古典概型中几种常用解题方法(华德银)
一道古典概型试题的四种解法

下面用树状图把结果直观地表示出来.14,3—41:4—3,1—43<4—1,1—34≮3—11/2--31\3—2,1—32<3—1/1—23\2—1所有基本事件为:(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2),(2,1,3,4),(2,1,4,3),(2,3,1,4),(2,3,4,1),(2,4,1,3),(2,4,3,1),(3,1,2,4),(3,1,4,2),(3,2,l,4),(3,2,4,1),(3,4,1,2),(3,4,2,1),(4,1,2,3),(4,1,3,2),(4,2,1,3),(4,2,3,1),(4,3,1,2),(4,3,2,1).基本事件总数为24.事件A包含的基本事件为:(1,2,3,4),(1,2,4,3),(2,1,3,4),(2,1,4,3),(3,1,2,4),(3,1,4,2),(3,2,1,4),(3,2,4,1)i(4,1,3,2),(4,1,2,3),(4,2,1,3),(4,2,3,1).事件A所含基本事件数为12,因此P(A)=瓦12一虿1.解法二:只考虑前两个人摸球的结果.前两个人依次从口袋中摸出1个球的所有可能结果用树状图列举如下.2111////1~32—33—24—2\\\\4443所有基本事件为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)。
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).基本事件总数为12.事件A包含的基本事件为:(1,2),(2,1),(3,:1)'(3.2)'(4’1)'(4,;12).事件A包含6个基:东2。
解法三:只考虑球的颜色.所有基本事件为:(白,白,黑,黑),(白,黑,白,黑),(白,黑,黑,白),(黑,黑,白,白),(黑,白,黑,白),(黑,白,白,黑).基本事件总数为6.事件A包含的基本事件为:(白,白,黑,黑),(黑,白,黑,白),(黑,白,白,黑).事华敬海件A包含3个基本事件,所以P(A)={=寺.解法四:只考虑第二个人摸球的结果.所有基本事件为:白1,白2,黑1,黑2.基本事件总数为4.事件A包含的基本事件为:白1,白2.事件A包含2个基本事件,所以P(A)=三A=÷.实际上,第一个人、第三个人和第四个人摸到白球的概率都为÷.Q建竖题时主蓁萎兰言赢麓竺童薯霍的优势,利用解法一可以计算出4个人依次摸球的任何一个事件的概率,解法二、三、四却不能做到.解法一是最基本的方法.(责任编辑郭正华)勤能补拙是良训,一分辛劳一分才.——华罗庚型试题的6弦|I、,A,LP以所件事,一本|I俘幽中学生数理亿富一版万方数据一道古典概型试题的四种解法作者:华敬海作者单位:刊名:中学生数理化(高一版)英文刊名:MATHS PHYSICS & CHEMISTRY FOR MIDDLE SCHOOL STUDENTS(MIDDLE SCHOOL EDITION)年,卷(期):2010,(3)引用次数:0次本文链接:/Periodical_zxsslh-gyb201003022.aspx下载时间:2010年5月4日。
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧古典概型是概率论中最基本的概率模型之一,它涉及到对已知的随机试验的多种可能结果和其对应概率的求解。
在高中数学必修三中,古典概型的解题技巧是学生必须掌握的一部分内容。
下面将介绍几种常见的古典概型解题技巧。
1. 直接计数法直接计数法是指通过对试验结果的数量进行计数,从而求解概率。
该方法一般适用于试验结果较少且容易确定的情况。
有5个小球,其中2个红色,3个蓝色,求从中任意抽取2个小球,抽到两个红色小球的概率。
按照直接计数法,我们可以将这个问题转化为从5个小球中抽取2个小球的问题,同时我们知道其中2个小球是红色的。
我们可以计算红色小球和非红色小球的组合数,然后除以所有小球的组合数来求解概率。
2. 互补事件法互补事件法是指通过求解事件的互补事件概率来求解事件的概率。
互补事件是指与事件A互补的事件,即事件A不发生的事件。
对于互补事件,其概率加上事件的概率必然等于1。
有一个盒子中有3个红球和2个蓝球,从中任意抽取一个球,求抽到一个红球的概率。
按照互补事件法,我们可以将该事件的互补事件定义为抽到一个蓝球的事件。
我们可以先求解抽到一个蓝球的概率,然后用1减去该概率来求解抽到一个红球的概率。
3. 排列组合法排列组合法是指通过排列组合的知识来求解概率。
它适用于试验结果较多且不易直接计数的情况。
有8个字母a,b,c,d,e,f,g,h,从中任意抽取3个字母,求抽取的三个字母都是元音字母的概率。
按照排列组合法,我们可以先计算所有情况的数量,即从8个字母中任意抽取3个字母的组合数,然后计算抽取的三个字母都是元音字母的情况数量,并将其除以所有情况的数量来求解概率。
4. 事件的分解法通过掌握以上几种古典概型解题技巧,可以帮助高中数学学生更好地理解和应用古典概型,在解决实际问题时能够灵活运用这些技巧,提高解题能力。
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中非常重要的一个知识点,同时也是考试中经常出现的题型。
古典概型是指在某个事件中,样本空间中的每个元素都有相同的概率出现。
在古典概型题中,常见的几种问题包括排列、组合、分配等,不同类型的问题需要使用不同的解题技巧。
下面我们将介绍一些古典概型问题的解题技巧。
一、排列问题的解题技巧排列是指n个不同元素按照一定顺序取出r个,这个过程叫做排列。
对于排列问题,我们可以使用以下几种解题技巧:1. 直接计算法:当n和r较小的时候,我们可以直接利用排列的定义来进行计算。
有5张纸牌,要从中取出3张纸牌进行排列,共有5*4*3=60种排列方法。
2. 公式法:当n和r较大的时候,直接计算可能会比较麻烦,可以使用排列的公式进行计算。
排列的计算公式为Anr=n!/(n-r)!,其中n!表示n的阶乘。
3. 分类讨论法:有些排列问题并不是直接套用公式就能解决的,这时我们可以采用分类讨论的方法。
从A、B、C、D四个字母中取出3个字母进行排列,可以分为以A开头的排列、以B开头的排列、以C开头的排列和以D开头的排列四种情况来进行讨论计算。
3. 排列与组合的关系:有时候我们需要求解组合问题,但是可以先通过排列问题进行计算,再通过排列与组合的关系进行转化。
从A、B、C、D四个字母中取出3个字母进行组合,可以先求出排列的个数,再通过排列与组合的关系计算出组合的个数。
1. 划分法:当分配的元素数目是不受限制的时候,我们可以使用划分法进行计算。
划分法是指将n个不同的元素分成r份,每份可以有0个或者多个元素,然后按照不同的划分方法进行计算。
2. 公式法:有些分配问题可以通过公式进行计算,例如将n件商品分给r个人,每个人可以得到不同数目的商品,可以使用分配的公式进行计算。
3. 排列组合法:有些分配问题可以通过排列组合的方法进行计算,例如将n个人分配到r个小组中,可以先通过排列计算出所有可能的分配情况,再通过组合计算出符合条件的分配情况。
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧高中数学必修三中的古典概型是概率论中的重要内容之一,也是考试中的常见题型,解题技巧的掌握对于我们正确解题非常重要。
下面将介绍几种解题技巧。
一、排列与组合排列与组合是古典概型中常见的几个基本概念,掌握好它们对于解题非常有帮助。
1. 排列:将若干个不同的元素按照一定的顺序排列成一列,这个过程称为排列。
例如:从字母A、B、C中任取三个字母,按顺序排列,共有3的阶乘种。
2. 组合:从n个不同元素中任取m个,不考虑顺序,这个过程称为组合。
例如:从字母A、B、C中任取两个字母,不考虑顺序,共有3个组合。
二、古典概型的解题步骤古典概型的解题步骤可以分为以下几个步骤:1. 明确问题与假设条件:首先要明确问题的描述和假设条件,理解题意非常重要。
例如:某班有男生10名,女生8名,从中随机选出两名学生,求出两名学生都是男生的概率。
2. 确定事件:根据问题的描述和假设条件,确定所求事件。
例如:确定所求事件为“从10个男生中选出两个男生”,记为A事件。
3. 确定样本空间:确定样本空间,即实验的所有可能结果的集合。
例如:由于是从10个男生中选出两个男生,所以样本空间为所有可能的组合数,记为S={C(10,2)}。
4. 确定事件A发生的可能数:确定事件A发生的可能数,即满足所求事件的有利组合数。
例如:由于是从10个男生中选出两个男生,所以有利组合数为C(10,2)。
5. 求解所求事件的概率:根据概率的定义,求解所求事件的概率。
例如:所求事件的概率为P(A)=有利组合数/样本空间。
1. 从n个人中随机选出m个人的概率。
解题思路:根据排列与组合的知识,所求事件的概率为C(n,m)/C(n,m)。
3. 从一扑克牌中随机取出一张牌,结果是红桃的概率。
解题思路:所求事件的概率为红桃的数量/总的牌的数量。
四、注意事项在解题过程中,要注意以下几个问题:1. 明确问题的假设条件,理解题意非常重要。
2. 注意样本空间的确定,样本空间是实验中所有可能结果的集合。
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧古典概型是概率论中的基础概念之一,常用于求解事件的概率。
以下是高中数学必修三古典概型的几种解题技巧。
一、树状图法树状图法是古典概型中常用的解题方法,它可以清晰地表示出各种可能的情况。
以硬币为例,假设有一枚硬币,抛掷两次,求出现正面向上的概率。
树状图法的步骤如下:1. 以一条直线表示硬币的抛掷过程,从左到右按顺序表示每次抛掷;2. 在直线上的每个箭头上标注相应的可能结果,如正面向上(记作“正”)和反面向上(记作“反”);3. 沿着直线不断扩展出所有可能结果,直到达到所需的抛掷次数。
通过树状图得出的所有可能结果是等可能事件,即每个事件的概率都是相等的。
我们可以通过树状图上的路径来计算事件发生的概率。
在本例中,正面向上的概率就是出现正正的路径所占的比例。
二、排列组合法排列组合法是古典概型中常用的解题方法,特别适用于解决有序排列的问题。
在排列组合中,我们经常使用的有序排列方法有全排列、排列和组合。
全排列是将一组元素全部排列出来的情况,根据全排列的特性,可以使用阶乘来表示。
从1到10的数字中取出4个数字进行全排列,可以得到4的阶乘,即4!=4x3x2x1=24种排列方式。
排列是从一组元素中取出一部分元素进行排列的情况,排列的计算公式为:P(n,m) = n! / (n-m)!,其中n表示元素的总数,m表示取出的元素个数。
三、样本空间法样本空间法是古典概型中常用的解题方法,通过列出所有可能的结果,构建样本空间,再根据事件发生的情况求解事件的概率。
以抛掷两颗骰子为例,求两颗骰子点数和为9的概率。
我们需要列出骰子所有可能的结果,即从1到6的数字,每个数字都有可能出现。
然后,我们可以根据这些可能结果来构建样本空间,得到所有可能的点数和。
在这个问题中,样本空间是一个有序对组成的集合,它包含了所有可能的点数和。
我们通过统计样本空间中点数和为9的有序对的数量,计算出该事件发生的概率。
古典概型中几种常用解题方法(华德银)

古典概型中几种常用解题方法华德银 沭阳如东中学“古典概型”在概率论中有很重要的地位,一方面,因为它比较简单,许多概念既直观又容易理解,另一方面,它又概括了许多实际问题,有很广泛的应用。
近几年在高考中每年都会考察一个填空题. 1、古典概型的定义判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:(1)有限性,所有的基本事件只有有限个,即在一次试验中,可能出现的结果只有有限个. (2)等可能性,每个基本事件的发生都是等可能的. 2、古典概型的计算公式如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是n1.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)=nm . 3、解决古典概型的常用方法根据古典概型的计算公式,求事件A 发生的概率,关键是求出基本事件的总数以及事件A 所含的基本事件个数。
为此,弄清随机试验的全部基本事件是什么以及所讨论的事件A 包含了哪些基本事件是非常重要的。
下面根据实验的步骤数总结古典概型解题方法. (1) 枚举法对于一步实验,或虽多步实验但基本事件总数较少时,我们都可以通过枚举的方法把所有的基本事件全部列举出来,然后在其中找到所求事件A 含有的基本事件,在根据公式求出事件A 的概率.例1 (2012江苏卷,T6)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .分析:本题为一步实验,故可以直接枚举出所有基本事件. 解:这10个数为1,-3,9,-27,81,-52,62,-72,82,-92,故基本事件的总数为10个,“小于8”所含的基本事件的个数为6,故所求事件的概率为53106=。
例2.(2010山东卷T19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.分析:本题第(1)问是一步实验直接枚举就可以了,第二(2)虽是两步步实验但基本事件较少故仍然可以通过枚举法来求概率,当然也可以用后面介绍的列表法来处理.解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.从袋中取出的球的编号之和不大于4的事件共有(1,2),(1,3)两个.因此所求事件的概率2163P ==. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(),m n 有()1,1()1,2()1,3()1,4()2,1()2,2()2,3()2,4()3,1()3,2()3,3()3,4()4,1()4,2()4,3()4,4共16个,又满足2m n +≤的事件的概率为1316P =.故满足2n m <+的事件的概率为1313111616P -=-= (2) 列表法当实验是两步实验,而且每一步的结果较少时也可以用枚举法,但当每一步的实验结果较多时,列表法就比较有优势了例3 :同桌两人玩游戏掷骰子游戏,每人掷一次骰子并计算两次点数之和的奇偶性来决定胜负,甲选定奇数,乙选定偶数,这个游戏规则对双方是否公平?分析:本题为两步实验,但每一步有6种选择,故基本事件较多,此时可以利用列表法来列举各个基本事件.解:所有可能的情况如下表:通过表格可以得到“和为偶数”的概率为1836 =12 ,“和为奇数”的概率为1836 =12 ,因此这个游戏规则对双方是公平的.变题:如果游戏规则该为:和为3的倍数甲胜,和为4的倍数乙胜,哪一个人胜的机会大?为什么? 答案:和为3的倍数的概率=13 ,和为4的倍数的概率=14所以甲获胜的可能性大.例4某市长途客运站每天6:30-7:30开往某县的三辆班车,票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序.两人采用不同的乘车方案:小张决定无论如何乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题: (1)三辆车按出现的先后顺序共有哪几种可能?(2)请列表分析哪种方案乘坐优等车的可能性大?为什么? 解:(1)三辆车按开来的先后顺序为:优、中、差;优、差、中;中、优、差;中、差、优;差、优、中;差、中、优,共6种可能.(2)根据三辆车开来的先后顺序,小张和小王乘车所有可能的情况如下表:由表格可知:小张乘坐优等车的概率是3,而小王乘坐优等车的概率是2.所以小王的乘车方案乘坐优等车的可能性大.通过列表的方法可以使得两步实验的基本事件能清晰的展示,再求概率就比较容易了. (3) 树形图法当实验是三步实验,甚至是更多步实验时,枚举和列表法就不是太好用了,此时树形图可以让基本事件清晰地展示出来.例5 若同时抛三枚硬币,则出现“一正两反”的概率为 .分析:本题是三步实验但基本事件较少故仍然可以通过枚举法来求概率.但是怎样保证枚举时不重不漏呢?树形图可以帮助我们做到这一点.解:本次试验的基本事件可以用树形图表示如下即抛三枚硬币出现的结果有:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)共有8个基本事件,其中“一正两反”包含的结果有:(正,反,反),(反,正,反),(反,反,正)共3个基本事件,故所求概率为83. 例6 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球,试计算第二个人摸到白球的概率.分析:本题是四步实验,可以用树形图来表示所有基本事件.解 用A 表示事件“第二个人摸到白球”.记2个白球编号分别为1,2;2个黑球编号分别为3,4.于是4个人按顺序依次摸球,从袋中摸出一球的所有可能结果用树状图直观地表示出来(如图所示) 从树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此这24种结果的出现是等可能的,此试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P (A )=1224=12.四 、总结以上举的几个例子,总结了古典概型的概率求解方法。
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中的一个重要内容,通常包括排列、组合和分组的相关知识。
在解题过程中,我们可以采用一些技巧来辅助理解和解决问题。
1. 计数原则在解决排列和组合问题时,经常会用到计数原则。
计数原则是指如果一个实验有m种可能的结果,第二个实验有n种可能的结果,则这两个实验连在一起共有m*n种可能的结果。
在古典概型中,我们可以利用计数原则来简化复杂的问题,将问题逐步分解为几个简单的实验,然后再将它们的结果相乘得到最终的结果。
2. 排列的解题技巧排列是指从n个不同元素中取出r个元素,按一定的顺序排成一列的不同排列数。
在解决排列问题时,我们可以先确定有多少种选择元素的方式,然后再确定这些选择的元素有多少种排列方式。
对于排成一排的问题,我们可以先确定有多少种不同的元素可以选择,然后再确定这些元素可以排列的方式,最后相乘得到总的排列数。
3. 组合的解题技巧组合是指从n个不同的元素中取出r个元素的不同组合数。
在解决组合问题时,我们可以利用减法原则来简化问题。
减法原则指的是,如果一个实验包含有m种结果,并且有n种结果不合法,那么合法的结果数等于m-n。
在组合问题中,我们可以先确定有多少种选择元素的方式,然后再确定其中有多少种不合法的选择方式,最后用减法原则得到合法的结果数。
4. 分组的解题技巧分组是指将n个不同的元素分成r组的不同分组方式。
在解决分组问题时,我们可以利用排列和组合的知识来辅助理解。
分组问题可以看成是先将n个元素排成一列,然后再在这些元素之间加上r-1个隔板,最后将其中的分组方式看成是在这些元素和隔板中选择r-1个位置,并且将这些位置放上隔板。
这样就可以用组合数来求出分组的方式。
5. 确定权重在古典概型的问题中,有时候我们需要确定每个元素的权重,并且根据权重来求出最终的结果。
确定权重通常可以通过分情况讨论、排列组合的知识和实际问题的特点来得到。
通过确定权重,我们可以简化问题,并且找到最优的解决方式。
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧概率论是数学中的一个重要分支,而“古典概型”是其中的基础概念之一。
在高中课程中,学生需要学习古典概型的概念、基本公式及其在实际问题中的应用。
本文将介绍一些古典概型的解题技巧,供学生参考。
一、古典概型的定义和公式古典概型是指试验所有可能的结果都是等可能发生的概率问题。
具体来说,古典概型要求试验的结果具有以下两个特点:1.试验的所有结果都是确定的;2.试验的每个结果发生的可能性相等。
对于一个具有n个等可能结果的试验,其中发生某一事件A的可能性为:P(A)=m/n其中m为事件A包含的有利结果数。
这个公式是古典概型的基础公式。
二、解题技巧1.画出样本空间对于一个古典概型问题,首要任务是确定样本空间。
样本空间是指试验中可能发生的所有结果的集合。
一个简单的技巧是画出样本空间的图形。
例如,在一次抛硬币的试验中,样本空间为{正面,反面},可以通过画出一张抛硬币的图像来形象地表示出来。
2.确定事件A一旦确定了样本空间,就需要确定事件A。
事件A是指样本空间中发生某种结果的集合。
它通常是通过一些自然语言描述的。
在确定事件A时,需要明确其含义,确定其范围和有价值的信息。
3.计算概率一旦确定了事件A和样本空间,就可以使用古典概型的基础公式计算概率。
需要包括以下步骤:2.计算事件A的有利结果数;例如,在一次掷骰子的试验中,样本空间为{1,2,3,4,5,6},事件A是小于等于4的结果,有利结果数为4,因此:4.注意问题描述的精确性在解题过程中,需要注意问题描述的精确性。
有些问题并不是古典概型问题,而是其他概率问题,如条件概率、贝叶斯公式等。
因此,在解题时需要仔细阅读问题,理解问题所涉及的概念和知识点。
5.利用公式简化计算根据古典概型的基础公式,可以利用数学计算和逻辑推理来简化计算,例如通过分式的化简和比例的运用等。
同时,需要注意计算中的精度和舍入误差。
6.灵活应用法则古典概型涉及到的概率基本概念和公式被广泛应用于各个领域和实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古典概型中几种常用解题方法
华德银 沭阳如东中学
“古典概型”在概率论中有很重要的地位,一方面,因为它比较简单,许多概念既直观又容易理解,另一方面,它又概括了许多实际问题,有很广泛的应用。
近几年在高考中每年都会考察一个填空题. 1、古典概型的定义
判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:
(1)有限性,所有的基本事件只有有限个,即在一次试验中,可能出现的结果只有有限个. (2)等可能性,每个基本事件的发生都是等可能的. 2、古典概型的计算公式
如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是n
1
.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)=
n
m . 3、解决古典概型的常用方法
根据古典概型的计算公式,求事件A 发生的概率,关键是求出基本事件的总数以及事件A 所含的基本事件个数。
为此,弄清随机试验的全部基本事件是什么以及所讨论的事件A 包含了哪些基本事件是非常重要的。
下面根据实验的步骤数总结古典概型解题方法. (1) 枚举法
对于一步实验,或虽多步实验但基本事件总数较少时,我们都可以通过枚举的方法把所有的基本事件全部列举出来,然后在其中找到所求事件A 含有的基本事件,在根据公式求出事件A 的概率.
例1 (2012江苏卷,T6)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .
分析:本题为一步实验,故可以直接枚举出所有基本事件. 解:这10个数为1,-3,9,-27,81,-5
2,6
2,-7
2,8
2,-9
2,故基本事件的总数为10个,“小于8”所含的基本事件的个数为6,故所求事件的概率为
5
3
106=。
例2.(2010山东卷T19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.
分析:本题第(1)问是一步实验直接枚举就可以了,第二(2)虽是两步步实验但基本事件较少故仍然可以通过枚举法来求概率,当然也可以用后面介绍的列表法来处理.
解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.从袋中取出的球的编号之和不大于4的事件共有(1,2),(1,3)两个.因此所求事件的概率21
63
P =
=. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(),m n 有
()1,1()1,2()1,3()1,4()2,1()2,2()2,3()2,4()3,1()3,2()3,3()3,4()4,1()4,2()4,3()4,4共16个,
又满足2m n +≤的事件的概率为1316P =
.故满足2n m <+的事件的概率为1313
111616
P -=-= (2) 列表法
当实验是两步实验,而且每一步的结果较少时也可以用枚举法,但当每一步的实验结果较多时,列表法就比较有优势了
例3 :同桌两人玩游戏掷骰子游戏,每人掷一次骰子并计算两次点数之和的奇偶性来决定胜负,甲选定奇数,乙选定偶数,这个游戏规则对双方是否公平?
分析:本题为两步实验,但每一步有6种选择,故基本事件较多,此时可以利用列表法来列举各个基本事件.
解:所有可能的情况如下表:
通过表格可以得到“和为偶数”的概率为1836 =12 ,“和为奇数”的概率为1836 =1
2 ,因此这个游戏规
则对双方是公平的.
变题:如果游戏规则该为:和为3的倍数甲胜,和为4的倍数乙胜,哪一个人胜的机会大?为什么? 答案:和为3的倍数的概率=13 ,和为4的倍数的概率=1
4
所以甲获胜的可能性大.
例4某市长途客运站每天6:30-7:30开往某县的三辆班车,票价相同,但车的舒适程度不同.小张
和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序.两人采用不同的乘车方案:小张决定无论如何乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题: (1)三辆车按出现的先后顺序共有哪几种可能?
(2)请列表分析哪种方案乘坐优等车的可能性大?为什么? 解:(1)三辆车按开来的先后顺序为:优、中、差;优、差、中;中、优、差;中、差、优;差、优、中;
差、中、优,共6种可能.
(2)根据三辆车开来的先后顺序,小张和小王乘车所有可能的情况如下表:
由表格可知:小张乘坐优等车的概率是
3,而小王乘坐优等车的概率是2
.所以小王的乘车方案乘坐优等车的可能性大.
通过列表的方法可以使得两步实验的基本事件能清晰的展示,再求概率就比较容易了. (3) 树形图法
当实验是三步实验,甚至是更多步实验时,枚举和列表法就不是太好用了,此时树形图可以让基本事件清晰地展示出来.
例5 若同时抛三枚硬币,则出现“一正两反”的概率为 .
分析:本题是三步实验但基本事件较少故仍然可以通过枚举法来求概率.但是怎样保证枚举时不重不漏呢?树形图可以帮助我们做到这一点.
解:本次试验的基本事件可以用树形图表示如下
即抛三枚硬币出现的结果有:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)共有8个基本事件,其中“一正两反”包含的结果有:(正,反,反),(反,正,反),(反,反,正)共3个基本事件,故所求概率为
8
3. 例6 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球,试计算第二个人摸到白球的概率.
分析:本题是四步实验,可以用树形图来表示所有基本事件.
解 用A 表示事件“第二个人摸到白球”.记2个白球编号分别为1,2;2个黑球编号分别为3,4.于是4个人按顺序依次摸球,从袋中摸出一球的所有可能结果用树状图直观地表示出来(如图所示) 从树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此这24种结果的出现是等可能的,此试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P (A )=1224=12
.
四 、总结
以上举的几个例子,总结了古典概型的概率求解方法。
值得注意的是:在分析问题时必须确定所研究的试验是几步试验,基本事件个数是不是较多.以便选择相对应的方法确切地建立事件所对应的样本空间.另外,从以上这些例子及古典概型的定义,可以发现,古典概型的局限性是很大的,表现为事件对应的样本空间为有限,故对样本空间为无限时,古典概型将不再适用。
另外,当试验步骤较多时,以上的方法用起来也不大方便,就需要利用选修部分中的排列组合的知识来解决了.
开始 正 反
正 正 反 反 正 正 正 正
反 反 反 反 第一次 第二次 第三次。