华中师范大学数学物理方法第2章作业及答案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z z3 z5 z 2n +1 n +i − + − L + (−1) ( 2n + 1)! 1! 3! 5i = ∑ ( −1)
n= 0 ∞ n ∞ z 2n z 2n +1 n + i ∑ ( −1) = cos z + i sin z ( 2n ) ! n =0 ( 2n + 1) !
n= 0 ∞
z 2n +1 ( 2n + 1)!
R = lim
1 2 ( n − 1) + 1 !
n→∞
1 ( 2n + 1)!
= ∞ 即收敛区域为全平面。
(ii)因为
2 n −iz ) ( eiz + e− iz 1 iz i 2 z 2 in zn −iz ( −iz ) = 1 + + +L+ +L +1+ + +L + − L cos z = 2 2 n! 1! 2! n! 1! 2!
z −1 在那 z = 0 和 z = 1 的领域 z +1
∞ 1 z −1 1 n = ∑ ( −1) z n = ( z − 1) ⋅ 而 z +1 z + 1 z + 1 n= 0
解(i)在 z = 0 的领域
∞ ∞ z −1 n n n 所以 = ( z − 1) ⋅ ∑ ( −1) z = ∑ ( −1) ( z n+1 − z n ) z +1 n =0 n =0
由广义二项式定理:
(1 + z )
m
= 1 + mz +
m ( m − 1) 2!
z 2 + LL +
m ( m − 1)L ( m − k + 1) k!
zk +L
当 m 为负整数时,这个级数在 z < 1 的园内收敛。 法二:令 f ( z ) = e
1 1− z
f ′′ ( 0 ) z 2 f ′′′ ( 0 ) z 3 则 f ( z ) = f ( 0 ) + f ′ ( 0) z + + +L 2! 3! f ( 0 ) = e1− 0 = e f ′ ( 0 ) = (1 − z ) e
( −1)
n −1

所以 0 < z < ∞ (4) e
1 1− z
在 z = 0 的邻域
1 z ∞ 1 z zn 1 = e ∑ n =0 n ! 1 − z n =0 n ! 1 − z ∞ n n
解:法一: e1− z = e ⋅ e1− z = e∑
(2z) ( 2n + 1)!
2 n +1
= ∑ ( −1) ⋅
n n= 0

22 n +1 2 n+1 z ( 2n + 1)!
∞ n
f (z) =

f ′ ( z )dz = ∑ ( −1) ⋅
n= 0 ∞ n
22 n +1 z 2 n+1dz ∫ ( 2n + 1) !
= ∑ ( −1) ⋅
n= 0 ∞
iz
所以 sin z = eiz − e −iz 1 iz i 2 z 2 in zn iz i 2 z 2 (−1)n i n z n = 1 + + +L + + L −1 + − −L − − L 2i 2i 1! 2! n! 1! 2! n!
z z3 z5 z 2 n+1 n = − + + L + (−1) +L 1! 3! 5! ( 2n + 1)! = ∑ (−1)n
n →∞
an b n +1
b b a n −1 ⋅ b n +1 = lim n n = lim = n →∞ n →∞ b ⋅a a a b a 1 1 ′ = ) 1− z
故,收敛范围为 z < 1
(2)
(1 − z )
2
(提示:
(1 − z )
2
解:
1
(1 − z )
n →∞
2.将下列函数展开成泰勒级数,并说明其收敛区域: 1 (1) 在 z = 1 的领域 z 解:
∞ 1 1 n n = = ∑ ( −1) ( z − 1) z 1 + ( z − 1) n = 0
( −1) R = lim n n→∞ ( −1)
(2)
n −1
= 1 故收敛区域为 0 < z − 1 < 1
(ii) cos 2 z = 1 − sin 2 z = 1 −
22 n 2 2 n ⋅ ( 2n + 2 ) ! ( 2n ) ! ( 2n + 2 )( 2n + 1) = lim 2 n+ 2 = lim =∞ R = lim 2 2 n + n→∞ n →∞ n →∞ 2 n 2 2n ) ! 4 ( ( −1) ⋅ 2 ( n + 1) !
k k =0 k →∞ ∞
ak ak +1
逐项积分后, S1 ( z ) = ∑ ak k ( z − b )
k =1

k −1
的收敛半径为
R1 = lim
k →∞
ak k a k = lim k lim =R k k →∞ →∞ ak +1 ( k + 1) ak +1 k +1 ak ( z − b )k +1 + c 的收敛半径为 k =0 k + 1 ak k+2 lim =R ak +1 k →∞ k + 1
∞ 1 ∞ a an 1 1 1 1 = = ⋅ = ∑ − z n = ∑ (−1) n ⋅ n +1 z n a b n =0 b az + b b ⋅ (1 + a z ) b b n= 0 1 − (− z ) b b n
a n −1 n R = lim b
n
n
(5) R = lim
1 k
k
k →∞ k
= lim
1 =0 k →∞ k
(6)当 q < 1 时 ln q < 0 故 R = lim 1 ak = lim
k →∞ k
1 q
k2
k →∞ k
= lim
1 q
k
k →∞
= lim e − k ln q = ∞
k →∞
2 .证明:对幂级数逐项积分或逐项求导,不改变其收敛半径。 解: 设幂级数为 S ( z ) = ∑ ak ( z − b ) 其收敛半径为 R = lim
22 n +1 z 2 n+ 2 ( 2n + 2 ) ⋅ ( 2n + 1)! ⋅ 22 k −1Hale Waihona Puke Baidu2k z ( 2k ) !
= ∑ ( −1)
k =1
k −1
1 ∞ 22 k 2 k k −1 z = ∑ ( −1) ⋅ 2 k =1 ( 2k ) ! 所以 sin 2 z =
2k 1 ∞ k −1 2 z 2k 1 − ( ) ∑ 2 k =1 ( 2k ) ! 2n 1 ∞ n −1 2 z 2n − 1 ( ) ∑ 2 n =1 2 n ! ( )
1. 求 sin z 和 cos z 在 z = 0 的领域的泰勒展开式,讨论其收敛区域,并验证:
由 ez = 1+
z z2 zn + +L + +L 1! 2! n!
2 n
( −iz ) + L iz i 2 z 2 in zn −iz ( −iz ) +L + + L , e −iz = 1 + + +L + 则 e = 1+ + 1! 2! n! 1! 2! n!
其收敛区域为 z < 1 (ii)在 z = 1 的领域
( z − 1) ∞ −1 n ⋅ ( z − 1) z −1 1 1 1 = ( z − 1) ⋅ = ( z − 1) ⋅ = ( z − 1) ⋅ = ∑( ) 2 z +1 z +1 2 + ( z − 1) 2 n =0 z −1 2 1 + 2
第二章
级数的基本性质
2-1 复变函数的级数 1. 求下列幂级数的收敛半径: (1) ∑
k =1 ∞ ∞
zk k zk ( z − i )k k!
(2) ∑
k =1 ∞
(3) ∑ z 2 k
k =1 ∞
(4) ∑

k! k z k k =1 k
(5) ∑ k k ( z − 5)k
k =1 ∞
(6) ∑ q k z k 其中 q < 1
2
2n
1 ∞ n −1 ( 2 ) = ∑ ( −1) z 2n 2 n =1 2 n ! ( )
2n
法二 令 f ( z ) = sin 2 z 则 f ′ ( z ) = 2sin z cos z = sin 2 z 所以 f ′ ( z ) = sin 2 z = ∑ ( −1) ⋅
n n =0 ∞
(2)
(3)
(4)
R = lim
k →∞
( k − 1) ! k −1 ( k − 1)
k! kk
k −1 k − 1) !k k ( k = lim = lim k −1 k →∞ ( k − 1) k ! k →∞ k − 1
令 k − 1 = n ,则
n +1 1 R = lim = lim 1 + = e k →∞ k →∞ n n
证明:
R1 = lim
n →∞
R2 = lim
n →∞
R3 = lim
n →∞
由题设条件 lim
n →∞
an −1 存在,故有 R1 = R2 = R3 ,故三个幂级数有共同的收敛半径。 an
第二章
级数的基本性质 鞍点
2-2 复变函数在解析区域中的幂级数展开泰勒级数
eiz = cos z + i sin z eiz − e −iz 1 ix −ix sin z = = (e − e ) 解: (i)由欧拉公式有 2i 2i

逐项积分后, S 2 ( z ) = ∑ R2 = lim
k →∞
ak +1 ( k + 1)
ak ( k + 2 )
= lim
k →∞
3.利用级数(2-2-16)导出下列函数在 z = 0 领域内的幂级数展开式,并指出收敛 范围: 1 ( a, b 为复数,且 b ≠ 0 ) ; (1) az + b 解:
−2 1 1− z z =0 1
=e
1 −2 −2 1
f ′′ ( 0 ) = 2 (1 − z ) e1− z + (1 − z ) (1 − z ) e1− z
−3 z =0
= 3e
f ′′′ ( 0 ) = 13e f ( 4) ( 0 ) = 73e
LLLL
z −1 = ∑ ( −1) ⋅ 2 n= 0
∞ n n +1
n
其收敛领域为 0 <
z −1 < 1 即 0 < z −1 < 2 2
(3) sin 2 z 和 cos 2 z 在 z = 0 的领域
1 1 1 1 1 ∞ n (2z) 解(i)法一 因为 sin z = (1 − cos 2 z ) = − cos 2 z = − ∑ ( −1) 2 2 2 2 2 n =0 ( 2n ) !
2
1 ′ ∞ n ′ ∞ n −1 = = ∑ z = ∑ nz 1 − z n =0 n =1
R = lim |
n −1 1 |= lim |1 − |= 1 n n n→∞
所以收敛范围是 | z |< 1 .
4.证明:如果 lim
an−1 存在,则下列三个幂级数有相同的收敛半径: n →∞ a n
= 1−

z2 z4 z6 z 2n n + − + L + ( −1) ⋅ +L 2! 4! 6! ( 2n ) !
n
= ∑ ( −1)
n= 0
z 2n ( 2n ) !
收敛区域为全平面。 因为, eiz = 1 + z2 z4 iz i 2 z 2 in zn z 2n + +L + + L = 1 − + − L + (−1)n + L n! 1! 2! ( 2n ) ! 2! 4!
2
k =1
解:(1)
1 k 1 R = lim k − 1 = lim = lim =1 k →∞ k k →∞ →∞ 1 1 k −1 1− k k 1 ( k − 1)! k 1 R = lim = lim = lim =1 k →∞ k →∞ k − 1 k →∞ 1 1 1− k ( k )! R = lim 1 =1 k →∞ 1
∑a z
n n
n
,∑
n
an n +1 z , ∑ nan z n −1 n +1 n an −1 an an−1 n + 1 a 1 an −1 a n = = lim n −1 + = lim n−1 lim an n an an n an an n →∞ n →∞ n →∞ n +1 (n − 1)an−1 a 1 an−1 a = lim n −1 − = lim n−1 nan an n an an n →∞ n →∞ an −1
相关文档
最新文档