浙教版八年级数学上册知识点总结
浙教版八年级上册数学知识点

浙教版八年级上册数学知识点浙江省教育出版社出版的八年级上册数学教科书涵盖了一系列的数学知识点,这些知识点为学生提供了扎实的数学基础,并且与国家课程标准紧密相连。
以下是该教材中的一些核心知识点概述:1. 数与式- 整数和有理数的运算,包括加法、减法、乘法、除法以及它们的混合运算。
- 代数表达式的理解和简化,包括合并同类项、分配律等。
- 一元一次方程和二元一次方程的解法,以及它们在实际问题中的应用。
- 不等式及其解集的概念,一元一次不等式和它们的解集。
2. 图形与变换- 平面直角坐标系的基本概念,点的坐标表示。
- 直线、射线、线段的性质和表示方法。
- 角的概念,包括角的度量、角的分类和角的运算。
- 图形的轴对称、中心对称和旋转变换。
3. 统计与概率- 数据的收集、整理和描述,包括频数分布表和直方图。
- 平均数、中位数和众数的概念及其计算方法。
- 简单事件和复合事件的概率计算,以及概率的基本性质。
4. 探索与应用- 数学问题的探索方法,包括归纳、类比和推理。
- 数学在日常生活中的应用,如购物、旅行等实际问题的解决。
- 数学探究活动,鼓励学生通过实践活动来理解数学概念。
5. 数学思维- 培养学生的逻辑思维能力和数学表达能力。
- 通过解决复杂问题,提高学生的分析问题和解决问题的能力。
为了确保学生能够充分理解和掌握这些知识点,教师通常会设计各种教学活动,包括课堂讲解、小组讨论、实践活动和家庭作业。
此外,学生还应该通过课后的复习和练习来巩固所学知识。
请注意,这个概述并不是一个完整的教学大纲,而是一个简要的总结。
具体的教学内容和顺序可能会根据学校的教学计划和学生的学习进度有所调整。
教师和学生应该参考最新的教科书和教学大纲来获取最准确的信息。
浙教版八年级上册数学知识点

浙教版八年级上册数学知识点Chapter 1: Preliminary Understanding of TrianglesI。
Basic Concepts of TrianglesA triangle is a figure formed by three line segments that are not on the same line and are connected end-to-end.II。
n of Triangles:1.According to angles: acute triangle。
right triangle。
obtuse triangle (ns and differences).2.According to sides: scalene triangle。
isosceles triangle。
equilateral triangle.III。
Basic Properties of Triangles1.The sum of the r angles of a triangle is 180°.2.The sum of any two sides of a triangle is greater than the third side (due to the fact that the shortest distance een two points is a straight line)。
The difference een any two sides of a triangle is less than the third side.n: determine the range of the third side with two known sides。
determine if three known sides can form a triangle。
(完整版)浙教版初中数学八年级上册知识点及典型例题

数学八年级上册知识点及典型例题第一章平行线1.1同位角、内错角、同旁内角所截,构成了八个角。
如图:直线l , l被直线l321L3 a3L1 14a12358L2 a267的同旁,并且分别位于直线l , ll 的相同一侧,这样的一51. 观察∠1与∠的位置:它们都在第三条直线231对角叫做“同位角”。
2. 观察∠3与∠5的位置:它们都在第三条直线l的异侧,并且都位于两条直线l , l 之间,这样的一对213角叫做“内错角”。
3. 观察∠2与∠5的位置:它们都在第三条直线l的同旁,并且都位于两条直线l , l之间,这样的一对角231叫做“同旁内角”。
想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角)确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
1.2 平行线的判定(1)复习画两条平行线的方法:A A L12L1o抽象成几何图形(图形的平移变换)L1oL B2B.21)怎样用语言叙述上面的图形?提问:(1 被AB所截)(直线l,l 21(2)画图过程中,什么角始终保持相等?2)(同位角相等,即∠1=∠位置关系如何?,3)直线ll (21)l∥l (21(4)可以叙述为:2∵∠1=∠)(∥∴ll ? 1 2。
语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单地说:同位角相等,两直线平行。
21=∠几何叙述:∵∠l∥l(同位角相等,两直线平行)∴ 2 1想一想c a21b若a⊥b,b⊥c则a c2在同一平面内,垂直于同一条直线的两条直线互相平行。
平行线判定方法的特殊情形:2)1.2 平行线的判定(CDAB与=180°,则AB与CD平行吗?②若∠2+∠4图中,直线AB 与CD被直线EF所截,①若∠3=∠4,则平行吗?E1A B432 C DF°42+∠=180°,∠2+∠3=180 ,∠①∵∠3=∠41=∠4 ②∵∠=∠4 ∴∠3 1∴∠=∠3)()∴AB∥CD (∥∴ABCD内错角相等,两直线平行两条直线被第三条直线所截,如果内错角相等,则两条直线平行。
浙教版八年级上数学知识点

浙教版八年级上数学知识点第一章 三角形的初步知识 复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类: (2)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A 三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形21DC BAD CB ADC BA3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线.=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:是△ABC 的BC 上的高线.⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180?;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理【浙教版八年级数学上册知识点梳理】一、有理数的认识与运算1. 有理数的概念:有理数是整数和分数的统称。
2. 有理数的分类:正有理数、负有理数和零。
3. 绝对值的概念:一个数与零之间的距离。
4. 有理数的比较:绝对值越大,数值越大;同号比较大小。
二、实数的认识与运算1. 无理数的概念:无理数是不能写成两个整数的比例。
2. 实数的分类:有理数和无理数。
3. 实数的运算:加法、减法、乘法、除法、乘方等。
4. 分数的运算:加法、减法、乘法、除法等。
三、代数式1. 代数式的定义:用字母和数的组合表示数学关系的式子。
2. 简化与展开:将代数式进行合并或展开。
3. 等式的性质:等式两边加(减)一个相等的数仍相等。
4. 代数式的运算:加法、减法、乘法、除法等。
四、一元一次方程1. 方程的概念:含有未知数的等式。
2. 解方程的基本思路:变量相互抵消,化简为等价的方程。
3. 方程解的概念:使等式成立的未知数的值。
4. 解一元一次方程的方法:等式两边逐步变等,通解与特解。
五、比例与比例方程1. 比例的概念:相同量类的两个比值。
2. 比例的性质:比例脱离比例量可以推出三者成比例。
3. 比例的应用:计算长度、面积、体积等。
4. 比例方程:两个比例关系的等式。
六、直线和角的认识1. 平面直线的特征:无限延伸,包含任意两点。
2. 直线的表示方法:点斜式、一般式等。
3. 角的基本概念:由两个射线公共端点构成的图形。
4. 角的分类:锐角、钝角、直角等。
七、平面图形的认识与计算1. 多边形的分类:三角形、四边形、五边形等。
2. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
3. 四边形的分类:矩形、正方形、菱形、平行四边形等。
4. 平行线与平行四边形的性质:中位线、对角线等。
八、圆的认识与计算1. 圆的概念:平面上距离一个给定点相等的点的集合。
2. 圆的要素:圆心、半径、直径等。
3. 圆的计算:圆的面积与周长。
八年级上数学知识点浙教版

八年级上数学知识点浙教版八年级数学知识点浙教版数学一直都是中学生们心中的一大绊脚石,特别是对于初中八年级的同学,数学知识点更是困扰着他们。
本篇文章将为大家系统性地总结八年级上数学知识点浙教版,帮助大家更好地掌握这门学科。
一、数字的认识1. 自然数与整数:自然数就是从1开始,没有结束的数。
整数包括自然数和0以及负整数。
2. 有理数与无理数:有理数是可以用两个整数的比表示出来的数,而无理数则不能表示成有理数的形式。
3. 小数的四舍五入:当小数点后一位数小于5时,舍去;当小数点后一位数大于等于5时,进位。
二、代数式的认识1. 代数式:代数式是由数字、变量及运算符号组合而成的式子。
2. 代数式的化简:将同一类项合并,消去分母,再运用公式进行化简。
三、一次函数的认识1. 一次函数的特征:一次函数的图像是一条直线,函数的解析式为y=kx+b,其中k 为斜率,b为截距。
2. 直线的斜率:斜率可以表示为纵坐标的增量与横坐标的增量的比值。
3. 相关系数:相关系数代表着两个变量之间线性关系的强度,相关系数越接近于1或者-1,说明两个变量之间的关系越密切。
四、平面图形的认识1. 几何图形的基本概念:几何图形包括点、线、面。
线和面都可以分成直线、线段、射线、角、平行线、垂线、相交线等等。
2. 三角形的性质:三角形是由三条线段构成的平面图形,有三个内角和三个外角。
三角形的内角和相等于180度,不同类型的三角形有不同的特征。
3. 直线的关系:直线包括相交、平行、垂直等不同的关系,我们可以通过这些关系来解决平面几何问题。
五、数据的统计和分析1. 统计数据的分类:统计数据可以分为连续性数据和离散性数据,它们的特征和表现形式也有所不同。
2. 统计数据的分布:根据统计数据的情况,我们可以将数据分为正态分布、偏态分布等等,不同类型的数据分布有不同的统计特征和应用方法。
以上是八年级上数学知识点浙教版的系统总结,希望对大家有所帮助。
数学是一个需要不断练习的学科,只有通过不断的练习和掌握基本知识点,才能在数学这条路上越走越稳健。
初二数学上册知识点归纳浙教版三篇

初二数学上册知识点归纳浙教版【三篇】2021初二上数学用例(一) ;同类项的概念:所含字母相同,并且相同字母的大写字母指数也相同的项叫做同类项。
几个常数项也叫乘子。
;判断三四个单项式或项,是否是同类项的两个标准: ;①所含字母相同。
②相同符号的次数也相同。
;判断同类项时与系数无关,与字符排列的顺序也无关。
;合并礼侨的概念:把多项式中的同类项合并成一项叫做合并同类项。
;合并同类项的法则:同类项的系数相加,当期结果作为系数,字母和字母的指数不变。
;合并同类项步骤: ;⑴.准确的找出同类项。
;⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
;⑶.写出合并而后的结果。
;合并同类项时注意: ;(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。
;(2)不要记住不能合并的项。
;(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
;(4)不是同类项千万不能进行合并。
;2021初二上所数学知识点(二) ;一、平均数、中位数、众数的概念 ;1.平均数 ;平均数是指对在一组数据中所有数据之和再除以中会数据的个数。
;2.中位数 ;中位数是指将统计总体当中暗指的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的自变量变量值就称为平均收入。
;3.众数 ;众数是一组中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
;二、平均数、中位数、众数的区别 ;1.平均数的大小与一组数据里的每个数均有,其中任何数据的变动都会相应引起惹来平均数的变动。
;2.总数着眼于对各数据出现频率的考察,其大小只与这组数据粗细的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
;3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中所个别数据变动较大时,可用中位数来描述其中开始集中的趋势。
初二上册数学知识点归纳浙教版

初二上册数学知识点归纳浙教版一、三角形1、三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
3、三角形的内角和三角形的内角和为 180°。
4、三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
5、三角形的分类(1)按角分类:锐角三角形、直角三角形、钝角三角形。
(2)按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
6、三角形的中线、高线、角平分线(1)中线:连接三角形一个顶点和它对边中点的线段叫做三角形的中线。
(2)高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。
(3)角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
二、全等三角形1、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形的对应边相等,对应角相等。
(2)全等三角形的周长相等,面积相等。
3、全等三角形的判定(1)“边边边”(SSS):三边对应相等的两个三角形全等。
(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1、轴对称图形如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
2、轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形1、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
注:三角形具有稳定性。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
4、三角形的面积三角形的面积注:同底等高的三角形面积相等。
三角形中的主要线段1、三角形中的主要线段有:三角形的角平分线、中线和高线。
2、这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。
(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。
而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。
(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。
在以后我们可以给出具体证明。
今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。
全等三角形1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(4)角角边定理:有两个角和其中一个角的对应边相等的两个三角形全等(可简写成“角角边”或“AAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
4.线段中垂线和角平分线的性质,基本尺规作图:作角的平分线,线段的中垂线,作一个角等于已知角,按给定条件作三角形。
第二章特殊三角形特殊三角形的定义、性质及判定1. 有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
2. 等腰三角形的性质:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
3. 等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
4. 等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
5. 等边三角形的判定:(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形。
6. 含30°角的直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等边三角形(1)等边三角形的定义:三条边都相等的三角形叫等边三角形.(2)等边三角形的性质:①等边三角形的三个角都相等,并且每个角都是60°;②等边三角形具有等腰三角形的所有性质,并且每一条边上都有三线合一,因此等边三角形是轴对称图形,它有三条对称轴;而等腰三角形只有一条对称轴.(3)等边三角形的判定①三条边都相等的三角形是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③有两个角都等于60°的三角形是等边三角形;④三个角都相等的三角形是等边三角形.(4)两个重要结论①在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.②在直角三角形中,如果一条直角边是斜边的一半,那么它所对的锐角等于30°.两个重要结论的数学解释:已知:如图4,在△ABC中,∠C=90°,则:①如果AB=2BC,那么∠A=30°;②如果∠A=30°,那么AB=2BC.直角三角形1. 认识直角三角形。
学会用符号和字母表示直角三角形。
按照角的度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。
通常用符号“Rt△”表示“直角三角形”,其中直角所对的边称为直角三角形的斜边,构成直角的两边称为直角边。
如果△ABC是直角三角形,习惯于把以C为顶点的角当成直角。
用三角A、B、C对应的小写字母a、b、c分别表示三个角的对边。
如果AB=AC且∠A=90°,显然这个三角形既是等腰三角形,又是直角三角形,我们称之为等腰直角三角形。
2. 掌握“直角三角形两个锐角互余”的性质。
会运用这一性质进行直角三角形中的角度计算以及简单说理。
3. 会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形。
4. 掌握“直角三角形斜边上中线等于斜边的一半”性质。
能通过操作探索出这一性质并能灵活应用。
5在直角三角形中如果一个锐角是30°,则它所对的直角边等于斜边的一半”。
难点:1在直角三角形中如何正确添加辅助线通常有两种辅助线:斜边上的高线和斜边上的中线。
勾股定理及逆定理(一)勾股定理及其证明勾股定理:直角三角形两直角边的平方和等于斜边的平方.符号语言:在△ABC中,∠C=90°(已知)证明:进行图形拼接用面积法证明. 制作四个全等的直角三角形,然后进行拼接,利用面积法理解勾股定理.(1(2)已知一边求另两边关系; (3)证明线段的平方关系; (4. (三)勾股定理的逆定理 如果三角形的三边长a 、b 、c.1.勾股定理的逆定理的证明是构造一个直角三角形,然后通过证全等完成;2.勾股定理的逆定理实质是直角三角形的判定之一,与以前学的判定方法不同,它是用代数运算来证明几何问题,这是数形结合思想的最好体现,今后我们会经常用到.利用勾股定理的逆定理判别直角三角形的一般步骤:1.先找出最大边(如c );2.ABC 是直角三角形.ABC 不是直角三角形.注意:(1)△ABCC=90A=90B=90°.(2C 为钝角,则△ABC 为钝角三角形.C 为锐角,但△ABC 不一定为锐角三角形.(四)勾股数:能够成为直角三角形三条边长度的三个正整数称为勾股数(或勾股弦数),如3、4、5;6、8、10;5、12、13;8、15、17等.第三章一元一次不等式一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1) 不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。
二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)。
要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
三:一元一次不等式的概念只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。
要点诠释:(1)一元一次不等式的概念可以从以下几方面理解:①左右两边都是整式(单项式或多项多);②只含有一个未知数;③未知数的最高次数为1。