单阀及顺序阀控制
600MW机组单阀切顺序阀注意事项

单阀切顺序阀注意事项
一、单阀切顺序阀操作步骤:
1.机组负荷420MW,运行稳定;
2.退出AGC/一次调频,退协调至机跟随方式稳定运行10分钟;
3.退汽机遥控,汽机操作员自动方式,投入功率回路。
4.由热工缓慢关闭#4高调门(DEH上),密切注意主汽压/机组负荷/汽机振动/汽机瓦温变
化,如超过下列值则应要求试验终止。
5.#4高调门关闭后主汽压/机组负荷/汽机振动/汽机瓦温变化未超标,由热控逐渐恢复#4
高调门开度。
6.由热控缓慢关闭#3高调门(DEH上),密切注意主汽压/机组负荷/汽机振动/汽机瓦温变
化,如超过下列值则应要求试验终止。
7.#4高调门关闭后主汽压/机组负荷/汽机振动/汽机瓦温变化未超标,由热控逐渐恢复#4
高调门开度。
8.汽机切换至顺序阀,切换时间100s,如时间到后未切换完,或切换过程出现问题,或主
汽压/机组负荷/汽机振动/汽机瓦温变化幅度超标,则应要求试验终止,恢复单阀方式运行。
9.汽机切顺序阀后,稳定运行运行10分钟无异常,投入汽机遥控,投入机组协调,投入
AGC/一次调频。
二、阀切换过程参数波动限幅。
汽轮机单、顺阀切换操作说明。

汽轮机单、顺阀操作说明
一、汽轮机在下列情况下采取单阀控制方式:
1、汽轮机在最初运行半年以内;
2、汽轮机在冷态、温态启动时,保持单阀运行一天;
3、汽轮机在停机之前,切至单阀方式;
4、汽轮机在进行阀门活动试验之前,切至单阀方式。
二、单阀切换至顺阀操作说明:
1、整个切换过程,必须在汽机“自动”控制方式下运行。
2、切换过程,可以投入“汽机主控”即在“遥控”方式下运行。
3、单阀切换至顺阀时,点击DEH控制画面“阀门方式”,点击“顺序阀”,然
后点击“转换”。
“SEQ”平光开始闪烁,切换开始。
4、切换过程中,#1、#2高调门同时逐步开大,#4高调门逐步关小。
整个过程
调门开度跟踪综合阀位的变化而调整。
5、切换结束时,#1、#2高调门开至100%、#3、#4依照阀位指令顺序开启。
“SEQ”显示平光,停止闪烁。
6、切换过程中,注意轴承温度和振动变化。
三、顺阀切换至单阀操作说明:
1、整个切换过程,必须在汽机“自动”控制方式下运行。
2、切换过程,可以投入“汽机主控”即在“遥控”方式下运行。
3、顺阀切换至单阀时,点击DEH控制画面“阀门方式”,点击“单阀”,然后点击“转换”。
“SIG”平光开始闪烁,切换开始。
4、切换过程中,#1、#2高调门同时逐步关小,#3、#4高调门逐步开启。
整个过程调门开度跟踪综合阀位的变化而调整。
5、切换结束时,四个调门开度基本一致。
“SIG”显示平光,停止闪烁。
6、切换过程中,注意轴承温度和振动变化。
单向顺序阀的工作原理

单向顺序阀的工作原理
单向顺序阀是一种常用的流体控制元件,其工作原理基于流体的压力和流量特性。
下面是单向顺序阀的工作原理:
1. 单向阀:单向顺序阀中通常包含一个单向阀,它只允许流体在一个方向上流动。
这意味着,当流体从一个方向施加压力时,单向阀打开并允许流体通过;而当流体来自另一个方向时,单向阀关闭,阻止流体的通过。
2. 阀芯:单向顺序阀中的阀芯是一个可移动的元件,它可以根据流体的来向来控制单向阀的状态。
当流体来自预定的方向时,阀芯会受到压力的作用,使得单向阀打开,从而允许流体通过顺序阀。
3. 弹簧:单向顺序阀中的弹簧通常与阀芯相连,用于提供反向作用力。
当流体来自反方向时,弹簧会推动阀芯关闭单向阀,从而阻止流体通过。
4. 控制口:单向顺序阀中通常还包含一个控制口,用于接收外部信号或连接其他控制元件。
通过控制口对阀芯施加压力或释放压力,可以改变单向顺序阀的工作状态。
综上所述,单向顺序阀通过单向阀、阀芯、弹簧和控制口的相互作用,实现了根据流体的来向控制流体的流动方向的功能。
单阀顺序阀运行方式的切换

单阀、顺序阀运行方式的切换蒙映峰,罗 鹏,邓 涛(虹源发电有限公司,广西桂林 541003)[摘 要] 对桂林虹源发电有限公司135MW机组汽轮机的单阀、顺序阀切换过程进行了介绍,并对控制过程进行了分析。
结合现场数据,提出了进行切换的具体操作方法。
[关键词] 汽轮机;单阀运行;顺序阀运行;阀切换[中图分类号]T K263.7+2 [文献标识码]B [文章编号]10023364(2003)04003402 虹源发电有限公司装有2台上海汽轮机厂(上汽厂)生产的135MW凝汽式汽轮机,DCS系统是上海新华控制工程公司的XDPS400系统,DEH为上海FOXBOLO公司的IA’S系统,于2000年底投入试运行。
本文主要对自控系统进行单阀与顺序阀相互切换运行的操作方法予以介绍。
(1)单阀运行是指4个高压调门(亦称GV、高调门、调门)的开度基本保持一致,当负荷变化时,4个高压调门同时进行调节,至负荷稳定为止。
(2)顺序阀运行,分2种情况;1)在适当的负荷情况下,指有2个高压调门全开,1个高压调门全关,另1个则根据负荷的情况进行调节;2)当负荷量大,如承担调节任务的调门已全开,仍未满足负荷的需求时,全关的调门将开启,参与调节,至负荷稳定为止。
(3)采用单阀运行时,4个高压调门同步进行调节。
在这种方式下,将有4个调门产生节流损失。
而顺序阀运行时,由于2个高压调门全开,1个调门全关,另1个进行调节,则只有1个调门产生节流损失。
相比较而言,单阀运行的节流损失较大。
(4)根据厂家要求,汽轮机在刚投入运行时应采用单阀运行的方式;经过6个月左右的磨合期后,应采用顺序阀运行方式,以提高机组的经济性。
1 阀切换过程如图1所示,汽轮机的4个高调门为圆周布置,1号与2号对角,3号与4号对角。
单阀与顺序阀的切换过程如下。
图1 高调门布置示意(1)单阀切换至顺序阀。
操作员在DEH控制台上单击“阀门控制方式”、“顺序阀方式”再单击“投入”,则计算机开大GV1、GV2,同时,关GV4。
汽轮机低负荷单阀-顺序阀无扰切换运行的优化控制方法

第39卷,总第226期2021年3月,第2期《节能技术》ENERGY CONSERVATION TECHNOLOGY Vol.39,Sum.No.226Mar.2021,No.2汽轮机低负荷单阀-顺序阀无扰切换运行的优化控制方法赵大朋1,范双双2,孙天中3,吴 哲1,张 民1,刘春晓1(1.吉林电力股份有限公司白城发电公司,吉林 白城 137000;2.东北电力大学,吉林 吉林 132012;3.中油电能热电一公司,黑龙江 大庆 163314)摘 要:目前,不少进行灵活调峰的大功率汽轮机在低负荷工况下会将其控制方式由单阀切换至顺序阀;并且,阀控方式切换过程中出现了影响机组安全稳定运行的负荷及主汽压力大幅波动问题。
然而,单纯依靠传统单阀和顺序阀实际流量特性控制曲线优化的方法,还无法完全消除切换过程中的参数波动问题。
通过理论分析给出了负荷及主汽压力波动的根源:具有非线性控制特性的阀门,在切换过程中采用线性等比例开关控制方式会引起蒸汽流量的波动。
在此基础上,提出了一种汽轮机单阀-顺序阀的非线性自动无扰切换方法,可以从根本上解决切换过程中的参数波动问题。
这对进一步改善大功率汽轮机灵活调峰的安全稳定性具有重要意义和价值。
关键词:汽轮机;灵活调峰;阀控方式;非线性;无扰切换中图分类号:TK262 文献标识码:A 文章编号:1002-6339(2021)02-0165-04收稿日期 2020-12-28 修订稿日期 2021-01-19基金项目:国家重点研发计划项目(2017YFB0902101)作者简介:赵大朋(1976~),男,本科,高级工程师,主要研究方向为汽轮发电机组节能优化等。
An Optimized Control Method for Steam Turbine ’s Undisturbed Switching Operation between Single Valve and Sequence Valve under Low Load ConditionZHAO Da -peng 1,FAN Shuang -shuang 2,SUN Tian -zhong 3,WU Zhe 1,ZHANG Min 1,LIU Chun -xiao 1(1.Jilin Electric Power Co.,Ltd.Baicheng Power Generation Company,Baicheng 137000,China;2.Northeast Electric Power University,Jilin 132012,China;3.Thermoelectric First Company of ChinaNational Petroleum Group Electric Power Co.,Ltd.,Daqing 163314,China)Abstract :At present,many high -power turbines with flexible peak regulation will switch their control mode from single valve to sequence valve under low load condition.Moreover,the load and main steampressure fluctuated greatly during the switching of valve control mode,which affected the safe and stable operation of the unit.However,the parameter fluctuation problem in the switching process cannot be completely eliminated by simply relying on the traditional control curve optimization method of single valve and sequence valve actual flow characteristics.Through theoretical analysis,the source of the fluc⁃tuation of load and main steam pressure is given:for valves with nonlinear control characteristics,the fluctuation of steam flow will be caused by the control mode of linear equal proportion switch during the switching process.On this basis,a nonlinear automatic undisturbed switching method of single valve and·561·sequence valve for steam turbine is proposed,which can fundamentally solve the problem of parameter fluctuation during the switching process.It is of great significance and value to further improve the safety and stability of flexible peak regulation of high-power steam turbine.Key words:steam turbine;flexible peak regulation;valve control mode;nonlinear;the undisturbed switching0 引言目前,为了提高新能源电力系统对具有不确定性风电、光伏发电的消纳比例,越来越多的大功率汽轮发电机组都参与灵活调峰运行[1];甚至,还开展高效灵活二次再热机组的研制与应用工作[2]。
如何对汽轮机的进行单阀和顺序阀进行切换

•如何对汽轮机的进行单阀和顺序阀进行切换在实际的工作中,为了进一步提高汽轮机的使用效率,经常会需要对汽轮机进行单阀和顺序阀的切换,但是在操作的过程中,经常会发生各种各样的问题,因此本文就简单介绍如何对汽轮机进行单阀和顺序阀的切换。
单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。
假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。
单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。
单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换后得出的。
在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以内时,切换又自动恢复。
投入调节级压力控制回路与此类似。
对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。
对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。
对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。
电力工作者在实际的工作中,需要不断总结经验,掌握汽轮机单阀和顺序阀间切换的规律,保障汽轮机即高效又安全的运行。
浅谈汽轮机阀门控制

浅谈汽轮机阀门控制叶茂顾晓华(安徽铜陵发电有限公司热工机控班244012)摘要:DEH系统的主要功能就是阀门的管理,本文通过对我厂所使用的300MW哈汽机组、新华DEH控制系统的分析,简单描述阀门控制信号的形成原理及其过程。
同时对单阀多阀的切换及其切换的时间、单阀多阀切换时阀门的参数设置作个简单的介绍。
关键词:DEH,阀门管理,单阀,多阀一、前言现代发电厂组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。
其中进汽阀门的管理显然是DEH系统的重要功能,汽轮机从开始的启动冲转到同期再到并网带负荷,都是通过控制汽轮机的阀门开度来实现,为了使管理程序更为准确更为科学,我们就迫切需要很好地了解阀门控制过程当中指令的形成变换过程,掌握阀门控制当中各个参数的整定调试方法;在此基础上去调整各参数使阀门的控制更稳定,下面我就我厂新华DEH的基本情况作个简单的介绍。
二、DEH阀门控制方式2.1阀门控制方式DEH阀门控制方式可以分为两种:单阀控制和顺序阀控制,单阀控制即我们平常所说的节流调节方式;顺序阀即我们平常说的喷嘴调节方式。
在单阀控制方式下,所有阀门被当成一个阀门来调节,所以各个阀门的开度是一致的,都处于调节状态。
这样就不可避免的存在很大的节流损失。
新建机组在试运期间一般采取全周进汽的单阀运行方式,这种方式下汽缸、转子加热很均匀,使得转子和定子的温差较小,有利于机组初期的磨合。
另外在机组启动过程中,也同样需要采用单阀控制,以便更好地给转子、定子加热,减少加热不均给机组造成的损害。
机组在正常运行中都采用顺序阀控制方式,在顺序阀门控制方式下,只有一个高压调节阀进行流量调节,其余的阀门处于全开或全关位置,这样减少了节流损失,有利于提高机组热效率。
图1是单阀跟顺序阀方式下的热效率曲线,可见两者的效率在低负荷时差距好大。
2.2单阀多阀的切换平时机组每个星期都必须做一次汽门的活动实验,此时就需要在这两种控制方式之间进行切换(因为平常都是顺序阀控制方式,新华DEH要求做实验时必须切到单阀);它们之间的切换是通过单阀多阀切换系数STRAN来实现的。
单阀与顺序阀切换的实实现

---------------------------------------------------------------最新资料推荐------------------------------------------------------单阀与顺序阀切换的实实现单阀和顺序阀的对比 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。
节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。
采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。
此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。
当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。
因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。
高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。
2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。
1/ 20这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关) 状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单阀及顺序阀控制汽轮机控制原理
随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Ele ctro- Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显
汽轮机控制原理,针对单阀及顺序阀控制的特点,重点阐述了DEH 系统两个重要参数优化对机组安全与经济运行的影响,为解决同类型问题提供了参考。
随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Electro-Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显,能为电厂带来更大的经济效益,所以顺序阀控制方式越来越来被电厂所采纳与使用。
顺序阀控制按照设定的高压调节汽门(GovernorValve,简称GV)开启顺序,对汽轮机流量指令进行计算与分配,通过按顺序调节汽轮机阀门开度进而调节汽轮机进汽流量,最终达到精确控制机组功率的目的。
1 凸轮曲线原理
从1 看出,不管是在单阀还是顺序阀控制方式,都要对阀门开度进行凸轮曲线修正,这是因为调节汽门在开启过程中,流量与阀门开度不是完全的线性对应关系,当阀门小开度、阀前/ 阀后大压差时,调节汽门内蒸汽为临界流动,此时通过调节汽门的流量线性地正比于调节汽门的开度。
随着调节汽门继续开大,虽然汽门的通流面积在增大,但汽门前后的压差减小,蒸汽流量随阀门开度增大的趋势变缓。
所以,即使汽门升程继续加大,由于受汽门喉部尺寸限制,蒸汽流量增加已很小。
通常认为:汽门前后的压力比p(门前)/p(门后)为0.95~0.98 时,即认为汽门已全开。
因此,理想情况下,应当在调节汽门接近全开时,通过阀位传动机构非线性变换,增大调节汽门升程相对于油动机行程的变化率,以校正调节汽门接近全开时流量的非线性特性。
但现在厂家已基本不用凸轮或楔形斜面传动机构进行流量校正,阀门反馈装置几乎全采用直行程的LVDT(线性差动传感器)。
为解决位与流量的非线性带给调节系统的影响,通常在DEH 系统内部设置电凸轮曲线进行修正,达到改变流量指令与阀门开度关系的目的。
在调汽门的升程达到电凸轮拐点后,通过改变阀位指令将阀门快开至全开位置,以补充调节汽门开启不足产生的流量不足。
2 凸轮曲线修改对协调控制的影响
国华太电2×600 MW 超临界汽轮机由上海汽轮机有限公司(STC)与西门子西屋(SWPC)联合设计制造,为超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机,设计共有四个高压调节汽门(分别定义为GV1、GV2、GV3、GV4),在机组投产初期DEH 系统采用单阀控制,协调控制系统(CCS,coordination control system)采用滑压运行方式,在运行过程中(尤其在变负荷阶段)发现高压调门很容易进入设定的电凸轮曲线拐点区,调门一旦进入拐点区后变化速率非常快,加之电凸轮曲线没有经过试验验证,实际流量与初始设计值差别较大,高压调门来回大范围波动造成调
节级压力波动很大。
国华太电协调控制策略为锅炉主控制器调节主蒸汽压力,汽机主控制器调节机组负荷,以锅炉跟随(BF)为主的协调控制模式,调节级压力作为负荷参考信号(前馈信号)送到锅炉主控调节器参与主蒸汽压力调节,所以调节级压力是否稳定直接影响机组协调控制的稳定。
为解决协调调节不稳定问题,公司组织成立技术攻关小组,通过实验逐步完善阀门电凸轮曲线参数,使之与实际流量基本吻合,最终解决了阀门摆动及协调调节不稳定问题。
3 比例偏置修正原理在DEH
系统中另一个重要的函数为比例偏置修正函数,该函数在机组顺序阀控制时根据流量指令确定阀门的开启顺序及阀门重叠度。
在喷嘴调节配汽中(即顺序阀控制时),阀门是按设计顺序依次开启的,国华太电DEH 系统逻辑组态由上海汽轮机有限公司自控中心提供,在做顺序阀切换试验时我们发现,阀门在交替过程中无重叠度,即前一调节汽门完全开启后,后续调节汽门才动作,这样就会形成2(b)实线所示的波折形阀门行程—流量曲线,反映在调节系统静态特性线上,速度变动率同样是波折形曲线,这种情况对压力调节极为不利。
所以,在前一调节汽门尚未完全开启,后续调节汽门必须提前开启,以补偿前一调节汽门的非线性特性,即得到2(b)虚线所示的理想流量曲线。
4 比例偏置修正函数对协调的影响
前面已经说过,为适应调节起门静态特性曲线两端速度变动率大、中间平滑过渡的要求,通过配汽机构的非线性传动特性可以校正行程—流量特性曲线。
但现在基本采用电凸轮曲线进行流量修正(在DEH 内部通过逻辑实现),怎样才能实现多个阀门依此开启时行程与流量特性接近为直线呢,确定合适的重叠度变得非常重要,如果重迭度偏小,将使局部区域的阀门速度变化很大,这种情况对节能有利,但是会造成调节的不稳定,同时对瓦温及轴承振动影响也很大。
反过来,如果重叠度过大,局部速度变动率过小,这样除了不利于节能外,同样也不利于调节。
这是因为重迭度增大显然增加了调节汽门的节流损失,同时流量特性也变得非线性。
阀门开启顺序依次为先开#3、#4高调门(此两阀门同时动作),然后是开#1 高调,最后是#2 高压调门(关闭时按相反顺序进行),阀门相互之间没有重叠度。
通过试验发现,机组由单阀模式切换到顺序阀运行后,#2 轴瓦温度增高(最高达100℃左右,对机组安全运行已构成威胁),同时机前压力摆动大。
后来我们
对阀门重叠度及阀门开启顺序进行了修改,将阀门开启顺序修改为1、2-3-4 (即先开#1、#2高调,然后是#3 高调,最后再开#4 高压调门),这样一来既解决了主蒸汽压力波动过大问题,同时#2 轴承瓦温也下降了许多(最高达85℃)。
由于从安全角度出发,同时受实验条件限制,我们的重叠度设置还没有达到理想状态,对机组的经济性运行有一定的负面影响。
5 结论
通过修改流量特性曲线及比例偏置函数,解决了轴承温度偏高及阀门摆动等实际问题,为机组稳定及经济运行提供了保障,更为解决同类型问题提供了有益的方法和探索。
但同时也应看到,由于受实验条件限制,我们的参数还有优化空间,使机组安全性与经济性达到和谐统一。