石墨及其表面改性对硅橡胶导热性能的影响

石墨及其表面改性对硅橡胶导热性能的影响
石墨及其表面改性对硅橡胶导热性能的影响

石墨及其表面改性对硅橡胶导热性能的影响

摘要:用双辊混炼机将导热填料分散到聚甲基乙烯基硅氧烷中,再配以增强剂、硫化剂等,经模压硫化制得导热硅橡胶。研究了导热填料种类、石墨的表面改性和用量以及石墨与炭黑的复配对硅橡胶导热性和力学性能的影响。结果表明,在用量相同的情况下,导热填料的导热系数越高,其填充硅橡胶的导热性越好,且硅橡胶的导热系数随导热填料用量的增加而增大。石墨的表面改性改善了石墨与硅橡胶的界面相容性,使硅橡胶的力学性能和导热性都得到提高。不同粒径及颗粒形态的炭黑与石墨复合可改善硅橡胶的导热性和力学性能,导热硅橡胶的拉伸强度和扯断伸长率随复合填料中炭黑用量的增加而提高,当石墨与炭黑质量比为25/5时,硅橡胶的导热系数最高,综合性能较好。

关键词:硅橡胶;导热填料;石墨;表面改性;导热性;力学性能

硅橡胶与天然橡胶及其他合成橡胶相比,具有耐高低温、耐老化及电气绝缘、生理惰性好等优异性能,在航空航天、电子电气、化工、建筑及医疗卫生等方面得到了广泛的应用。但其导热系数仅为0.173W /(m.K),导热性较差,因而限制了其在某些领域中的应用。加入导热填料,如金属粉、石墨、氧化铝及氧化镁等可改善硅橡胶的导热性[1]。

潘大海等[2]研究了导热填料种类、用量及粒径对室温硫化硅橡胶性能的影响,结果表明采用粒径为5~20μm的氮化硅为导热填料可制得导热性、力学性能及加工性能良好的室温硫化硅橡胶。Mu等[1]研究发现,不同粒径的氧化锌复合填充硅橡胶的导热性较好。石墨具有优良的导热性[导热系数209.34 W /(m.K)]。李侃社等[3]用石墨作为导热填料,并用钛酸酯偶联剂对石墨进行表面改性,制备了力学性能和导热性均较好的聚乙烯复合材料。然而,关于石墨对高温硫化硅橡胶性能的影响却鲜有文献报道。本工作以聚甲基乙烯基硅氧烷为基础胶,研究导热填料种类、石墨的表面改性和用量以及石墨与炭黑的复配对硅橡胶导热

性和力学性能的影响。①

1试验部分

1.1主要原材料及设备

聚甲基乙烯基硅氧烷(牌号110-2,乙烯基摩尔分数0.15% ),上海东爵有机硅集团有限公司生产;气相法二氧化硅(牌号A-100,比表面积110 m2/g),沈阳化工厂生产;石墨(牌号F-1,粒径4μm),上海胶体石墨厂生产;导电炭黑(牌号VXC-72,粒径30 nm),Cabot上海分公司生产;超细三氧化二铝(牌号AF 05,粒径0.5μm,比表面积35 m2/g),杭州微微纳米技术有限公司生产;硫化剂过氧化二异丙苯,上海化学试剂经销站经销;偶联剂异丙基三异硬脂酰氧基钛酸酯(NDZ-131)、异丙基三油酸酰氧基钛酸酯(NDZ-105)和四异丙基双(二辛磷酸酯)钛酸酯(NDZ-401)均为南京曙光化工总厂生产。

DH-10 DQ型高速混合机,宁波机械厂生产;DHG-9140 A型鼓风烘箱,上海精密仪器仪表有限公司生产;SK-160 B型双辊炼胶机,上海橡胶机械厂生产;QLB-D型平板硫化机,湖州橡胶机械厂生产;LX-A型邵氏硬度计,上海六中量仪厂生产;Zwick/Roell Z 202型万能材料试验机,德国Zwick公司生产;RTC-1型导热系数测定仪,无锡荣华电子仪器

厂生产;Philips 505型扫描电镜(SEM),荷兰Philips公司生产。

1.2导热填料的表面改性

将导热填料在100℃下烘干12 h后加入到高速混合机中,再在低速搅拌下将含一定量偶联剂的乙酸乙酯溶液滴加到高速混合机中,高速搅拌10 min,然后取出改性后的导热填料,

100℃下干燥12 h备用[4]。

1.3试样制备

混炼胶组成为聚甲基乙烯基硅氧烷100份(质量,下同),气相法二氧化硅20份,过氧化二异丙苯1.5份,导热填料0~100份。称取各组分,先在双辊炼胶机上加入聚甲基乙烯基硅氧烷,待包辊后依次加入气相法二氧化硅、导热填料、过氧化二异丙苯等,混炼15~20 min,放置24 h后进行硫化成型[5]。采用平板硫化机进行一段硫化,硫化温度165℃,根据试样厚度硫化时间取为10~15 min。一段硫化后的硅橡胶在带鼓风的烘箱中进行二段硫化(200℃×4 h),以除去残留在制品中的过氧化物分解产物。

1.4分析与测试

用导热系数测定仪测定试样的导热系数,用邵氏硬度计按照GB 6033—1985测定试样的硬度,用万能材料试验机分别按照GB/T 528—1998 和GB/T529—1999测定试样的拉伸强度、扯断伸长率及撕裂强度,用SEM观察石墨在硅橡胶中的分散情况。

2结果与讨论

2.1导热填料种类对硅橡胶导热性的影响

试验表明,无导热填料硅橡胶的导热系数仅为0.173W /(m.K);当加入19.8% (质量分数,下同)的导热填料后,石墨填充硅橡胶的导热系数最高,达0.444 W /(m.K);炭黑次之,为0.340W/(m.K);氧化铝最低,为0.265W/(m.K)。这一结果与填料导热系数的大小相一致,

说明硅橡胶的导热性很大程度上取决于导热填料的导热系数。

2.2石墨表面改性对硅橡胶性能的影响

填料的表面改性可以改善填料和基质之间的相容性,从而提高导热硅橡胶的性能[8]。由于石墨填充硅橡胶的导热系数最高,因此分别采用钛酸酯偶联剂NDZ-131、NDZ-105及NDZ-401 对石墨进行表面改性(其用量为石墨质量分数的1.5% ),并研究表面改性石墨对导热硅橡胶力学性能的影响,结果如表1所示。由表1可以看出,与未改性石墨填充硅橡胶相比,钛酸酯偶联剂改性石墨填充硅橡胶的力学性能和导热系数均得到提高,其中尤以

NDZ-105改性石墨填充硅橡胶的性能最好。

为进一步研究石墨在硅橡胶中的分散情况,用SEM观察了导热硅橡胶的形貌(见图1)。由图1可以看出,未改性石墨在硅橡胶中的分散较差,石墨大多以层片状聚集,且未改性石墨与硅橡胶的相容性差,界面结合力弱,甚至界面间有空洞存在,受力时易脱离,力学性能较差;钛酸酯偶联剂改善了导热填料和基础胶的相容性,改性石墨在硅橡胶中的分散较好,使得导热硅橡胶的力学性能和导热系数均有提高。

石墨表面存在少量羟基[6],钛酸酯偶联剂分子中的长链烷基可与聚甲基乙烯基硅氧烷发

生物理缠结,而烷氧基水解形成的羟基可与石墨表面的羟基发生反应,在石墨和有机硅橡胶之间形成偶联桥键,从而可改善聚合物与石墨的界面相容性(NDZ-131和NDZ-105是单烷氧基钛酸酯偶联剂,NDZ-401是配位型钛酸酯偶联剂)。由于石墨表面羟基含量较少,所以单烷氧基钛酸酯偶联剂的改性效果较好[7]。另外,NDZ-105含有不饱和的碳碳双键,在聚甲基乙烯基硅氧烷硫化过程中会参与交联反应,所以经NDZ-105改性石墨填充硅橡

胶的力学性能和导热性最好。

2.3硅橡胶导热系数与石墨用量的关系

从图2可以看出,硅橡胶的导热系数随改性石墨用量的增加而增大。当其用量较低时,石墨分散在硅橡胶中后粒子间相互分离,石墨与石墨之间的相互作用较弱,硅橡胶的导热系数较小;随其用量增加,石墨粒子间的相互作用增强,甚至形成类似于链状或网状结构的导热网链,导热系数明显增大;随石墨用量进一步增加,形成的导热网链数增多,导热系数持续增大。因此,即使采用高导热系数的填料如石墨,也必须填充足够多的量,才能形成

有效的导热网链,获得较高的导热系数。

2.4硅橡胶力学性能与石墨用量的关系

NDZ-105改性石墨填充硅橡胶的拉伸强度和扯断伸长率随石墨用量的变化关系如图3 所示。由图3可以看出,硅橡胶的拉伸强度和扯断伸长率均随石墨用量的增加而降低。原因是石墨的加入一方面使硅橡胶分子链运动受阻,影响了硫化胶受力时的变形能力,另一方面导热硅橡胶受力时石墨与硅橡胶的界面易分离或断裂,从而导致硅橡胶的拉伸强度和扯断

伸长率降低。

2.5导热填料的复配对硅橡胶性能的影响

炭黑为粒径30 nm的球形粒子,而石墨粒径为4μm,具有层片状结构,不同粒径及颗粒形态的炭黑与石墨复配对硅橡胶性能的影响结果如表2所示。从表2可看出,石墨与炭黑质量比为25/5时,硅橡胶的导热系数最高,达到0.644W /(m.K),比单独使用石墨时高了41%,表明石墨和炭黑复配使用可以获得具有较高导热系数的硅橡胶。从形成导热网链的观点看,一种粒径的粒子进行某种形式的堆砌后,再在其间隙中嵌入粒径更小的颗粒,可使填料与填料之间形成紧密堆砌,因此复合填充更有利于形成有效的导热网链。从表2还可看出,石墨与炭黑复合填充硅橡胶时,导热硅橡胶的拉伸强度和扯断伸长率随炭黑用量的增加而提高;当石墨与炭黑的质量比为20/10时,硅橡胶的拉伸强度和扯断伸长率分别为7.84 MPa和513.4%,比单独使用石墨时分别高了25.4%和17.0%,但随炭黑用量的增加,硅橡胶的邵尔A硬度也增大。综合考虑,石墨与炭黑的质量比为25/5 时可获得性能较好的导热硅橡胶。

3结论

a)硅橡胶的导热性取决于导热填料的导热系数,硅橡胶导热系数随导热填料用量的增加而增大。

b)钛酸酯偶联剂NDZ-105改善了石墨与硅橡胶的相容性,使改性石墨在硅橡胶中能较好地分散,进而使硅橡胶的力学性能和导热系数都得到较大幅度的提高。

c)具有不同粒径及颗粒形态的炭黑与石墨复合填充可改善硅橡胶的导热性和力学性能,导热硅橡胶的拉伸强度和扯断伸长率随复合填料中炭黑用量的增加而提高,当石墨与炭黑质量比为25 /5时,硅橡胶的导热系数最高,综合性能较好。

文章由橡胶工业网整理:https://www.360docs.net/doc/639862826.html,/

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯改性

综合实践论文 题目:石墨烯改性研究进展 班级:高分子112 姓名:陈阳建 指导老师:祖立武 日期:2014年6月20日

石墨烯改性研究进展 陈阳建 齐齐哈尔大学材料学院,黑龙江齐齐哈尔10221 摘要: 结合当前国内外石墨烯改性的研究进展,分别从表面改性和电子性能改性两个方面介绍了石墨烯的改性方法。其中,石墨烯表面改性包括共价键功能化和非共价键功能化;石墨烯电子性能改性包括掺杂和离子轰击。讨论了各种改性方法的优缺点,并在原有改性方法的基础上,展望了未来石墨烯改性的发展方向。关键词: 石墨烯;改性;综述;共价键功能化;非共价键功能化;掺杂;离子轰击 Research progress in the modification of graphene Chen yangjian Materials Science,Qiqihar University ,Qiqihar in Heilongjiang 10221 Abstract: Based on the research progress of modification of graphene material at hom e and abroad, the methods of modification of graphene are introduced from the surfac e modification and the electronic properties modification, respectively. The methods o f surface modification contain the covalent functionalization and non-covalent functio nalization; the methods of electronic properties modification contain dopin g and ion b ombardment. Finally, the advantages and disadvantages of various modification met h ods are discussed, and the further development of modification of graphene is pointed out on the basis of original modification methods. Key words: graphene; modification; review; covalent functionalization; non-covalent functionalization; doping; ion bombardment

石墨及其表面改性对硅橡胶导热性能的影响

石墨及其表面改性对硅橡胶导热性能的影响 摘要:用双辊混炼机将导热填料分散到聚甲基乙烯基硅氧烷中,再配以增强剂、硫化剂等,经模压硫化制得导热硅橡胶。研究了导热填料种类、石墨的表面改性和用量以及石墨与炭黑的复配对硅橡胶导热性和力学性能的影响。结果表明,在用量相同的情况下,导热填料的导热系数越高,其填充硅橡胶的导热性越好,且硅橡胶的导热系数随导热填料用量的增加而增大。石墨的表面改性改善了石墨与硅橡胶的界面相容性,使硅橡胶的力学性能和导热性都得到提高。不同粒径及颗粒形态的炭黑与石墨复合可改善硅橡胶的导热性和力学性能,导热硅橡胶的拉伸强度和扯断伸长率随复合填料中炭黑用量的增加而提高,当石墨与炭黑质量比为25/5时,硅橡胶的导热系数最高,综合性能较好。 关键词:硅橡胶;导热填料;石墨;表面改性;导热性;力学性能 硅橡胶与天然橡胶及其他合成橡胶相比,具有耐高低温、耐老化及电气绝缘、生理惰性好等优异性能,在航空航天、电子电气、化工、建筑及医疗卫生等方面得到了广泛的应用。但其导热系数仅为0.173W /(m.K),导热性较差,因而限制了其在某些领域中的应用。加入导热填料,如金属粉、石墨、氧化铝及氧化镁等可改善硅橡胶的导热性[1]。 潘大海等[2]研究了导热填料种类、用量及粒径对室温硫化硅橡胶性能的影响,结果表明采用粒径为5~20μm的氮化硅为导热填料可制得导热性、力学性能及加工性能良好的室温硫化硅橡胶。Mu等[1]研究发现,不同粒径的氧化锌复合填充硅橡胶的导热性较好。石墨具有优良的导热性[导热系数209.34 W /(m.K)]。李侃社等[3]用石墨作为导热填料,并用钛酸酯偶联剂对石墨进行表面改性,制备了力学性能和导热性均较好的聚乙烯复合材料。然而,关于石墨对高温硫化硅橡胶性能的影响却鲜有文献报道。本工作以聚甲基乙烯基硅氧烷为基础胶,研究导热填料种类、石墨的表面改性和用量以及石墨与炭黑的复配对硅橡胶导热 性和力学性能的影响。① 1试验部分 1.1主要原材料及设备 聚甲基乙烯基硅氧烷(牌号110-2,乙烯基摩尔分数0.15% ),上海东爵有机硅集团有限公司生产;气相法二氧化硅(牌号A-100,比表面积110 m2/g),沈阳化工厂生产;石墨(牌号F-1,粒径4μm),上海胶体石墨厂生产;导电炭黑(牌号VXC-72,粒径30 nm),Cabot上海分公司生产;超细三氧化二铝(牌号AF 05,粒径0.5μm,比表面积35 m2/g),杭州微微纳米技术有限公司生产;硫化剂过氧化二异丙苯,上海化学试剂经销站经销;偶联剂异丙基三异硬脂酰氧基钛酸酯(NDZ-131)、异丙基三油酸酰氧基钛酸酯(NDZ-105)和四异丙基双(二辛磷酸酯)钛酸酯(NDZ-401)均为南京曙光化工总厂生产。 DH-10 DQ型高速混合机,宁波机械厂生产;DHG-9140 A型鼓风烘箱,上海精密仪器仪表有限公司生产;SK-160 B型双辊炼胶机,上海橡胶机械厂生产;QLB-D型平板硫化机,湖州橡胶机械厂生产;LX-A型邵氏硬度计,上海六中量仪厂生产;Zwick/Roell Z 202型万能材料试验机,德国Zwick公司生产;RTC-1型导热系数测定仪,无锡荣华电子仪器

石墨负极改性研究

石墨负极的改性研究 黄文达, 汤帅 摘要:以石墨本身的物理化学性质为探究起点,概述了石墨作为锂离子电池负极材料的常用改性方法,如表面氧化还原处理、包覆法、非金属与金属掺杂法、机械研磨法等。总结分析了石墨负极改性前后的可逆容量Q R、大电流放电特性、循环性能等电化学性能变化情况。 关键词:石墨;锂离子电池;改性方法;电化学性能 环境污染、能源危机日渐成为人们关注的焦点。就在电池领域中,干电池(一次电池)、Ni-Cr电池、铅酸蓄电池等,其所产生的MnO2、HgO、Cr、沥青烟气、Pb、酸雾等都给环境造成了非常严重的污染。紧随着在ZEV法案(汽车尾气零排放法案)的颁布与实施,更加推动了人们对新能源的开发力度,其中以锂离子蓄电池倍受关注。锂离子电池作为一种绿色环保电池,其负极材料一直是研究的重点课题,因为它是获得更安全、更高比能量电池的途径。目前负极材料主要是碳基材料,包括石墨化碳材料(人造石墨、天然石墨、石焦油、碳黑、碳纤维等)及其高温处理得到的无定形碳两大类。而石墨以资源丰富、价格低廉、可逆容量高Q R(理论值372mA?h/g),充放电压平台低、无电压滞后、优良导电性等特点,迅速受到广泛研究。为探索我国天然石墨应用于锂离子电池的新技术,这无疑具有极其重大的社会经济效益。 1 石墨的结构性质 石墨具有六边形的层状晶体结构,每层中碳原子以σ键和π键相连,而层层之间又靠范德华力相结合。石墨这种层间力作用小且层间距较大(0.3354nm)结构,使得一些原子、基团或离子容易插入层间形成石墨层间化合物(GICs),因此做为负极材料具有很高的比能量。 2 石墨作为锂离子蓄电池负极材料的缺点 (1)与电解液相溶性差,且对其选择性高 在首次充放电过程中锂和碳形成的插入化合物在电解液中很不稳定,其很容易与电解液(非质子极性溶剂)发生反应,其生成物一小部分溶于电解液中,而另一部分则在负极与电解液表面形成SEI膜(固体电解液膜)。SEI膜能阻止电解液分子继续共插入石墨负极,从而终止了对负极的不可逆影响,也大大提高了电池的使用寿命。但是,在石墨表面形成的SEI膜往往致密度不高、厚度不均匀、缺乏弹性、易破裂等不足。电解液分子既而会对其进行修补,这样将造成Li+插入负极阻抗增

浅论室温硫化硅橡胶胶粘剂粘接增强改性研究进展

浅论室温硫化硅橡胶胶粘剂粘接增强改性研究进展 室温硫化硅橡胶胶粘剂很多优异性能使其在电子电器、汽车、机械、建筑、医疗等行业得到广泛应用。但由于其对各种基材的粘接性较差,对其粘接改性研究很多,主要包括交联剂,聚硅氧烷物理化学增强改性和粘接面表面改性等。本人主要从交联剂的选择、树脂的增强改性、粘接面的表面处理三个方面综叙了增强改性机理和国内外研究进展,并提出了未来研究方向。 室温硫化硅橡胶(RTV)是六十年代问世的一种新型的有机硅弹性体,这种橡胶的最显著特点是在室温下无须加热、加压即可就地固化,使用极其方便。因此,一问世就迅速成为整个有机硅产品的一个重要组成部分,现在室温硫化硅橡胶已广泛用作胶粘剂。硅橡胶胶粘剂是以硅橡胶为基础原料经过配合而制成的胶粘剂。由于RTV硅橡胶分子量较低,因此素有液体硅橡胶之称,其物理形态通常为可流动的流体或粘稠的膏状物,其粘度在100~1000000厘斯之间。RTV硅橡胶是以羟基封端的聚硅氧烷为主体材料,分为单组分和双组分两种。单组分室温硫化硅橡胶对大多数基材的粘接性优良,能在-60~200℃温度范围长期使用,具有优良的电气绝缘性能和化学稳定性,对多种金属和非金属材料有良好的粘接性。主要用作各种电子元器件及电气设备的涂覆,包封材料起绝缘,防潮,防震作用;也可作为密封填隙料及弹性粘接剂等。双组分的室温硫化硅橡胶的组分比例富于变化,一个品种可以得到多种规格性能的硫化制品,而且还能深度硫化,但由于对于基材的粘接性能较差,主要用于电子电器、汽车、机械、建筑等行业作绝缘、封装、嵌缝、密封、防潮及制作辊筒的材料。硅橡胶自身的强度和对各种材料的粘附强度都比较低,限制了其应用范围。目前,对于RTV硅橡胶胶粘剂的增强改性研究,主要包括:交联剂,聚硅氧烷物理化学增强改性和粘接面表面改性等,以提高胶粘剂的粘接性能。 1、交联剂的选择 使用含Si-N键数目3个以上的硅氮低聚物作为硫化剂,Si-N键在低浓度的有机锡盐催化作用下,与107胶的硅羟基发生缩合交联反应,其配制的双组分有机硅胶粘剂在粘接金属(不锈钢、铝、钛合金、铜等)、硅橡胶,粘接表面时不需要底胶进行处理,对以上材料的室温粘接强度超过2.0MPa,胶粘剂在粘接金属

石墨烯分散方法

石墨烯分散方法 石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下: 1、机械分散发 利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。 2、超声分散发 利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这

是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。3、微波辐射发 采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。 4、表面改性 通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。 采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π—π共轭相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,

经典-天然石墨与人造石墨的区别

天然石墨与人造石墨负极材料辨别方法剖析 锂离子电池发展20年来,理论与学术界均未对锂离子电池用碳(石墨类)负极材料:天然石墨和人造石墨负极材料的辨别方法进行深入剖析,并明确科学的辨别与判定方法,因此行业出现了天然石墨和人造石墨负极材料边界不清,鱼龙混杂的现象,给材料的合理、有效使用造成了极大影响。 天然石墨负极材料系采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表面等工序处理制得,其高结晶度是天然形成的。而人造石墨负极材料是将易石墨化碳如石油焦、针状焦、沥青焦等在一定温度下煅烧,再经粉碎、分级、高温石墨化制得,其高结晶度是通过高温石墨化形成的。正是由于两者在原料和制备工艺上存在本质的差别,使其在微观形貌、晶体结构、电化学性能、加工性能上存在明显差异。为了统一标准、科学辨别、正确判定天然与人造石墨负极材料,现将经过多年探索、反复验证、切实可行的科学辨别方法公之于众: 1、天然石墨与人造石墨负极材料微观形貌差异——SEM剖面分析法 天然石墨负极材料SEM剖面图人造石墨负极材料SEM剖面图 在微观结构上,天然石墨是层状结构,其SEM剖面图中保留了鳞片石墨的层状结构,片状结构间有大量空隙存在;而人造石墨负极材料为焦类、中间相类在高温石墨化过程中,晶体结构按ABAB结构重新排列,并聚合收缩,其内部致密、无缝隙。 2、天然石墨与人造石墨负极材料晶体结构差异——X射线衍射法

从晶体结构看,天然石墨负极材料结晶度高,在XRD图谱上其(002)晶面衍射峰角度更高,层状结构完整、层间距小、取向性(I002/I110)明显,从43-45度对应的(101)晶面衍射峰位置及46-47度的对应的(012) 晶面衍射峰位置,可以看出天然石墨存在明显的2H相和3R相,而人造石墨只存在2H相。六方石墨(2H)和菱方石墨(3R)的XRD谱图如下: 3、天然石墨与人造石墨负极材料无序度(ID/IG)差异——拉曼光谱分析法 对于未经石墨化处理的天然石墨与人造石墨,除了根据SEM剖面图、XRD晶体结构图及其参数进行区别外,拉曼光谱测试的无序度ID/IG也是区别这两类石墨的有效方法。天然球形石墨的无序度ID/IG一般为0.4~0.85,未经石墨化处理的表面包覆天然石墨无序度ID/IG一般为0.9~1.6,未经石墨化处理的新型改性天然石墨无序度ID/IG一般为0.2~0.6。人造石墨的无序度ID/IG一般为 0.04~0.34。整体上,未经高温石墨化处理的天然石墨负极材料的无序度ID/IG 比人造石墨负极材料的无序度ID/IG大。经石墨化处理的表面包覆天然石墨无序度ID/IG一般为0.17~0.36,人造石墨的无序度ID/IG一般为0.04~0.34,经石

医用硅橡胶

医用硅橡胶 前言: 医用高分子材料除了从原料到成品都必须进行严格控制外,还必须满足以下要求:化学惰性、不受组织液侵蚀;与周围组织相适应,不引发炎症,不与生物体反应,异物反应尽可能少;不致癌;不引起过敏反应、表面凝血;植入体内,长期使用不丧失拉伸强度、弹性等机械性能;不变形,能经受必要的消毒措施;易于加工成复杂的形状等…[1]。 硅橡胶具有耐热、耐寒、无毒、耐生物老化、生理惰性、对人体组织反应极小、植入人体组织后不引起异物反应、对周围组织不引发炎症及较好的物理机械性能等优点,符合医用高分子材料的要求;在医疗卫生、医学方面获得越来越广泛的应用[2,3]。 一、医用硅橡胶的历史 硅橡胶的医用特性大约是在1945年发现的。即当在玻璃表面上涂一层在显微镜下才能看到的那样薄的硅橡胶液体膜时,水在其上面不粘附,这一结果就表明了青霉素和血液完全可以从贮存瓶中倒出来。而且还发现当将血液分别贮存在用硅橡胶处理和未处理的两个瓶中时,其血液的凝固速度前者比后者要慢,显示出了良好的抗凝血性。1954年,Mc Douglall 报道了“对外界影响极为敏感的热血动物的各种细胞组织与液态、半液态和类似橡胶态的硅酮制品接触时,其细胞

组织的发育状态未发现异常现象”的研究结果,表明硅橡胶不会对 细胞生长产生不良的影响[4]。 二、我国对医用硅橡胶制品的研发和应用 我国对医用硅橡胶制品的研发和应用是始于20世纪年60代,但大量的基础研究及产品试制工作还是在20世纪70年代以后进行的。特别是近十几年来,硅橡胶作为生物适应材料的研究已取得了很大的进展,并且有许多功能化、系列化的医用硅橡胶制品投入了临床应用。这些制品根据其用途,大致可分为:(1)脑外科用人工颅骨[5]、脑积水引流管、人工脑膜;(2)耳鼻喉科用人工鼻梁、鼻孔支架、鼻腔止血带气囊分道导管、人工耳廓、人工下颌、“T”型中耳炎通气管、人工鼓膜、人工喉、喉罩、“T”型气管插管、泪道栓、吸氧机波纹管;(3)胸外科用体外循环机泵管、胸腔引流管、人工肺薄膜、胸腔隔离膜、人工心瓣;(4)内科用胃管、十二指肠管、胃造瘘管;(5)腹外科用腹膜透析管、腹腔引流管、“T”型或“Y”型管,毛细引流管、人工腹膜;(6)泌尿科和生殖系统用单腔导尿管、梅花型导尿管、双腔或三腔带气囊分道导管、膀胱造瘘管、肾盂造瘘管、阴茎假体、子宫造影导管、人工节育器、皮下植入型避孕药物缓释胶棒、胎儿吸引器;(7)骨科用人工指关节、人工月骨、人工肌腱、人工膝盖膜、减振足垫;(8)皮肤科用人工皮肤、软组织扩张器、疮疤帖;() 整形用人工乳房、修补材料等几大类[6]。 三、医用硅橡胶的发展方向

鞣酸改性石墨烯

通过鞣酸改性石墨烯吸附和去除溶液中的罗丹明B 刘坤平、李慧敏、王一鸣、苟小军、段一祥四川大学以及一系列的赘述 关键字:石墨烯、鞣酸、罗丹明B、吸收动力学 摘要:一种用于纳米合成鞣酸改性石墨烯简便且绿色的方法会减少鞣酸的用量,也会减少哪些改变石墨烯表面物化性质以提高吸收效率的反应试剂。随后,那些制备好的TA-G将会用于研究罗丹明B的吸收行为。由于强烈的相互作用和静电吸引,TA-G在RB的吸收行为中有很好的表现,吸收等温线符合LANGMUIR模型,实验数据也大概符合LANGMUIR模型计算的最大理论溶解度201mg/g。溶解动力学与pseudo-second-order模型相一致并且化学吸附溶解的速率控制步骤。因而,纳米合成的TA-G将会是去除溶液中罗丹明B理想的吸附剂,也会打开石墨烯在环境应用的潜力之门。 1、简介 被用于各行各业,比如纺织、涂料、食物、橡胶、药用、化妆行业的着色。它在水中释放的有害物质会污染环境,有些物质甚至会致癌严重危害健康。RB是一种重要的水溶性有机染料,广泛用于纺织物、食物、和生物工程的着色剂。因其怀疑有致癌性质,因而被禁用多年。但是随着工业的发展和不合法产业的出现,RB仍有机会进入食物链中危害人类健康。由于环境影响,去除染料溶液中有害物质尤为重要。如今,物理和化学方法都被用于处理颜料污染问题,如吸附、氧化、电化学氧化以及光催化氧化。其中,吸附是成本最低、效率最高的方法。很多的吸附剂如活性炭,自然物质,生物吸附剂都被用于吸收过程。最近,由于纳米科技和纳米材料的发展,为了提高效率,纳米材料以其优越的比表面积会吸附大量颜料而被广泛应用,并且取得了良好的效果,然而由于大量的染料和技术花费问题,也存在着很大的难关。 石墨烯,一种拥挤的蜂窝状的单层二维碳源子结构,引起了人们的广泛兴趣。这是由于他有大量的自然优越性能;大量的特殊比表面积、优越的电导性能、电子移动性能而被用于纳米电子设备、传感器和纳米合成材料。由于大型的电子移位体系,石墨烯会与苯环化合物建立强烈的反应,也是本化合物一种很好的候选吸附试剂。但是石墨烯在水中更倾向于聚结成块,这是由于存在范德华力,限制了很多的优越性能,他的优越性能会在更少的层或单层结构展现。因而,经常用共价究石墨烯。鞣酸是一种高分子量聚酚化合物,它含有大量笨磷二酚和焦培酸,独特的减少EGO的能力。并且由于TA结构中有大量的苯环结构他还可以通过作为改良物质吸收单个石墨烯通过反应来获得纳米合成鞣酸石墨烯。石墨烯TA-G,会提高他们的物化性质来提高在水中稳定性。然而,在我们的知识层面内,还没有,报道过用TA-G来去除有机染料污染物。 在这项工作一种用于纳米合成鞣酸改性石墨烯简便且绿色的方法会减少鞣酸的 用量,也会减少哪些改变石墨烯表面物化性质以提高吸收效率的反应试剂。随后,那些制备好的TA-G将会用于研究罗丹明B的吸收行为。由于强烈的相互作用和静电吸

硅橡胶在医学上的应用

硅橡胶在医学上的应用 摘要:硅橡胶是硅、氧及有机根组成的单体经聚合而成的一族有机聚硅氧烷,具有耐热、耐寒、无毒、耐生物老化、对人体组织的反应极小、较好的物理和机械性能等特点,符合医用高分子材料的要求,成为医用高分子材料中最为典型的有机硅高分子材料。在医疗卫生领域的应用越来越广泛。

关键词:硅橡胶医用高分子材料改性生物相容性 Abstract: Silicone rubber is an elastomer (rubber-like material) compose of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen.Silicone rubbers are. Silicone rubber is generally non-reactive, stable, and resistant to extreme environments while still maintaining its useful properties, and has become the most typical medical polymer material of organic silicon polymer materials. Key wards: Silicone rubber,Medical Polymer Materials, Modification, Biocompatibility 随着化学工业的发展,高分子材料日益代替过去的金属材料(如金、银、铂及其他钢等)及生物性材料(如骨、软骨等)在临床上得到了广泛的应用,人体医用硅橡胶就是高分子材料中的一种。 医用级硅橡胶是制备人工器官、医疗器械及其配件、各种医用管材、片材、型材的基本原料。硅橡胶除了可满足医用高分子材料的基本要求外,还具有耐热、耐寒、无毒、耐生物老化、对人体组织的反应极小、较好的物理和机械性能等特点,符合医用高分子材料的要求,成为医用高分子材料中最为典型的有机硅高分子材料。在医疗卫生领域的应用越来越广泛 硅橡胶的医用特性发现于1945年。进入20世纪60年代,国外相继出现了不少有关硅橡胶作为人体植入材料和医疗制品应用的报道。特别是硅橡胶在心脏起搏器、心脏瓣膜中的应用,不仅使成成千上万的患者获得了新生,而且也为其他医用制品的开发起到了很大的促进作用。20世纪60-70年代,国外已有许多医用硅橡胶制品(硅橡胶乳房、指关节、眼眶底托、气管插管、耳廓、脑积水引流管、腹膜透析管、带气囊分道导管、导尿管等)投入了临床应用。我国对医用硅橡胶制品的研发和应用始于20世纪60年代,但大量的基础研究及产品试制工作还是在70年代后进行的。特别是近几十年来,硅橡胶作为生物适应性材料的研究已取得了很大的进展,并且有许多功能化、系列化的医用硅橡胶制品投入了临床应用。 一、目前供人体医用的硅橡胶有四种类型: 固体型:有软硬两种,色乳白,不透明,硬质如骨,软质者中等硬度,具有弹性,易于加工塑性。 泡沫型(海绵型):呈细孔海绵状,质软,色白或淡黄,有较大的弹性和伸展性。 薄膜型:为透明或半透明的薄膜,色淡黄或呈乳白色,弹性较大。 液态型:又称硅油,为粘稠的液体,色微黄或呈白色乳胶状。 二、硅橡胶的改性方法 2.1表面改性 表面改性是既能提高材料的生物相容性和抗凝血性,又不改变聚合物本身优良性质的有效途径。表面改性后的硅橡胶生物弹性体需达到如下要求:1、良好的生物相容性;2、良好的抗凝血性;3、适宜的表面亲水-疏水平衡;4、较强的消除非特异性识别能力。 等离子表面改性方法主要采用等离子聚合,等离子体聚合是将高分子材料暴露于聚合性气体中,在高分子材料表面沉积一层较薄的聚合物膜。该方法可以在材料表面引入磷酸基、羟基等官能团,改善材料与生物环境的相互作用。等离子技术用于改性硅橡胶表面国内外已经有大量的报道。国外资料报道在4种不同的气体介质中研究了等离子处理的硅橡胶稳定性以及等离子处理对界面血液相容性的影响。结果发现,在4种不同的气体介质中,经处理的硅橡胶表面都有不同程度的刻蚀,导致吸水性相应增加,并且用O2和Ar处理的硅橡胶表面血液相容性下降,而用N2和NH3处理的硅橡胶表面抗凝血性提高。【1】 2.2表面接枝 表面接枝主要有辐射(紫外光辐射、激光辐射、X射线及γ射线辐射)引发接枝、等离

硅橡胶表面改性对Ag涂层结合力及抗菌性的影响

目录 摘要 ........................................................................................................................................... I ABSTRACT ............................................................................................................................. I II 第一章绪论 (1) 1.1引言 (1) 1.2抗菌 (1) 1.3抗菌材料的发展现状 (1) 1.3.1 抗菌纤维 (2) 1.3.2 抗菌陶瓷 (2) 1.3.3 抗菌金属 (2) 1.3.4 抗菌塑料 (2) 1.3.5 抗菌医用高分子材料 (3) 1.4抗菌剂的种类及其抗菌机理 (3) 1.4.1 天然有机抗菌剂 (4) 1.4.3 合成有机抗菌剂 (4) 1.4.4 无机抗菌剂 (5) 1.5缓释型无机抗菌材料 (7) 1.5.1 缓释型载体材料 (7) 1.5.2 抗菌剂载体的发展 (9) 1.6无电镀制备金属基抗菌涂层 (9) 1.6.1 无电镀的定义 (10) 1.6.2 无电镀镀银的种类 (10) 1.6.3 无电镀的特点 (10) 1.6.4 提高涂层与基体间结合力的方法 (11) 1.7抗菌材料的缓释性能 (12) 1.7.1 共混法制备抗菌材料的缓释性能 (12) 1.7.2 化学接枝法制备抗菌材料的缓释性能 (13) VII

改性天然鳞片石墨锂离子电池负极材料的研究_吴其修

第42卷第17期2014年9月 广州化工 Guangzhou Chemical Industry Vol.42No.17 Sep.2014 改性天然鳞片石墨锂离子电池负极材料的研究 吴其修1,2,李佳坤1,2,刘明东1,2,陈平1,2,赵娟3 (1湛江市聚鑫新能源有限公司,广东湛江524024;2广东东岛新能源有限公司, 广东湛江524024;3广东海洋大学,广东湛江524088) 摘要:对粒径为12μm的天然鳞片石墨进行表面碳包覆改性,并对包覆前后样品的微观结构和电化学性能进行了研究。结果表明:包覆改性提高了天然石墨的振实密度、表面形貌和电化学性能,在0.1C、0.2C、0.5C、1C、2C、5C和10C倍率下,对应的可逆容量分别为368.6mAh/g、362.6mAh/g、353.8mAh/g、340.6mAh/g、298.6mAh/g、228.2mAh/g和150.2mAh/g,相对于天然石墨,可逆容量分别提高了6.2mAh/g、20.9mAh/g、31.6mAh/g、42.1mAh/g、52.4mAh/g、80.0mAh/g和58.0mAh/g,碳包覆小粒径天然石墨表现出的良好的倍率性能,有望应用于电动车用锂离子电池中。 关键词:天然鳞片石墨;电化学性能;碳包覆;倍率性能 中图分类号:TM911文献标志码:A文章编号:1001-9677(2014)017-0076-03 Study of Surface-modified Natural Flake Graphite for Lithium Ion Batteries WU Qi-xiu,LI Jia-kun,LIU Ming-dong,CHEN Ping,ZHAO Juan (1Zhanjiang Juxin new energy Co.,Ltd.,Guangdong Zhanjiang524024; 2Guangdong Dongdao New Energy Co.,Ltd.,Guangdong Zhanjiang524024; 3Engineering College,Guangdong Ocean University,Guangdong Zhanjiang524088,China)Abstract:The natural flake graphite with the particle size of12μm was coated by a layer of pitch,and the microstructure and electrochemical performance of natural flake graphite and surface modified graphite were studied.It was showed the surface modified graphite with high tap density,surface morphology and excellent electrochemical performance.The capacities of modified graphite were3368.6mAh/g,362.6mAh/g,353.8mAh/g,340.6mAh/g,298.6mAh/g,228.2mAh/g and150.2mAh/g,corresponding to the rates0.1C,0.5C,1C,2C,5C and10C,which increased to6.2mAh/g,20.9mAh/g,31.6mAh/g,42.1mAh/g,52.4mAh/g,80.0mAh/g and58.0mAh/g,relative to natural graphite.The good rate performance of carbon coated small-sized natural graphite for lithium-ion battery made it a promising candidate as anode materials for electric vehicle dynamic1ithium-ion batteries. Key words:natural flake graphite;electrochemical performance;carbon coated;rate performance 锂离子电池因其工作电压高、能量密度大、循环寿命长、自放电小、无记忆效应等优点,成为20世纪90年代以来继镍氢电池之后的新一代二次电池[1-2]。国内外迫于能源危机与环境污染的双重压力,电动汽车的研究与开发引起了世界各国的关注。电动汽车发展的关键在于动力电池的发展,锂离子电池因其具有重量轻、比能量高、循环寿命长、使用温度范围宽且无记忆效应、绿色、环保等特点,被认为是最有发展前途的电动汽车用电池之一[3-4],国际上许多汽车制造商、电池生产厂及科研院校等积极开展了电动车用锂离子电池的研究开发工作。电动车用锂离子电池对电极材料有着更为严格的要求,特别是为满足电动汽车启动和爬坡的能量需求,需要电极材料在大电流下充放电的性能优异。天然石墨有很多优点,如来源广、价格低、充放电电压平台低、理论比容量高等,是一种十分理想的锂离子电池负极材料。目前市场上普遍使用的球形石墨是平均粒径在14 25μm,其中17μm的球形石墨使用最多。现有的研究表明小粒径天然石墨材料在大电流下循环性能性能比较好,可以满足电动车用锂离子电池的电极材料[5-6]。本文对粒径为12μm天然石墨材料进行表面包覆改性,并对其性能进行了研究。 1实验 1.1实验用主要设备 JEOL JSM-35型扫描电子显微镜(SEM);Malvern型激光粒度分布测试仪;Rigaku D/max rA型自动X-射ASAP2010型比表面测定仪(77.35K,样品0.2000g);DC-5型全自动电池性能测试仪,上海正方电子电器有限公司;HY-100型振实密度仪。 1.2改性天然球形石墨 将经整形和提纯后碳含量为99.9%的天然石墨置于三口烧瓶中,抽真空至-0.1MPa。准确称取一定量的高温煤沥青(炭化收率为80%)于烧杯中,加入50mL四氢呋喃,用玻璃棒搅拌均匀,随后超声振荡30min使沥青充分溶解。通过分液漏斗将沥青溶液加入三口烧瓶中,保持抽真空状态进行磁力搅拌10min。将真空浸渍后的样品在常压下加热除去溶剂,然后经

电化学改性石墨和PAN基碳纤维的准电容特性与电催化作用

电化学改性石墨和PAN基碳纤维的准电容特性与电催化作 用 电化学改性石墨和PAN基碳纤维的准电容特性与电催化 作用 电化学改性石墨和 PAN 基碳纤维的 准电容特性与电催化作用 Electrocatalytic Performance and Pseudo-CapacitiveCharacteristics of Modified Graphite Electrodeand PAN-based Carbon Fiber Electrode 孙亚萍 徐海波高级工程师 全日制学术学位 海洋化学 海洋资源利用与保护化学 20135 29 谨以此文献给默默关心我的父母、导师以及 所有以海洋为毕生事业并为之奋斗的人们---------- 孙亚萍电化学改性石墨和PAN 基碳纤维的准电容特性与 电催化作用 摘要 在全球能源危机和环境污染的背景下, 各国政府对开发利用与能源有关的 关键科技都非常重视 ,各个国家大力发展清洁的、可再生的新能源以减少传统

能源。要大力发展新能源, 储能是关键。随着太阳能和风能等新型能源的应用, 研发新型、高效率、长寿命、低成本的储能技术的研究显得尤为重要。 本文主要采用恒电流阶跃活化的方法对石墨和聚丙烯腈 (PAN )基碳纤维 电极进行改性活化处理, 制备出高性能的碳电极材料。通过 SEM 、 XRD 、FT-IR 、 TGA 、XPS 和拉曼光谱等物理表征方法对改性前后这两种碳材料进行性能评价 测试,以及结合循环伏安、恒电流充放电等电化学手段来对其准电容性能以及 电催化性能进行研究。本文得出的结论主要有: (1)两种碳材料经过活化改性以后,其表面都发生了不同程度的微晶化, 晶型受到破坏, 缺陷程度加深 , 形成乱层 ;而且活化改性以后, 表面都生成了 大量的含氧官能团 (羰基、醌基和羧基等 ) , 但不同的碳材料经过改性后所生 成的含氧官能团的种类及数量不同。PAN 基碳纤维电极经电化学改性处理后羟 基的量明显增加 ,而石墨电极经电化学改性处理以后羧基和羰基的量增加比较 明显。这些含氧官能团的增加使其电容量大幅提高。 3+ 2+ (2) 改性石墨电极对 H SO 溶液中的 Fe /Fe 电对具有明显的电催化活性

医用硅橡胶材料改性研究_高仁伟

文章编号:1671-7104(2015)02-0122-03 高仁伟 上海千山医疗科技有限公司,上海市,200949 该文主要从纳米材料填充改性、等离子体表面改性、表面接枝、硅橡胶与生物活性物质混合改性及仿生涂层法改性硅橡 胶等硅橡胶的亲水性改性方面进行了综述,并对每种改性方法进行了分析,最后对医用硅橡胶材料改性研究的发展进行了展望。 硅橡胶;生物相容性;改性R318.6 A doi:10.3969/j.issn.1671-7104.2015.02.012GAO Renwei Shanghai Chinasun Medical Technology Co. Ltd., Shanghai, 200949 This paper reviews and analyzes the modi ?cations of silicone rubber, containing nanometer material ?lling, plasma surface modi ?cation, surface grafting, mixture with bioactive substrates and bionic coating. At last, the author shows the prospect for the future development of silicone rubber modi ?cation. silicone rubber, biocompatibility, modi ?cation 医用硅橡胶材料改性研究 【作 者】【摘 要】【关 键 词】【中图分类号】【文献标志码】 【 Writer 】【 Abstract 】【Key words 】Research for Modification of Medical Silicone Rubber Material 作者简介:高仁伟,E-mail: sungrw@https://www.360docs.net/doc/639862826.html, 硅橡胶是有机聚硅氧烷的一族,由硅、氧及有机根组成的单体经聚合而成,在医学领域的应用开始于20世纪中期。硅橡胶具有极佳的理化稳定性和生理惰性,可长期处于体内环境,且不被机体代谢、吸收和降解。作为人体植入物的主要材料之一, 硅橡胶在复杂的环境条件下具有较强的耐老化性及良好的工艺性能。但由于硅橡胶的分子为螺旋性结构,非极性的R 基则处于螺旋外侧,主链硅氧键的极性降低或抵消,使得整个分子的极性很低,并表现出了极强的疏水性[1],临床应用植入体内后,导致植入物与受体亲和力差、容易变形移位、材料外露等问题, 还引起患者植入部位形成肉芽肿,长期发热[2]。因此,国内外学者在改善硅橡胶力学性能和生物相容性,增强硅橡胶材料的机械性能,进一步提高其亲水性等方面进行了广泛的研究。 1 纳米材料填充硅橡胶改性 近些年来,作为生物材料科学研究的前沿领域,纳米材料填充硅橡胶改性的研究得到了广泛开展。纳米材料填充改性硅橡胶指的是采用特殊工艺或手段使得纳米材料在硅橡胶机体内均匀分散,从而获得比原硅橡胶基体性能更佳的材料[3]。目前,已有越来越多的纳米材料在硅橡胶的改性研究中得到了应用。例如,将在硅橡胶内润湿分散性良好,中,这样不但能改善硅橡胶的流变性能与亲水性,而且起到增强作用[4]。Kannan 等[5]构建了硅氧烷纳米复合材料,聚尿烷-多面体齐分子量形式。该材料表面对纤维蛋白素原吸收能力增强,并且同时有两性电解质性能和较大的接触角滞后。动物体内研究表明,相对与普通的医用硅氧烷,其增水效果非常明显,其生物相容性和生物稳定性都得到了相应的改善。 2 等离子体表面改性 等离子体是一种对不同气体采用特殊装置进行作用,如射频辉光放电(radiof requency glow discharge ,RGD)或电晕放电等过程,产生的一种部分电离的混合气体,由电子、自由基、离子、不同能量的光子以及气体原子等各类活性粒子组成。等离子体在撞击材料表面的同时会与之发生各种化学反应[6]。通过等离子体对硅橡胶表面进行改性处理,在其表面引入各种极性的基团,可以有效的提高材料生物相容性,改善其与生物环境的相互作用[7]。等离子体表面改性的方法有等离子体表面处理以及等离子体表面聚合两种。等离子体表面处理利用的是等离子体对暴露于非聚合性气体等离子体的材料表面进行轰击,从而引起高分子材料表面结构的变化来实现对高分子材料表面的改性过程。等离子体处理则是通过改变材料表面的拓扑结构,实现对其表面非特异性作用的抑制,在材料表面形成目标官能团。等离子体会聚合于暴露在聚合性气体高分子材料表面并沉积一层具有特定功能的聚合

相关文档
最新文档