机械原理大作业一

合集下载

机械原理大作业——牛头刨床

机械原理大作业——牛头刨床

机械原理大作业——牛头刨床大作业,一,平面连杆机构的运动分析题号: 6班级 : 姓名 : 学号 : 同组者 :成绩 :完成时间 :目录题目、原始数据及要求 ..................................................................... .......................1 一平面连杆机构运动分析方程 ..................................................................... . (1)1.1速度计算公式 ..................................................................... .. (2)1.2加速度计算公式 ..................................................................... ..............2 二程序 ..................................................................... (3)2.1计算程序框图 ..................................................................... (3)2.2计算源程序 ..................................................................... .........................4 三 3.1 (一组数据 Lab =200mm)计算结果 (9)3.2运动线图 ..................................................................... . (10)3.3 体会 ..................................................................... .................................... 12 四 4.1(第二组数据 Lab =150mm)计算结果 . (12)4.2 运动线图 ..................................................................... .. (13)4.3 体会 ..................................................................... .................................... 15 五 5.1(第三组数据 Lab =220mm)计算结果 . (16)5.2 运动线图 ..................................................................... (17)5.3 体会 ..................................................................... ...................................... 21 六参考资料 ..................................................................... (21)题目、原始数据及要求:图所示为一牛头刨床(?级机构)。

机械原理大作业1

机械原理大作业1

一、牛头刨床机构的运动分析下图为一牛头刨床(Ⅲ级机构)。

假设已知各构件的尺寸如表2所示,原动件1以等角速度w1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度和加速度的变化情况。

二、牛头刨床机构的运动分析方程 1)位置分析建立封闭矢量多边形建立一直角坐标系,并标出各杆矢量及其方位角,其中共有4个未知量3θ(θ2=3θ)、4θ、3S 、5S 。

利用两个封闭图形ABDEFA 和EDCGE ,建立两个封闭矢量方程,由此可得:3125DE AB DE CD l s h h l l l h s →→→→→→→→→⎧+=++⎪⎨⎪+=+⎩(1)把(1)写成投影方程得:433214331143543cos *cos *cos *sin *sin *sin *cos *cos 0*sin *sin DE AB DE AB DE CD DE CD l s h l l s h l l l s l l h θθθθθθθθθθ*+=+⎫⎪+=+⎪⎬+-=⎪⎪+=⎭(2) 由以上各式用型转化法可求得4335s s θθ、、、,滑块2的方位角23θθ=2111*cos *sin b AB b AB x h l y h l θθ=+⎧⎨=+⎩ 44*cos *sin d DE d DE x l y l θθ=⎧⎨=⎩3s =3)*sin *()/*cos *(/c d CD d CD b d c d CD d CD b d s x x l x l x x s y y l y l y y s αα=+=+-⎧⎪⎨=+=+-⎪⎩ 3tan c dc dy y x x θ-=- 5c s x =()ae AE =44()tan *cos d c DE y h y l θθ+-=高斯消去法求解 2)速度分析对(2)求一次导数得:44333331144333331144334433*sin *s '*cos *sin **sin **cos *'*sin *cos **cos **sin **sin *0*cos **cos *0DE AB DE AB DE CD c DE CD l s l l s s l l l v l l θωθθωθωθωθθωθωθωθωθωθω-+-=-⎫⎪++=⎪⎬---=⎪⎪+=⎭(3)矩阵式:3334313334313443cos *sin *sin 0'*sin sin *cos *cos 0*cos 0*sin *sin 100*cos *cos 00DE AB DE AB CD DE CD DE c s l s l s l l l l l l v θθθθθθθθθθωθθ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ω⎢⎥⎢⎥⎢⎥=ω1⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (4)采用高斯消去法可求解(4)可解得角速度ω2,ω3; 3)加速度分析把(4)对时间求导数得:333433334334434cos *sin *sin 0''sin *cos *cos 00*sin *sin 10*cos *cos 0DE DE CD DE CD DE c s l s s l l l l l a θθθθθθθθαθθ--⎡⎤⎡⎤⎢⎥⎢⎥α⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦33333444433333343443334443344*sin '*sin **cos **cos 0'*cos '*cos **sin **sin 00**cos **cos 00**sin **sin 0DE DE CD DE CD DE c s s l s s s l l l l l v ωθθωθωθωθθωθωθωθωθωωθωθ----⎡⎤⎡⎤⎢⎥⎢⎥--ω⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦1111**cos **sin 00AB AB l l ωθωθ-⎡⎤⎢⎥-⎢⎥+ω1⎢⎥⎢⎥⎣⎦(5)采用高斯消去法可求解(5)可解得角加速度α2,α3,α5,α6三、程序流程图四、计算源程序#include<stdio.h>#include<stdlib.h>#include<math.h>/* 定义变量*/const double PI = 3.14159265358979;const int N = 4;const double EPSILON = 0.0001;const int T = 1000;/* 代入已知量*/double Lab=160,Lcd=1020,Lde=250,h=900,h1=460,h2=120,Omega1=1;/* 声明子函数*/void AngleDisplacement(double[12],double);/* 角位移函数*/void AngleVelocity(double[N][N],double[N],double[12],double);/* 角速度函数*/void AngleAcceleration(double[N][N],double[N][N],double[N],double [12]);/* 角加速度函数*/void GaussE(double [N][N],double [N],double [N]);/* 高斯消去法函数*/void ModulusMatrixA(double [12],double [N][N]);/* 矩阵A函数*/void ModulusMatrixB(double [12],double ,double [N]);/* 矩阵B函数*/void MatrixDA(double [12],double [N][N]);/* 矩阵DA函数*/void MatrixDB(double [12],double ,double [N]);/* 矩阵DB函数*//* 主函数*/void main(){int i,j;FILE *fp;double data[36][12];double value[12],a[N][N],da[N][N],b[N],db[N],Phi1;char flag;/* 打开文件*/if((fp = fopen("Data","w")) == NULL){printf("文件打开错误!\n");exit(0);}fprintf(fp,"Lab =%lf \n",Lab);fprintf(fp,"s3\tPhi3\tPhi4\ts5\t");fprintf(fp,"s3'\tOmega3\tOmega4\ts5'\t");fprintf(fp,"s3''\tEpsilon3\tEpsilon4\ts5''");printf("\n\n 牛头刨床机构运动分析程序\n\n\n");printf("\n");printf(" 是否开始计算(Y/N):");scanf("%c",&flag);if(flag =='Y'){/*计算并写入文件*/value[0] = 480;value[1] = 65 * PI / 180;value[2] = 10 * PI / 180;value[3] = 500;for(i = 0;i < 36; i++){Phi1 = i * PI / 18;AngleDisplacement(value,Phi1);ModulusMatrixB(value,Phi1,b);ModulusMatrixA(value,a);AngleVelocity(a,b,value,Phi1);MatrixDA(value,da);MatrixDB(value,Phi1,db);AngleAcceleration(a,da,db,value);for(j = 1;j < 3; j++)value[j] = value[j] * 180 / PI;for(j = 0;j < 12; j++)data[i][j] = value[j];fprintf(fp,"\n");for(j = 0;j < 12; j++)fprintf(fp,"%12.3f\t",data[i][j]);}fclose(fp);/* 输出数据*/printf("\n\n\n计算结果如下:\n");for(i = 0;i < 36; i++){Phi1=i * PI / 18;printf("\n输出Phi1=%d时的求解\n",i*10);printf(" S3 Phi3 Phi5 S5\n");for(j = 0;j < 4; j++)printf("%lf\t",data[i][j]);printf("\n");printf(" S3' Omega3 Omega5S5'\n");for(j = 4;j < 8; j++)printf("%lf\t",data[i][j]);printf("\n");printf(" S3'' Epsilon3 Epsilon5 S5''\n");for(j = 8;j < 12; j++)printf("%lf\t",data[i][j]);printf("\n");}printf("\n程序运行结束,计算结果已写入Date文件中,请打开查看。

机械原理大作业

机械原理大作业
2>速度计算
function [ v_Nx,v_Ny ] =v_crank(s,v_Ax,v_Ay,omiga,theta,phi) v_Nx=v_Ax-s*omiga.*sin(theta+phi); v_Ny=v_Ay+s*omiga.*cos(theta+phi); end
3>加速度计算
function [ a_Nx,a_Ny ]=a_crank(s,a_Ax,a_Ay,alph,omiga,theta,phi) a_Nx=a_Ax-alph.*s.*sin(theta+phi)-omiga.^2.*s.*cos(theta+phi);

1) 位置分析
将已知 P1P2 两点的坐标差表示为:
u=x2-x1,v=y2-y1
(1)
杆 l1 及 l2 投影方程式为:
l1cosθ1-l2cosθ2=u
l1sinθ1-l2sinθ2=v
(2)
消去θ1 得:vsinθ2+ucosθ2+c=0
(3)
其中: 解式(3)可得:
t(4) 式中+号和-号分别对应图 2 中 m=+1 和 m=-1 两位置。
由式(2)可得:
(5) 2) 速度分析
对 式 (2) 求 导 一 次 得 :
(6)
其中:
解式(6)可得:
(7)
其中: 3) 加速度分析
对式(6)求导一次得:
(8)
其中:
'.
解式(8)可得:
由上述式子可设计出 RRR 杆组运动分析子程序:
1>位置分析:
function[cx,cy,phi2,phi3]=s_RRR(bx,by,dx,dy,l2,l3,m,phi) d=sqrt((dx-bx).^2+(dy-by).^2); if(d>(l2+l3))|(d<abs(l2-l3))

机械原理课程大作业

机械原理课程大作业

机械原理课程大作业基于MATLAB平面连杆机构运动学和动力学分析指导老师:王玉丹目录作业一:平面连杆机构运动学分析第2页作业二:平面连杆机构动力学分析第15页作业一L(AE)=70mm,L(AB)=40mm,L(EF)=60mm,L(DE)=35mm,L(CD)=75m m,L(BC)=50mm,原动件以等角速度W1=10rad/s回转。

试以图解法求在θ1=50°时C点的速度和加速度.对机构进行运动分析,写出C点的位置、速度及加速度方程。

解题过程:令AB=r1, BC=r2, CD=r3, DE=r4,AE=r6,EF=r8, AF=r7,角EAF=θ1。

分析:对机构进行位置分析由封闭形ABCDEA可得:r1+r2=r6+r3+r4 (1)由封闭图形AEFA可得:r7=r6+r8 (2)将(1)(2)两式整理可得:r2-r3-r4=-r1+r6-r8+r7=r6【一】(1)位置方程:【二】速度方程:【三】加速度方程:【四】根据位置方程式编制如下函数:【五】进行数据输入,运行程序进行运算。

根据上面分析的θ1 的极限位置取θ1 的范围为40°-55°并均分成15个元素:输出的P、矩阵的第二列到第四列分别是θ2 、θ3 、4θ4 的值,第一列是AF杆的长度r1’。

【六】第二步根据速度方程式编写如下函数:根据第一步得到的数据进行数据输入,运行程序计算各速度值。

程序如下:程序运行得到q矩阵,第一行到第三行分别是a2、a3、a4 的值,第四行是杆AF上滑块运动的速度,即F点的速度。

【七】第三步编写加速度计算函数:【八】根据第一步和第二步输入数据,运行程序得到各加速度的值:【1】计算C点在θ1 =55°,w1 =10rad/s时的速度,加速度:总结数据绘出各构件的位置、速度和加速度的表格如下:【2】输出图像1)角位置程序及输出的图像:2)F点速度程序及输出的图像:3)角加速度程序及输出的图像:4)F点的加速度程序及输出图像:作业二在图示的正弦机构中,已知:L(AB)=100mm,h1=120mm,h2=80mm, W1=10rad/s(常数),滑块2和构件3的重量分别为,G2 =40 N 和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。

哈工大机械原理大作业一连杆运动分析(02)

哈工大机械原理大作业一连杆运动分析(02)

哈⼯⼤机械原理⼤作业⼀连杆运动分析(02)⼀.设计题⽬⼆. 结构分析与基本杆组划分1.机构的结构分析机构各构件都在同⼀平⾯内运动,活动构件数n=3 P L=4 P H=0则机构的⾃由度为: F = 3n -2P L –P H = 3×3-2×4 = 12.基本杆组划分(1)去除虚约束和局部⾃由度本机构中⽆虚约束或局部⾃由度,此步骤跳过。

(2)拆杆组。

从远离原动件(即杆1)进⾏拆分,就可以得到由杆2,3组成的RRRⅡ级杆组和Ⅰ级机构杆1。

如下图:(3)确定机构的级别由(2)知,机构为Ⅱ级机构。

三. 运动分析数学模型以A为原点建⽴坐标系,如图:原动件AB的转⾓:φ1=0--2π运动副A的位置坐标:x A=0 y A=0 运动副D的位置坐标:x D=d y D=0 则运动副B的位置坐标:x B = acosφ1 y B = asinφ1其中:t=0:0.001:2*pi;a=60;b=90;c=120;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd)曲柄a=50,55,60,65红蓝绿黄b=90,c=120,d=100 t=0:0.001:2*pi; a=50;b=90;c=120;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'r'); hold on;grid on;t=0:0.001:2*pi;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'b'); hold on;t=0:0.001:2*pi;a=60;b=90;c=120;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'g'); hold on;t=0:0.001:2*pi;a=65;b=90;c=120;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'y');a=50,55,60,65红蓝绿黄2.摇杆c=105,115,125,135红蓝绿黄a=50,b=90,d=100 t=0:0.001:2*pi; a=50;b=90;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'r'); hold on;grid on;t=0:0.001:2*pi;a=50;b=90;c=115;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'b');t=0:0.001:2*pi;a=50;b=90;c=125;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'g'); hold on;t=0:0.001:2*pi;a=50;b=90;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'y');c=105,115,125,135红蓝绿黄3.连杆b=80,90,100,110红蓝绿黄a=50,c=120,d=100 t=0:0.001:2*pi; a=50;b=80;c=120;d=100;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'r'); hold on;grid on;t=0:0.001:2*pi;a=50;b=90;c=120;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'b'); hold on;t=0:0.001:2*pi;a=50;b=100;c=120;d=100;xa=0;ya=0;xd=d;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'g'); hold on;t=0:0.001:2*pi;a=50;b=110;c=120;d=100;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'y');b=80,90,100,110红蓝绿黄4.机架d=85,95,105,115 红蓝绿黄a=50,b=90,c=120 t=0:0.001:2*pi; a=50;b=90;c=120;d=85;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'r'); hold on;grid on;t=0:0.001:2*pi;a=50;b=90;c=120;d=95;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'b'); hold on;t=0:0.001:2*pi;d=105;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'g'); hold on;t=0:0.001:2*pi;a=50;b=90;c=120;d=115;xa=0;ya=0;xd=d;yd=0;xb=a.*cos(t);yb=a.*sin(t);m=xd-xb;n=yd-yb;lbd=(m.^2+n.^2).^(1/2);a0=2*b.*(xd-xb);b0=2*b.*(yd-yb);c0=b.^2+lbd.^2-c.^2;dd=2*atan((b0+(a0.^2+b0.^2-c0.^2).^(1/2))./(a0+c0)); plot(dd,'y');d=85,95,105,115 红蓝绿黄。

机械原理大作业-连杆机构

机械原理大作业-连杆机构

设计内容
结论
1. 机构结构分析 1)计算机构自由度,确定机构是否有确定运动。
机构自度 F=1
本机构中,n= 5 , pL= 7
,pH = 0
则有:F=3n-2PL –PH= 3*5-2*7=1
是否有确定
机构确定运动判断: 因 F= 1 ,原动件个数= 1 ,可知: 自由度等于原动件数,机构有确定 的运动。
➢ 求解速度 vB 、角速度 2 : 矢量方程:
大小 ? √ ? 方向 ⊥BD ⊥OA ⊥AB
逆时针方向 ➢ 求解速度 vC 、2 杆质心 S2 的速度 vs2 :
vB =1.57m/s 2 =0.36rad/s, 逆时针方向
vC =1.56m/s vs2 =1.53m/s
-3-
➢ 求解速度 vE 、角速度 4 : 矢量方程:
动态静力学参数:m2=20 kg , JS2 = 1.1 kg m2 ,m5=50 kg
表 2 阻抗力参数表
班级序号 1
2
3
4
5
6
7
8
9
10
Fr /N
500 600 700
800
900
1000 1100 1200 1300 1400
-1-
机械原理模块训练一
二、 训练要求
通过对干草压缩机六杆机构进行结构分析、运动分析和力分析,对该设备的运动性能做出 定量的计算,为新设备的设计与评价提供依据。 机构结构分析:了解机构组成,学会对机构工作原理简图表达,判断机构的结构组成是否可行。 机构运动分析:已知原动件运动参数情况下,学会求解机构输出端和机构中关键点的运动参数。 机构动态静力分析:当已知工作阻力时,需要给机器配置动力,通过平衡力求解可以获得;当 机器安装时需要知道支座的反力,可通过动态静力分析获得。

机械原理大作业1(六杆机构)

机械原理大作业1(六杆机构)

车辆1302 高小凡41340142车辆1302 张藜千413401381、某洗衣机搅拌机构(原图)机器的功能:这个机器通过1杆输入一个原动力,然后带动3号摇杆的运动输出,完成运动搅拌功能。

适用场合:适用于①洗衣机内部搅拌功能部分;②筛子2、(1)分析机构的运动1杆:曲柄,2杆:连杆,3杆:摇杆;由曲柄1的转动带动摇杆3的摆动,实现运动输出。

(2)运动简图(3)如图,该六杆机构只有一个原动件----1杆(4)自由度F=3(n-1)-2P5=3*5-2*7=1上述六杆机构的运动形式可简化为如图四杆机构的运动形式,4,5杆的运动作为摇杆3的输出机构。

3、大致测绘出构件尺寸4、确定机构所含杆组的数目和级别(拆杆组),并判断机构的级别;依次拆下4-5/2-3两个II级杆组及原动件1(II级杆组),所以该机构为II级杆组5、用图解法求出最小传动角值:由下图可知,在极限位置2时,压力角最大为70°,则最小传动角为42°6、分析该机构有无急回特性和死点位置;有急回,无死点;180+1809k 1.11180-1809θθ+===>-7、用瞬心法对机构进行运动分析上图中标出了该机构的简化四杆机构的所有瞬心P 12 P 13 P 16 P 23 P 26 P 36其中,绝对瞬心有:P 16 P 36 P 26 相对瞬心有:P 12P 13 P 23速度分析:若1的角速度为w1,则V(P12)=l1*w1V(P23)= [V(P12)/|P12P13|]*|P13P23 | w3= V(P23)/l3w6= V(P23)/| P23P26 |(1)角速度比mv=w6/w2=l1sinv/l3sinuv=0, mv=0,w6=0,此时构件1、2共线,机构处于极限位置;(2)mv=w6/w2=OP13/CP13 (瞬心P13能够用来确定速度比)上图为该机构(六杆机构)全部瞬心(15个)绝对瞬心:P16, P26,P36,P46,P56相对瞬心:P15,P25,P35,P45P14,P24,P34,P13,P23P12中间密集部分的的放大图如下图:8、用杆组法(或其他解析法)对机构进行运动分析(写出数学模型和程序框图);已知该机构的尺寸为:两个固定铰链点a,d,g的坐标分别为(0,0)(420,0)(-80,-35),曲柄原动件|ab|=100mm,连杆2长为300mm,摇杆3长150mm,杆4长100mm,杆5长50mm.经分析,该机构由一个曲柄原动件和两个RRR二级杆组组成的二级机构用杆组法搭建该机构的步奏如下:1)添加曲柄原动件ab;2)添加RRR二级杆组(2-3),杆组的两个动铰链点分别为已有铰链点b和固定铰链点d; 3)在连杆cd上添加铰链点e;4)添加RRR二级杆组(4-5),杆组的两个动铰链点分别为已有铰链点e和固定铰链点g; 5)该机构搭建完成,利用该程序可自动求出任意给定铰链点或构件的位置、速度、和加速度。

机械原理大作业一 33题

机械原理大作业一 33题

机械原理大作业(一)作业名称:机械原理设计题目:连杆机构运动分析院系:机电工程学院班级: xxxxxx设计者: xxx学号: xxxxxx指导教师: xxxxx设计时间: 6.25---7.1哈尔滨工业大学机械设计一,运动分析题目二,建立以点G为原点的固定平面直角坐标系G-x,y三,对机构进行结构分析该机构由原动件AB(Ι级组),EFG(RRRⅡ级杆组),EHK(RRRⅡ级杆组),ECD(RRRⅡ级杆组)组成。

四,各基本杆组的运动运动分析数学模型(1)原动件AB(Ⅰ级组)已知原动件AB的转角ψ1=0~2π原动件AB的角速度ω1=10rad/s原动件AB的角加速度α1=0运动副A的位置坐标 XA=0 YA=0A点与机架相连,即该点速度和加速度均为0。

运动副A的速度 VxA=0 VyA=0运动副A的加速度 aXA=0 aYA=0原动件AB长度 lAB=200mm可求出运动副B的位置坐标 XA=XA+lABcosψ1 YB=YA+lABsinψ1 运动副B的速度 vXB=vXA-ω1lABsinψ1 vYB=vYA+ω1lABcosψ1运动副B的加速度aXB=aXA-ω12lABcosψ1-α1lABsinψ1aYB=aYA-ω12lABsinψ1+α1lABcosψ1(2)ECD (RRR Ⅱ级杆组)由(1)知B 点位置坐标、速度、加速度运动副D 点位置坐标 XD=XA+lADcos ψ2 YD=YA+lADsin ψ2D 点与机架相连,即该点速度和加速度均为0。

运动副D 的速度 v X D=0 v Y D=0运动副D 的加速度 a X D=0 a Y D=0杆BC 长 lBC=800mm杆CD 长 lCD=448mm可求得BC 杆相对于X 轴正方向转角Ψ3=2arctan ()00/()0202020(C A C B A B +-++)CD 杆相对于x 轴正方向转角Ψ4=arctan ((YC-YD )/(XC-XD ))其中,A0=2lBC(XD-XB)B0=2lBC(YD-YB)C0=l 2BC+l 2BD-l 2CDl 2BD=(XD-XB)2+(YD-YB)2求导可得BC 杆ω3、α3和CD 杆ω4、α4最后求导得vXC 、vYC 以及aXC 、aYCC 的轨迹即是E 的轨迹(3)EFG (RRR Ⅱ级杆组)运动副G点位置坐标 X G=XA+lAGcosψ5 YG=YA+lAGsinψ5G点与机架相连,即该点速度和加速度均为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连杆机构的运动分析
一.题目
如图所示是曲柄摇杆机构,各构件长度分别为a,b,c,d,试研究各构件长度的变化对机构急回特性的影响规律。

二.机构分析
四连杆机构可分为如下两个基本杆组
Ⅰ级杆组 RRRⅡ级杆组
AB为曲柄,做周转运动;CD为摇杆,做摆动运动;
BC为连杆;AB,CD均为连架杆,AB为主动件。

三.建立数学模型
θ为极位夹角,φ为最大摆角
必须满足条件为:1.a≤b,a≤c,a≤d(a为最短杆);
2.L min+L max≤其他两杆之和。

下面分析杆长和极位夹角的关系:
在△AC2B中, =;
在△AC1B中, =。

θ=-
K=
最后分以下四种情况讨论:
1.机架长度d变化
令a=5,b=30,c=29
d由6开始变化至54,步长为1 输出杆长a,b,c,d和K。

2.连杆长度b变化
令a=5,b=29,d=30
b由6开始变化至54,步长为1 输出杆长a,b,c,d和K。

3.摇杆长度c变化
令a=5,b=29,d=30
c由6开始变化至54,步长为1 输出杆长a,b,c,d和K。

4.曲柄长度a变化
令b=29,c=28,d=30
a由5开始变化至27,步长为1 输出杆长a,b,c,d和K。

四.MATLAB计算编程a=5;b=30;c=29;
d=6:1:54;
m=(d.^2-216)./(50.*d);
n=(384+d.^2)./(70.*d);
p=acos(m);
q=acos(n);
w=p-q;
o=(w.*180)/3.14;
K=(180+o)./(180-o);
fprintf('%.6f\n',K);
plot(d,K,'b')
xlabel('机架长度d变化时
');
ylabel('极位夹角/度');
tilte('极位夹角变化图');
————————————————————————————————————
———
a=5;d=30;c=29;
b=6:1:54;
m=((b-5).^2+59)./(60.*(b-
5));
n=(59+(b+5).^2)./(60.*(b+
5));
p=acos(m);
q=acos(n);
w=p-q;
o=(w.*180)/3.14;
K=(180+o)./(180-o);
fprintf('%.6f\n',K);
plot(b,K,'b')
xlabel('连杆长度b变化时');
ylabel('极位夹角/度');
tilte('极位夹角变化图');
———————————————————————————————————————a=5;d=30;b=29;
c=6:1:54;
m=(1476-c.^2)./(1440);
n=(2056-c.^2)./(2040);
p=acos(m);
q=acos(n);
w=p-q;
o=(w.*180)/3.14;
K=(180+o)./(180-o);
fprintf('%.6f\n',K);
plot(c,K,'b')
xlabel('摇杆长度c变化时'); ylabel('极位夹角/度');
tilte('极位夹角变化图');
c=28;d=30;b=29;
a=5:1:27;
m=(116+(29-a).^2)./(60*(2
9-a));
n=(116+(29+a).^2)./(60*(2
9+a));
p=acos(m);
q=acos(n);
w=p-q;
o=(w.*180)/3.14;
K=(180+o)./(180-o);
fprintf('%.6f\n',K);
plot(a,K,'b')
xlabel('曲柄长度a变化时'); ylabel('极位夹角/度');
tilte('极位夹角变化图'); 五.计算结果
机架长度变化
连杆长度变化
摇杆长度变化
曲柄长度变化
六.计算结果分析
1.当机架d增大,其余三杆不变时,K一直减小,减小速度先快后慢。

说明机架距离越大,摇杆急回运动越不明显,但机架过长时,K减小不明显,但仍然减小。

2.当连杆b增大,其余三杆不变时,K一直增大,增大速度先快后慢再快。

说明连杆越长,摇杆急回运动越明显,连杆长度达到一定程度时,K增大不明显,趋于不变,再增长时,急回增大速度加快。

3.当摇杆c增大,其余三杆不变时,K一直增大,增大速度先慢后快。

说明摇杆越长,摇杆急回运动越明显,摇杆过长时,K增大速度骤增。

4.当曲柄a增大,其余三杆不变时,K减小,变化速度是先快后慢。

说明摇杆越长,摇杆急回运动速度开始增加,当曲柄长度超过某个值后,急回运动速度骤减。

相关文档
最新文档