燃气管道牺牲阳极保护

合集下载

埋地天然气管道牺牲阳极外加电流阴极保护优缺点及材料所具备的条件

埋地天然气管道牺牲阳极外加电流阴极保护优缺点及材料所具备的条件

埋地天然气管道牺牲阳极外加电流阴极保


















河南汇龙合金材料有限公司
牺牲阳极阴极保护的原理是利用不同金属的电位差异,为受保护的金属提供电子,使被保护金属整体处于电子过剩的状态,金属表面各点电位降低到同一负电位,使金属表面各点之间不再有电位差,不再有电子的流动,金属原子不再失去电子而变成离子溶入溶液。

最终达到减缓腐蚀的目的。

下面我们就来说一下牺牲阳极阴极保护的优点和缺点。

优点:
不需要外部电源;
不需要经常去维护;
小的电流输出导致小的或无杂散电流干扰;
方便简单,易于安装;
大多数的情况下易于增加阳极;
有效提供均匀的电流分配;
费用较低,节约成本。

缺点:
具有较低的驱动电压/电流;
对于劣质涂层的结构物需要较多的阳极;
在高电阻率的土壤环境下可能是无效的;
由于较低的电流效率(自腐蚀消耗),其每安培电流的费用高于外加电流阴极保护;
替换用废的阳极是比较困难的,而且费用也比较昂贵。

这样比较起来还是优点多一点
下面就再和大家说一下牺牲阳极材料所应具备的条件(>﹏<)
电位要足够负,但又不能太负,以免阴极区产生析氢反应;(我和大家扯几句题外话,说一下析氢反应。

它会造成涂层与管道脱离,即阴极剥离,不仅会使防腐层失效,而且电能大量消耗,还会导致金属材料产生氢脆断裂)
阳极的极化率要小,电位极电流输出要稳定;
阳极材料的电容量要大;
必须有较高的电流效率;
溶解均匀,容易脱落;
材料价格低廉,来源也要充分。

18公里天然气管道牺牲阳极阴极保护设计方案

18公里天然气管道牺牲阳极阴极保护设计方案

目次1概述 (3)2设计原则 (3)3设计遵循的标准规范 (3)4设计基本参数 (4)5保护对象和保护方法 (4)6阴极保护方案设计内容 (4)7施工技术要求 (8)8阴极保护准则 (8)9系统的管理和维护 (8)10卫生、安全和环境 (9)11材料表 (10)1.概述天然气管道18公里管道未安装阴极保护措施,现根据公司线路阴极保护要求,需要对该线路上的阴极保护新增。

牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。

该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。

如,城市管网、小型储罐等。

根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。

牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。

产生该问题的主要原因是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。

因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。

2.设计原则2.1 严格遵守埋地钢质管道阴极保护有关的设计规范、技术标准和技术规定;2.2 采用成熟技术、材料,做到安全可靠、经济合理;3.设计遵循的标准规范《埋地钢质管道聚乙烯防腐层技术标准》SY/T0413-2002《钢质管道及储罐腐蚀与防护调查方法标准》SY/T0087.2-2012《辐射交联聚乙烯热收缩带(套)》SY/T4054-2003《阴极保护管道的电绝缘标准》SY/T0086-2003《埋地钢质管道阴极保护技术规范》GB/T21448-2008《钢质管道外腐蚀控制规范》GB/T21447-2008《埋地钢质管道直流排流保护技术标准》SY/T0017-2006《埋地钢质管道交流排流保护技术标准》SY-T-0032-2000《埋地钢质管道阴极保护参数测试方法》GB/T21246-2007《陆上管道阴极保护标准》ISO15589-1-20033.12 《埋地钢质管道牺牲阳极阴极保护设计规范》(中华人民共和国石油天然气行业标准SY/T 0019-97)。

埋地燃气管道牺牲阳极阴极保护法的改进

埋地燃气管道牺牲阳极阴极保护法的改进
第 1 3卷 第 5期
重庆 科技 学 院学报 ( 自然科 学版 )
21 年 1 01 0月
埋地燃气 管道 牺牲 阳极 阴极保 护法 的改进
张 继超 宋秭 昕 陈 扬 。 苗 文 高
( . 力市嘉 华燃 气有 限公 司,伊春 12 0 ; . 南石 油 大 学,成 都 6 0 0 ; 1 铁 5 5 0 2西 1 5 0 3四川德 阳天然 气有 限责任 公 司 , 阳 6 8 0 ; . . 德 1 10 4漯河 中裕 燃 气有 限公 司 .漯河 4 2 0 ) 6 0 0
2 牺 牲 阳极 阴 极 保 护 法 的 改进
依据 相 关 城 镇 燃 气 规 范 和 技 术 要 求 , 结 合
作者简介 : 张继 超 (9 2 )男 , 南 驻 马 店 人 , 理 工 程 师 , 18 一 , 河 助 研究 方 向 为城 市 燃 气 输 配 与 应 用 。

5 ・ 6
土 壤腐 蚀绝 大 多数情 况下 都是 由于埋在 地 下 的
金 属管 线 与土壤 这种 十分 特殊 的电解质 进行 电化 学
表面将 出现 阳极 区和 阴极 区 ,并 在 阳极 区发生 局 部 腐 蚀 被 保 护金 属 表面都 成 为 阴极 , 以达 到抑制 腐蚀 的 目的。 阴极 保 护 的 主要 原 理 是 把 整 个 金 属 表 面 转 化 成 阴 极 , 是将 足够 的外 加 电流通 向被 保护 的设 备 , 就 这样
行。 因为这 时缺乏 使 金属 成为 水化 离子 必要 的水 分 , 而 氧 的渗透 和流 动 比较容 易 , 阴极反 应容 易进 行 , 即 整 个腐 蚀过 程受 阳极 控制 ; 在潮 湿 的黏性 土壤 中 , 而 氧 的渗 透 和流动 速度 均较 小 , 但水 分充 足 , 以腐蚀 所 过 程 主要受 阴极 过程 控制 。 于城镇 埋 地燃 气管 道 , 对 经 过 透气 性 不 同 的土 壤 而形 成 氧 浓差 腐 蚀 电池 时 , 土 壤 的电 阻成 为主要 的腐 蚀控 制 因素 。

城镇燃气管道长输石油管线牺牲阳极阴极保护测试方法研究

城镇燃气管道长输石油管线牺牲阳极阴极保护测试方法研究

城镇燃气管道长输石油管线牺牲阳极阴极保护方法河南汇龙合金材料有限公司1概述城镇燃气管道多为埋地敷设,由于土壤中含有水分、空气、酸、碱、水溶性矿物盐以及微生物,这些因素都会使金属管道发生腐蚀。

金属腐蚀直接和间接造成了巨大的经济损失,因此,必须采取有效的防腐措施,实践证明控制管道腐蚀的主要方法是采用防腐层和阴极保护。

对金属管道的阴极保护进行测试和评价,可以及时发现管道腐蚀和安全隐患,最大程度降低经济损失。

采用牺牲阳极和3PE防腐层联合保护的次高压燃气管道,通常采用通电电位测试法和断电电位测试法进行阴极保护测试。

2牺牲阳极阴极保护测试方法分析①通电电位测试法该方法适用于施加阴极保护电流后的管道电位测量,测得的电位除含有管道极化电位外,还包括回路中的所有电压降。

即通电电位包含阴极保护电位和土壤IR降,在管道存在杂散电流干扰的情况下,土壤IR降又包括了阴极保护电流产生的IR降和杂散电流产生的IR降。

采用通电电位测试法,管道杂散电流干扰强,管道的通电电位波动较大,测试数据不正常(出现了通电电位大于0的情况),无法判断管道的阴极保护效果是否满足标准要求。

因此通电电位测试法测试的数据不能准确有效地评估管道真实的阴极保护效果,已不能满足GB/T 21448毛008《埋地钢质管道阴极保护技术规范》中阴极保护判定准则的要求。

②极化探头断电电位测试法极化探头心的极化试片在充分极化后,断掉阴极保护电流,极化试片上的土壤IR降(阴极保护电流产生的IR降和杂散电流产生的IR降)瞬间等于零,在0.5 s内读取的数据为管道的断电电位。

这样不仅能消除阴极保护电流产生的IR降,还能消除杂散电流产生的IR降,能得到管道真实的阴极保护电位。

本方法适用于受杂散电流干扰或无法同步中断阴极保护电流的管道,尤其适用于牺牲阳极阴极保护的城镇燃气管道的测试。

测试数据真实地反映了测试桩附近管道的阴极保护效果,测得的管道断电电位符合一0.85~一1.2 V的要求,但是,测试桩以外的管道是否达到阴极保护标准要求,尤其是定向钻穿越管段的中间部位阴极保护效果是否满足标准要求,都需要进一步验证。

方案--天然气管道牺牲阳极法阴极保护方案

方案--天然气管道牺牲阳极法阴极保护方案

石武客专XXX特大桥跨天然气管安全保护及排流方案中铁X局石武客专河南段项目部2008年11月一、工程概况石武客专XX大桥130-131#墩,。

与天然气管道形成“十”字交叉口。

根据调查,位于大XX大桥130-131#墩天然气管,管径377mm,天然气管埋深1.3m左右(管顶至地面)。

二、总体保护方案根据设计要求,开挖至燃气管下0.9m。

在天然气管两侧各实施一道钢筋砼支撑墙,支撑墙厚0.3~0.4m,支撑墙距天然气管外壁 1.01m。

两道支撑墙之间全部回填中粗砂。

在管顶以上0.38m高处放置盖板,盖板搁置于支撑墙上,盖板厚0.35m。

由此,盖板与支撑墙形成桥梁体系,路面受力传递至盖板,力再由盖板通过支撑墙及其基础,传递至天然气管下的土体中。

整个受力系统不经过天然气管,最大限度的保证了天然气管的安全。

保护天然气管的桥梁系统深度2.47m,宽度4.8m,总长12m。

基坑采用人工开挖。

人工开挖的操作人员之间,必须保持足够的安全距离。

由于基坑开挖的深度大于天然气管的埋深,故基坑开挖后,必然存在天然气管腾空的现象。

天然气管因底部覆盖物掏空后,管道会产生较大的挠度,从而引发安全问题。

为应对该安全问题,拟在10m范围内,在人工开挖暴露出天然气管后,在管道两侧打入3对4m的钢板桩,每对间隔3m左右。

在每对钢板桩上应连接一道钢管,燃气管采用钢丝绳吊起后,钢丝绳支撑于钢管。

在保证天然气管安全的基础上,并根据支撑墙基础尺寸,钢板桩距天然气管边0.25m。

钢板桩顶低于盖板底,支撑墙施工完毕,黄砂回填至天然气管后,撤掉钢丝绳,切割掉钢管,钢板桩则保留在基坑中。

基坑开挖后,若遇水,则需将水排干后,方可施工。

为保证回填质量,回填砂采用中粗砂。

排流采用固态去耦合器排流,具有降低感应电压效果好、维护方便、适用性强的优点。

防腐蚀采用牺牲阳极装置。

绝缘防护处理采用环氧树脂玻璃钢防腐。

三、施工工期本次工程预计工期为60天,盖板需提前制作完成。

燃气管道牺牲阳极的阴极保护原理

燃气管道牺牲阳极的阴极保护原理

燃气管道牺牲阳极的阴极保护原理1. 引言:我们身边的“隐形保护”嘿,朋友们,今天咱们聊聊一个可能不太“引人注目”的话题——燃气管道的保护问题。

你知道吗,咱们每天都在享受天然气带来的便利,可是这些燃气管道可不是铁打的,时间一长,它们就容易生锈、腐蚀。

为了让这些管道在地下安安稳稳地呆着,不受腐蚀的困扰,科学家们想出了一个妙招,叫做“阴极保护”。

而其中,牺牲阳极可是个大英雄哦!是不是听着就觉得神秘又有趣?1.1 牺牲阳极的角色那么,牺牲阳极到底是什么鬼呢?想象一下,你的朋友被一群调皮捣蛋的小孩围住了,而你为了保护他,毅然决然地站出来,成为“替罪羊”。

牺牲阳极就是这么一个“牺牲”的角色。

它通常由一些像锌、镁这些金属制成,安静地“牺牲”自己,去吸引腐蚀,而不是让管道本身受损。

简而言之,牺牲阳极就像个勇敢的骑士,甘愿为保护公主(也就是我们的燃气管道)而献身,真是太感人了!1.2 腐蚀的“幕后黑手”在讲牺牲阳极之前,咱们得先了解腐蚀这位“幕后黑手”。

腐蚀就像个无形的敌人,趁着管道老迈之际,悄无声息地侵袭。

当水分、氧气和土壤中的离子聚集在一起时,哗啦啦,腐蚀就来了。

就像一场突如其来的暴风雨,把本来平静的生活搅得天翻地覆。

为了抵御这场“暴风雨”,我们需要一种有效的防护手段,而阴极保护就是应运而生的。

2. 阴极保护的工作原理2.1 阴极与阳极的较量阴极保护的原理其实很简单。

咱们的管道就像是一场“战争”,管道本身是阴极,而牺牲阳极则是阳极。

当两个金属放在电解液中时,阳极会失去电子,而阴极则会接受这些电子。

这样一来,牺牲阳极的金属就会“咔嚓咔嚓”地逐渐溶解,变得越来越小,而管道则安然无恙。

简而言之,阳极牺牲自己,让阴极获得“保护”,真是义无反顾,令人感动。

2.2 持续的“奉献精神”不过,朋友们,牺牲阳极的“奉献精神”可不是一劳永逸的。

随着时间的推移,牺牲阳极会逐渐被消耗掉。

就像人们常说的“好事多磨”,这种保护也需要定期检查和更换。

燃气管道牺牲阳极保护

燃气管道牺牲阳极保护

燃气管道牺牲阳极保护牺牲阳极法是最早应用的电化学保护法。

它简单易行,又不干扰邻近的设施。

牺牲阳极还是抗干扰腐蚀的一种手段,可用来排流、防雷及防静电接地。

与强制电流保护法相比,牺牲阳极法具有独特的优点和功能,因而同样受到人们的重视。

近年来,牺牲阳极技术在我国得到了推广和发展。

在生产上也向标准化、系列化方向发展。

并在油、气管道、海船及海上结构物的防护上得到了成功的应用。

一、牺牲阳极保护原理依据电化学原理,把不同电极电位的两种金属置于电解质体系内,当有导线连接时就有电流流动,这时,电极电位较负的金属为阳极、利用两金属的电极电位差作阴极保护的电流源。

这就是牺牲阳极法的基本原理。

见图10-54。

二、牺牲阳极材料由于牺牲阳极法是通过阳极自身的消耗,给被保护金属体提供保护电流。

因此,对牺牲阳极材料就产生了性能要求。

图10-54 牺牲阳极装配示意图1.要有足够负的电位,在长期放电过程中很少极化。

2.腐蚀产物应不粘附于阳极表面,疏松易脱落,不可形成高电阻硬壳,且无污染。

3.自腐蚀小,电流效率高。

4.单位重量发生的电流量大,且输出电流均匀。

5.有较好的力学性能,价格便宜,来源广。

常用的牺牲阳极有镁及镁合金、锌及锌合金以及铝合金三大类。

它们的电化学性能见表10-59。

牺牲阳极的电化学性能取决于材料的成分和杂质含量。

在牺牲阳极的标准规范中都有规定。

表10-59 牺牲阳极的电化学性能··a17.2510.07.924.68三、牺牲阳极种类及规格型号(一)镁合金牺牲阳极镁是比较活泼的金属,表面不易极化,电极电位比较负,所以是理想的牺牲了极材料。

但是,钝镁的电流效率不高,造价太高,所以一般都使用镁合金做牺牲阳极材料。

目前世界上流行的镁阳极成分很多,但归纳起来只有三个系列:高纯镁系、镁锰系和镁铝锌锰系。

其典型的代表成分见表10-60。

这三个系列中,Mg-6 Al-3 Zn-0.15Mn 是使用最广泛的,也是国内定型生产的商品化镁阳极,用于土壤和淡水中性能最正确。

燃气管道的防腐阴极保护法介绍及工艺要求

燃气管道的防腐阴极保护法介绍及工艺要求

燃气管道的防腐阴极保护法介绍及工艺要求一、牺牲阳极保护牺牲阳极系统适用于敷设在电阻率较低的土壤里、水中、沼泽或湿地环境中的小口径管道或距离较短并带有优质防腐层的大口径管道。

选用牺牲阳极时,应考虑的使用因素包括无可利用电源的地方;电气设备不便实施维护保养的地方;临时性保护;强制电流系统保护的补充;永久冻土层内管道周围土壤融化带;保温管道的保温层下方等。

(一)牺牲阳极的应用条件牺牲阳极的应用条件包括土壤电阻率或阳极填包料电阻率足够低,所选阳极类型和规格应能连续提供最大电流需要量,阳极材料的总质量能够满足阳极提供所需电流的设计寿命。

牺牲阳极上应标记材料类型(如商标)、阳极质量(不包括阳极填料)、炉号等。

(二)牺牲阳极施工基本要求根据现场施工条件,牺牲阳极施工应选择经济合理的施工方式。

立式阳极宜采用钻孔法施工;卧式宜采用开挖沟槽施工。

按设计要求在埋设点挖好阳极坑和电缆沟,检查袋装阳极电缆接头的导电性能,合格后袋装阳极就位,放入阳极坑内。

阳极连接电缆,埋设深度不应小于O.7m,四周垫有5〜IOCrn 的细砂,砂的上部应覆盖水泥护板或红砖。

确认各焊点、连接点绝缘防腐合格后,回填土壤。

在回填土将阳极布袋埋住后,向阳极坑内灌水,使阳极填料饱和吸满水后,将回填土夯实,恢复地貌。

牺牲阳极保护参数投产测试必须是在阳极埋入地下、填包料浇水IOd后进行。

为便于测量,在相邻两组阳极的管段中间,根据需要适当设置电位测试桩。

电位测试桩桩间距以不大于500m为宜。

牺牲阳极投入运行后,应定期进行监测,至少每个月测试一次保护参数,牺牲阳极阴极保护系统检测每年不少于两次。

至少每半年测量一次管道保护电位和阳极输出电流,并根据测量结果进行保护电流的调节(一般以每年调节一次为宜)。

对镁阳极保护系统,每年至少应维护一次。

(三)牺牲阳极布置牺牲阳极常见的有棒状阳极和带状阳极,具体布置如下。

1.棒状阳极棒状牺牲阳极可采取单支或多支成组两种方式,同组阳极宜选用同一炉号或开路电位相近的阳极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.025~0.15
余量
<0.005
<0.005
0.006
MIL-A-18001H
An-Al
0.3~0.6
-
余量
<0.005
<0.005
<0.006
<0.125
SYJ20-1986
锌阳极的开路电位应为-1.1V(相对Cu/CuSO4),在海水中电流效率为95%、土壤中为50%~60%,理论发生电量为820A·h/kg,消耗率为11kg/A·a左右。
表10-60镁合金牺牲阳极的典型成分
系列
成分(质量分数%)
备注Biblioteka AlZnMnMg
Si
Cu
Ni
Fe
纯镁
<0.01
<0.03
<0.01
>99.95
<0.01
<0.001
<0.001
<0.002
JISH6125
镁锰
<0.01
-
0.5~1.3
余量
-
<0.02
<0.001
<0.03
Galvomag
镁铝
锌锰
5.3~6.7
0.15~0.6
余量
0.005
0.003
0.02
0.1
表10-62镁阳极电化学性能
项目
单位
指标
测试方法
开路电位
V
≤-1.50
(Cu/CuSO4)SYJ23-1986
理论电容量
A·h/kg
2210
按化学成分计算
电流效率
%
≥55
GB/T4948-1985附录C
注:GB/T 4948—1985附录C的介质为海水·本标准应用时试验介质应改用当地土壤,并用当地地下水饱和,在被检阳极四周应有5~10mm厚的填包料。
表10-68牺牲阳极化学填料推荐配方
阳极类型
填料成分(重量)(%)
备注
石膏粉
硫酸钠
硫酸镁
生石灰
氯化纳
膨润土
适用环境ρ(Ω·m)
镁阳极
50
50
≤20
SYJ16-1986
25
25
50
≤20
75
5
20
>20
15
15
20
50
>20
15
35
50
>20
锌阳极
50
5
45
潮湿土壤
SYJ20-1985
75
5
20
饱水土壤
表10-63锌阳极的成分
阳极系列
化学成分(%)
备注
Al
Cd
Zn
Fe
Cu
Pb
Si
ASTMⅡ型
<0.005
<0.003
余量
<0.0014
ASTM418-1973
Zn-Al-Cd
0.3~0.6
0.05~0.12
余量
<0.005
<0.005
<0.006
<0.125
GB/T4950-1985
Zn-Al-Cd
0.1~0.5
铝合金牺牲阳极开路电位是-1.18~-1.10V(相对饱和甘汞电极),工作电位为-1.12~-1.05V(相对饱和甘汞电极),实际发生电量大于2400A·h/kg,海水中电流效率大于80%,消耗率约3.8kg/A·a。
铝是产量最多的有色金属,资源广,价格便宜;其单位重量产生的电量大,是锌的3.6倍,是镁的1.35倍,作为牺牲阳极有着广阔的前途。其不足之处是电流效率和溶解性能随阳极成分、制造工艺的不同而异。在土壤中常由于胶体AI(OH)3的聚集而使阳极过早报废,因此铝阳极在土壤中的应用还有待于探索。
燃气管道牺牲阳极保护
牺牲阳极法是最早应用的电化学保护法。它简单易行,又不干扰邻近的设施。牺牲阳极还是抗干扰腐蚀的一种手段,可用来排流、防雷及防静电接地。与强制电流保护法相比,牺牲阳极法具有独特的优点和功能,因而同样受到人们的重视。
近年来,牺牲阳极技术在我国得到了推广和发展。在生产上也向标准化、系列化方向发展。并在油、气管道、海船及海上结构物的防护上得到了成功的应用。
17.25
10.0
7.92
4.68
三、牺牲阳极种类及规格型号
(一)镁合金牺牲阳极
镁是比较活泼的金属,表面不易极化,电极电位比较负,所以是理想的牺牲了极材料。但是,钝镁的电流效率不高,造价太高,所以一般都使用镁合金做牺牲阳极材料。目前世界上流行的镁阳极成分很多,但归纳起来只有三个系列:高纯镁系、镁锰系和镁铝锌锰系。其典型的代表成分见表10-60。这三个系列中,Mg-6 Al-3 Zn-0.15Mn是使用最广泛的,也是国内定型生产的商品化镁阳极,用于土壤和淡水中性能最佳。
图10-54牺牲阳极装配示意图
1.要有足够负的电位,在长期放电过程中很少极化。
2.腐蚀产物应不粘附于阳极表面,疏松易脱落,不可形成高电阻硬壳,且无污染。
3.自腐蚀小,电流效率高。
4.单位重量发生的电流量大,且输出电流均匀。
5.有较好的力学性能,价格便宜,来源广。
常用的牺牲阳极有镁及镁合金、锌及锌合金以及铝合金三大类。它们的电化学性能见表10-59。牺牲阳极的电化学性能取决于材料的成分和杂质含量。在牺牲阳极的标准规范中都有规定。
镁阳极规格按净重分为2kg、4kg、8kg、11kg、14kg和22k6种。其形式均为梯形断面。2kg阳极参考长度为206mm,4kg阳极参考长度为360mm,其余均为700mm。
用作导电的钢芯,采用直径不小于6mm的钢筋制成。钢芯表面应镀锌,外露长度为100mm。阳极基体和钢芯必须结合好,接触电阻应小于0.001Ω。
表10-67土壤中牺牲阳极使用的选择
土壤电阻率/(Ω·m)
推荐使用的牺牲阳极
>100
不宜采用牺牲阳极
60~100
高电位的纯镁系或镁锰系镁阳极
15~60
镁铝锌锰系镁阳极
<15
镁铝锌锰系镁阳极或锌合金阳极
<10(含Cl-)
锌合金或铝锌系合金阳极
(二)牺牲阳极地床
为了防止土壤对阳极的钝化作用,一般在阳极四周都要填有一定的化学填料,填料的作用为:
表10-59牺牲阳极的电化学性能
性能
单位
Zn、Zn合金
Mg、Mg-Mn
Mg-6Al-3Zn
Al-Zn-In
相对密度
g/cm3
7.1
1.74
1.77
2.83
阳极开路单位(SCE)
V
-1.03
-1.56
-1.48
-1.08
相对铁的保护的电位差
V
-0.20
-0.75
-0.65
-0.25
理论发生电量
Ah/g
1.防止阳极钢芯与电缆引出头焊接处的折断。
2.阳极所有裸露的表面均需除净油污等杂物。
3.擦洗净的阳极表面,严禁用手直接拿放,并应及时装入填包袋中,以防污染。
4.袋装阳极引出电缆与袋口绑扎要结实,防止散口。
(三)阳极布置与埋设
牺牲阳极的分布可采用单支或集中成组两种方式。阳极埋设分立式、水平式两种。埋设方向分轴向和径向。阳极埋设位置一般距管道外壁3~5m,最小不宜小于0.3m。埋设深度以阳极顶部距地面不小于1m为宜。成组布置时,阳极间距以2~3m为宜。见图10-55。
铝阳极
20
30
60
40
20
30
填包料宜采用棉布袋或麻袋预包装。不可采用人造纤维织物布袋。可以在现场包封。填包料厚度不应小于50mm。应保证阳极四周的填包料厚度一致、密实。填包料应调拌均匀,不能混入石块、泥土和杂草等。
在将装设好阳极电缆的阳极块放入填包料之前。应先将阳极表面用砂布打磨干净。除去氧化皮并去除油污。对铝合金阳极也可用10%NaOH溶液浸泡数分钟,以除去阳极表面的氧化膜,然后用清水冲洗干净。在装填袋装阳极时应注意:
1.改良阳极周围环境,确保稳定、良好的电流效率。
2.降低阳极接地电阻,增加阳极输出电流。
3.溶解电极腐蚀产物,防止阳极极化。
4.吸收周围土壤中水分,维持阳极四周长久湿润,提高阳极的工作电位。
化学填料的推荐配方列于表10-68中。
不同的阳极、不同的适用环境需采用不同的填包料。
表10-68中的膨润土系一种特殊的硅酸盐土壤,具有强的吸水性,并能形成半透膜,阻止土壤中阴离子(在填包料中)的流失。因此,膨润土不可用粘土来代替。
镁阳极的优点:对钢铁阴极保护(-0.85V)的激励电压力-0.7V左右,适应的土壤电阻率范围广,阳极表面不极化,腐蚀产物易脱落。不宜用于易燃液体环境中。
(二)锌牺牲阳极
锌是阴极保护中应用最早的牺牲阳极材料。锌的电极电位比铁负,表面不易极化,是理想的牺牲阳极材料。锌不仅可以用于低电阻率土壤中,还可广泛用于海洋中。目前,锌牺牲阳极成分均已标准化。如ASTMB418、GB4950等。从阳极成分来分,锌阳极可分为两个系列:高纯锌系和锌铝镉系。它们的成分见表10-63中。
8.1
2.1
75×(61+75)×2000
27.4
7.2
注:①括号内为梯形截面的上底和下底长度。
牺牲阳极种类的选择主要是根据土壤电阻率、土壤含盐类及被保护管道的覆盖层状态来选取阳极。表10-67列出了土壤中选择牺牲阳极种类的推荐意见。一般说,镁阳极适用于各种土壤环境,锌阳极适用于土壤电阻率低的潮湿环境,而铝阳极还没有统一认识,国外一直不主张用于土壤环境中,国内已有不少实践,推荐用于低电阻率、潮湿和氯化物的环境中。
Al-Zn-In-Ca
相关文档
最新文档