntd n为对称轴一侧的铆钉数 校核板(主板、盖板)的抗拉强度 ζ=F/A=F/t(b-nd)<<[ζ] n 为危险截面上的铆钉数

1外力偶矩:T=9550 N k / n ( N k~kw,n~r/min) 2扭矩Mn = T (Mn~N*m) 判断方向,右手螺旋定则,向外为正,内为负3扭矩图 4切应变、剪切角γ= θ*ρ(θ为单位扭转角) 5切应力:η ρ=G*γρ=Gρθ 扭转角公式:dψ=Mdx/GIp 6θ=Mn/G*Ip 刚度校核公式 Ip~mm4 极惯性矩, 与截面形状有关,GIp 抗扭刚度,θ~rad/m 7ηmax=Mn/Wp=Mnρ/Ip 强度校核公式 Wp~mm3抗扭截面模量,与截面形状有关 8 Ip 和Wp 的计算: 实心圆截面: Wp = ПD3/16 Ip = ПD4/32 空心圆截面:Wp = ПD3(1-α4)/16 Ip = ПD4(1-α4)/32 薄壁圆截面:Wp = 2Пr 02t r =D /2=D/2 Ip = 2Пr 3t 9 扭转角θ= Mn*l/G*Ip (l为杆长)θ~rad/m 10 自由扭转 截面周边的切应力方向与周边平行,角点出切应力为0 ηmax=Mn/αhb2 长边中点处 θ=Mn/βGhb3 b为短边,h为长边,αβ为相关系数 无论是扭转强度,还是扭转刚度,圆形截面比正方形截面要好。 狭长矩形:ηmax=3Mn/hb2 θ=3Mn/hGb3 θ=3Mnl/hGb3 闭口薄壁杆ηmax=3Mn/2ΩδΩ为-截面中心线所围截面积δ为壁厚Φ=Mnls/4GΩ2δ s为截面中线的长度 θ=MnS/4GΩ2δ 等厚度开口薄壁杆η=3Mn/hδ 2 θ=3Mnl/Ghδ 3 (计算时展开成矩形)在抗扭性能方面,闭口薄壁杆远比开口薄壁杆好

工程力学专业硕士研究生培养方案

工程力学专业硕士研究生培养方案 一、培养目标 根据教育要“面向现代化、面向世界、面向未来”的指导方针,为培养德、智、体全面发展的、能适应社会、经济和科学技术发展需要的高层次专门人才,对硕士研究生的培养提出如下要求: 1、掌握马克思主义基本理论,热爱祖国,遵纪守法,具有良好的道德品质和较强的事业心,积极为社会主义现代化建设服务。 2、树立实事求是和勇于创新的科学精神,在本门学科掌握坚实的基础理论和系统的专门知识;掌握必要的实验技能;具备必要的社会实践经验,具有从事科学研究工作或独立担负专门技术工作的能力。 3、掌握一门外国语,并能熟练地运用于本专业。 4、具有健康的体魄。 二、研究方向 1、疲劳与断裂; 2、结构分析及优化设计; 3、力学方法在工程中的应用; 4、计算流体力学及应用; 5、非线性系统识别。 详见附表一。 三、学习年限及时间分配 1、硕士研究生的学习年限:以学分制为基础,在校学习年限2年。 2、硕士研究生的课程学习与论文工作的时间约各占一半,课程学习实行学分制,课程学习与论文工作交叉进行,完成规定的学分要求方可申请论文答辩。 3、在职人员的学习年限可适当延长,但延长时间一般不超过一年。 4、硕士研究生在校培养期间,实行学期注册制度,未注册者终止其下一阶段各培养环节内容的登记备案。 5、硕士研究生的学位论文工作,累计不应少于一年时间。 四、培养方式及方法 对硕士研究生的培养,应贯彻课程学习和科学研究相结合、两者并重的原则,实行课程学习与论文工作交叉进行的培养模式,采取导师个别指导和导师组集体培养相结合的方式进行。并在研究生入学后的1个月内组织完成确定研究生指导教师工作。 培养工作应遵循如下原则: 1、坚持马克思主义理论课学习和经常性的思想教育、道德品质教育相结合,注意提高硕士研究生思想品德修养。 2、指导教师确定后,导师应根据培养方案的要求,结合硕士生本人的基础和特长,指导硕士生制定课程学习和论文研究的培养计划。为了保证论文工作的时间和论文质量,指导教师要尽早安排研究生进入论文工作,并在第一学年安排研究生完成专业文献阅读及报告、选题、开题报告撰写等环节。 3、坚持理论联系实际、实事求是的科学作风,培养硕士研究生具有严谨的科学态度及善于思考、勇于创新的精神。 4、应贯彻启发式讲授与研究生自学相结合的培养方式,积极开展学术讨论和实验研究活动,既要注意知识的传授,更要注意对硕士研究生能力的培养;既要充分发挥教师的主导作用,又要充分调动学生个人的潜能和积极性。

工程力学专业就业方向与就业前景_就业形势.doc

工程力学专业就业方向与就业前景_就业形 势 工程力学专业就业方向与就业前景_就业形势 工程力学专业就业方向与就业前景_就业形势 工资待遇 截止到12月24日,36491位工程力学专业毕业生的平均薪资为3916元,其中应届毕业生工资2000元。 就业方向 工程力学专业学生毕业后可工程力学专业本科毕业生可以从事与力学有关的科研、技术开发、工程设计和力学教学工作。去些民办的事业、企业单位从事产品的检测或开发,这类企业以机械、建筑等重工业行业为主,毕业生可在机械、土木、水利工程类企、事业单位从事设计、计算和强度分析等工作,在研制工程应用软件的高新技术公司中从事软件设计工作,在科技、教育部门从事科研、教学工作。 就业岗位 结构工程师、钢结构设计、钢结构设计师、机械工程师、幕墙设计师、研发工程师、销售工程师、结构设计师、技术销售、技术销售工程师、技术支持工程师、研发项目经理等。 城市就业指数 工程力学专业就业岗位最多的地区是上海。薪酬最高的地区

是上海。 就业岗位比较多的城市有:上海[84个]、北京[79个]、广州[34个]、武汉[32个]、深圳[25个]、杭州[20个]、重庆[20个]、东莞[18个]、天津[17个]、西安[17个]等。 就业薪酬比较高的城市有:上海[5399元]、哈尔滨[3000元]、牡丹江[2000元]等。 同类专业排名 工程力学专业在专业学科中属于工学类中的工程力学类,其中工程力学类共2个专业,工程力学专业在工程力学类专业中排名第2,在整个工学大类中排名第71位。 在工程力学类专业中,就业前景比较好的专业有:工程结构分析,工程力学,材料成型及控制工程,软件工程,土木工程,信息工程,宝石及材料工艺学,制造工程,电气工程及其自动化等。

工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析

工程力学材料力学 (北京科技大学与东北大学) 第一章 轴向拉伸和压缩 1-1:用截面法求下列各杆指定截面的内力 解: (a):N 1=0,N 2=N 3=P (b):N 1=N 2=2kN (c):N 1=P,N 2=2P,N 3= -P (d):N 1=-2P,N 2=P (e):N 1= -50N,N 2= -90N (f):N 1=0.896P,N 2=-0.732P 注(轴向拉伸为正,压缩为负) 1-2:高炉装料器中的大钟拉杆如图a 所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b 所示;拉杆上端螺纹的内 径d=175mm 。以知作用于拉杆上的静拉力P=850kN ,试计算大钟拉杆的最大静应力。 解: σ1= 2118504P kN S d π= =35.3Mpa σ2=2228504P kN S d π= =30.4MPa ∴σmax =35.3Mpa 1-3:试计算图a 所示钢水包吊杆的最大应力。以知钢水包及其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。 解: 下端螺孔截面:σ1=1 90 20.065*0.045P S = =15.4Mpa 上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa ∴σmax =15.4Mpa 1-4:一桅杆起重机如图所示,起重杆AB 为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm 2。已知起重量

P=2000N , 试计算起重机杆和钢丝绳的应力。 解: 受力分析得: F 1*sin15=F 2*sin45 F 1*cos15=P+F 2*sin45 ∴σAB = 1 1F S =-47.7MPa σBC =2 2F S =103.5 MPa 1-5:图a 所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又 两层钢板构成,如c 所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力. 解: F=6P S 1=h*t=40*4.5=180mm 2 S2=(H-d)*t=(65-30)*4.5=157.5mm 2 ∴σmax=2F S =38.1MPa 1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求; (1) AC. CD DB 各段的应力和变形. (2) AB 杆的总变形. 解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa; △ l AC =NL EA =AC L EA σ=-0.01mm △ l CD =CD L EA σ=0 △ L DB =DB L EA σ=-0.01mm (2) ∴AB l ?=-0.02mm 1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解: AC AC AC L NL EA EA σε===1.59*104 ,

2020年整理工程力学公式大全.doc

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?= ∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32 P d I πα=-,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2 σστ-=± =最大正应力方位02tan 2x x y τασσ=- - 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ= ,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

哈工程各个专业的详细介绍

各个专业的详细介绍: 1.船舶与海洋工程专业——专业简介 本专业始于中国人民解放军军事工程学院(简称“哈军工”)的海军工程系舰船设计专业。始终保持军工特色,设有船舶性能、船舶结构、船舶设计、潜器设计、海洋工程5个专业方向。本专业涉及面广,除数学、力学外,主要还有船舶与海洋工程水动力学、船舶与海洋工程结构力学、计算机科学、材料科学、机械制造学、焊接技术及管理工程等学科。 开设的主要课程:理论力学、材料力学、船舶与海洋工程流体力学、船舶与海洋工程结构力学、船舶与海洋工程静力学、船舶与海洋工程结构物阻力与推进、船体制造工艺、船舶设计与海洋工程结构物设计原理、船舶与海洋工程结构物强度与结构设计、计算机原理及应用、机械设计、电工电子技术等。 迄今为止,本专业已为我国船舶工业培养本科生5100余人。本专业具有世界先进水平的实验设备和测试手段,拥有大型实验室,其中“风、浪、流海洋环境模拟水池(50米×50米×30米)”拥有国内唯一的X—Y航车系统,“船模实验水池”长110米,配备有三维多板造波机、大型四自由度适航仪等先进设备,是ITTC成员单位;“工程结构实验室”为世界银行贷款建设;船舶CAD/CAM实验室拥有各类主流大型造船工程应用软件和结构分析软件,为广船国际等大型造船企业设立tribon软件培训中心。本专业是国内高校首家通过英国皇家造船师协会(RINA)的评估和认证的本科专业,每年提供20名免费学生会员名额,标志着本专业的教学和实验水平得到国际认同。挪威DNV船级社、法国BV船级社、日本NK船级社等国际主要的船级社和英国皇家造船师协会(RINA)在该专业设立奖学金。近年来,本专业与美国休斯敦“能源谷”紧密联系,共同创建了“深海工程技术研究中心”,目前该中心已入围我国“111工程”计划。2006年《科技时报》评选本专业全国综合排名第一。 本专业一些分支学科的研究水平和人才培养已达到国际先进水平。历年毕业生就业统计数据表明,本专业毕业生主要到与船舶和海洋工程有关的公司及国家各部委机关,以及沿海沿江各船舶设计院、研究所和造船骨干企业工作,部分取得留学资格,被选送到美国、加拿大、英国、挪威、德国、日本、希腊等国留学深造。本专业将为有志于我国船舶事业、海洋开发事业的青年提供一流的学习环境,完备的科学研究设施。 2.港口航道与海岸工程(暂无详细介绍) 3.土木工程专业介绍 培养掌握工程力学、流体力学、岩土力学和结构设计的基本理论和基本知识,具备从事土木工程项目的规划、设计、研究开发、施工及管理的能力,能在房屋建筑工程、公路与城市道路工程、桥梁工程、隧道与地下工程、机场工程等方面从事设计、研究、施工、教育、管理、投资和技术开发的高级工程技术人才。 开设的主要课程:理论力学、材料力学、结构力学、岩土力学、流体力学、混凝土结构、砌体结构、钢结构、房屋建筑学、土木工程施工技术、土木工程施工预算、工程

【精品版】工程力学专业调研报告

哈工大工程力学 学生提分网发布时间:2011-01-05 通过对几届不同年级学生的调研,发现近年来的学生在大一、大二阶段就非常关注专业学习内容及其应用,未来发展的可能方向,以及毕业去向等等,力学学科本身就是科学与工程的桥梁,是大工业的基础,因此工程力学专业学生的培养与其它工科专业也有明显的不同,其它工科专业都有较为明显的工程背景,例如航空航天、机械、土木、材料、船舶水利、能源与矿业等专业,尽管这些工科领域的专业都需要一定的力学基础,但主要以各领域的工程对象为主要研究背景。 有十分确定的工程对象,而力学专业恰恰没有明确的研究对象,研究的是工程领域,甚至科学领域广泛存在的基础性、共性力学问题,这些都导致了学生仅仅从培养方案上很难认识清楚自己未来能干什么,主要从事什么样的职业,对专业的认识比较模糊,到大三阶段学生已经开始与专业教师接触,但课程还主要是专业基础课,内容还不够专业,若主讲教师再不能把课程讲得生动精彩。 都会使得学生学习目标不明确,动力不足并由此导致学生向外专业、外校的流动增加,直到大四了解会多一些,但部分学生已经没有热情、对专业的未来丧失信心,总之学生对专业的认识远远不够。 二、工程力学专业建设与教学存在的问题 1、专业招生质量不能适应力学学科对高质量生源的需。

从招生分数以及后期的培养都说明了工程力学专业生源质量较全校平均水平偏低,而力学学科本身的基础性、对数理基础要求高的特点,又决定对学生学习能力有较高的要求,这个矛盾有一定的普遍性,在全国各高校都一定程度存在。 2、专业学生培养质量需要进一步提高 1升学率偏低。不考虑学生对专业的认同程度以及生源质量,也说明在保研、考研环节的培养上还需要进一步提高。 2近几年来出现学生向外专业、外校流动增加的趋势。说明学生视野拓宽、自主选择发展方向能力增强,但也可能是学生对专业认同程度降低所致。 3毕业设计水平还不能完全令人满意。工程力学专业本科毕业设计水平逐渐改善,但还存在少部分指导教师题目陈旧落后、需要改进。 4学生创新能力的培养还需要进一步加强 全国大学生周培源力学大赛获奖者太少,获得国家级的大学生课外科技创新项目的还偏少。 3、专业本科课程师资队伍基本稳定,可继续挖掘潜力 1逐步实现了新老交替,稳定过渡,高水平年轻教师加入专业课程教学队伍。但年轻教师有一个成长期,少部分课程还缺少合适的接班人。

对工程力学的认识教案资料

对工程力学的认识

对工程力学的认识 工程力学是什么? 工程力学是研究有关物质宏观运动规律,及其应用的科学。工程给力学提出问题,力学的研究成果改进工程设计思想。从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。 工程力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。 工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等 现阶段,数值分析已经成为岩土工程开挖与结构建造动态过程模拟、工程结构优化设计和稳定性分析的最有利手段。本研究方向主要研究各种数值分析方法,包括有限元法、边界单元法、离散单元法、不连续变形分析法和问题反分析方法和优化设计等在岩土和结

构工程中的应用。重点在于应用上述方法合理、准确地模拟和分析、解决岩土和结构工程中的实际问题。要求培养的人才必须具有坚实的数学、力学基础,通晓数值分析的基本原理和方法,有不断发展现有的分析理论和技术,使之具有更加广泛的实用性和更高的精度的能力。同时还应具有编制实用程序软件的能力。 这门专业的就业前景怎么样呢? 本专业是力学与现代机械、水利、土木、生物、材料、航空航天工程应用相结合的综合性专业,研究机器与结构的设计思想和分析方法,应用理论、计算和实验等手段为设计的可靠性和经济性提供科学的依据,在国民经济建设中起重要作用。本专业毕业生是上述领域中企业和研究单位必需的人才。 它的培养目标就是让学生具有以下能力,应具有雄厚的数学、力学理论基础和分析能力;熟练掌握理论、计算和实验等研究方法和工具。在企业及研究机构中,能够成为厚基础、宽口径、胜任强度、振动和计算机仿真等方面与力学相关的工程设计、技术开发及技术管理等工作的高级技术人员,并为培养高层次力学研究及软件开发人才打下基础。 这个专业还有自己的特色,重视工程中常用的基础方法训练,具有适应面广阔的特点。主要培养方向为:结构分析软件应用方向,突出国际知名软件的应用和特殊分析软件开发方面的培养;结构工程方向,突出对建筑、水利和机械结构的强度与安全进行分析方面的培养。 。对于这个专业的就业情况,毕业生可在机械、土木、水利工程类企、事业单位从事设计、计算和强度分析等工作,在研制工程应用软件的高新技术公司中从事软件设计工作,在科技、教育部门从事科研、教学工作。也可以继续攻读力学、机械、土木与经济管理学科的研究生。 我们如何学好这门课呢? 1. 需要的预备知识:力学和数学是密切相关的,因此要想学好工程力学必须首先掌握相关的高等数学知识。工程力学中涉及到的高等数学的主要知识点包

相关文档
最新文档