一维纳米材料
一维纳米材料的制备、表征及应用

一维纳米材料的制备、表征及应用赵婷婷【摘要】一维纳米材料是指仅长度为宏观尺度,其他方向为纳米尺度的新型材料,在光电子、生物医用、纳米传感、纳米储能等诸多领域具有潜在的应用前景,已成为21世纪化学、物理学、材料学及生命科学等科技领域的研究热点。
本文介绍了一维纳米材料的制备方法,阐述了一维纳米材料各种生长机理,总结了一维纳米材料的表征方法,及在物理、化学、机械、材料等领域的应用。
%One-dimensional nanomaterials , which was a new special structure of substances on nanomerter size at only one dimension , had potential applications such as potoelectron , biological and medical , nano -sensing and nano?energy storage and so on.It became a hot investigation point and was very important to explore and development new synthetic technologies of 1-D nanometer materials for fundmental and application.Most kinds of synthesis techniques , growth mechanism , characterization methods and applications in physics , chemistry , mechanics , energy , etc.were summarized.【期刊名称】《广州化工》【年(卷),期】2014(000)020【总页数】3页(P24-26)【关键词】一维纳米材料;制备;表征;应用【作者】赵婷婷【作者单位】绵阳职业技术学院,四川绵阳 621000【正文语种】中文【中图分类】O799纳米技术是近几年崛起的一门崭新的高科技技术.它是研究现代技术与科学的一门重要学科,也是当前物理、化学和材料科学的一个活跃的研究领域,随着科技的发展,纳米科技越来越受到人们的关注。
一维纳米材料制备

导热性能(声子传送特性) 当硅纳米线直径小于20 nm时,声子色散的关系可能会改
变(由声子局限效应造成),导致声波速度和热导率大大 低于标准值。分子动力学模拟还表明,在200K到500K的温 度范围内,硅纳米线的热导率比硅块低2个等级。
纳米线的特性及其应用
导电性能 尺寸下降导致导电性能的转变。如Bi纳米线在52nm时由金 属转变为半导体;Si纳米线在15nm时由半导体转变为绝缘 体
通过对一些氧化物纳米线(如SnO2) 电学输运性能(如 电导率)的检测,就可能对其所处的化学环境作出检测,可 用于医疗,环境,或安全检查。
纳米线的制备策略
问题:如何控制晶核(纳米颗粒)的尺寸和生长方向?
局限于特殊结 构的材料
VLS 机制
晶体结构的各项异性导致定向生 长。生长速率 Si {111}< Si{110}
• 液相自发组装
• 基于模板合成(模板法)
• 静电纺丝
纳米线的自发生长
• 气相法 - 气-固(VS)生长机理 - 气-液-固(VLS)生长机理
• 液相法 - 溶液-液相-固相机理 (SLS) - “毒化”晶面控制生长的机理(包覆法); - 溶剂热合成方法。
气相法
在合成纳米线时, 气相合成可能是用得最多的方法。
气-固生长机理又称为位错机理,是通过气-固反应形核并长成纳米线的过程。 是一种经常采用的晶须生长机理。 气固机理的发生过程: • 通过热蒸发或气相反应等方法产生气相; • 气相分子或原子被传输到低温区并沉积在基底上; • 在基底表面反应、形核与生长,通常是以气固界面上微观缺陷 (位错、
孪晶等) 为形核中心生长出一维材料。
碳纳米管制造人造卫星的拖绳
3.1纳米材料_一维纳米材料之碳纳米管

THE SECOND GENERATION
More advanced nanotube transistors have individual gates on top of the device, separated from the nanotube channel by a thin layer of silicon dioxide. Metal electrodes form the source and drain.
2013/10/23 18
电弧放电法SWNT
电弧放电法制备SWNT的SEM图
2013/10/23 19
2.激光烧蚀法 (Laser ablation)
2013/10/23
20
合成过程
将石墨靶材或石墨靶材混合金属(钴、镍),放置 于石英管中央以加热炉加热至高温(如1200 °C),并 通入惰性气体(如He或Ar)。以一脉冲激光照射石墨靶。 石墨靶在激光照射下被气化出来,这些气态碳和催化 剂粒子被气流从高温区带向低温区,结果在出口附近 生成一层黑色膜状堆积物,纯化可得碳纳米管。
2013/10/23
41
Nanotubes for Power Transmission Line Materials
In April 2005 the US government's National Aeronautics and Space Administration (NASA) awarded a four-year, US$11 million contract to Rice Universitys Carbon Nanotechnology Laboratory in Houston, Texas. The project aims to produce a prototype wire made entirely of carbon nanotubes, which could conduct electricity up to ten times more efficiently than copper.
碳纳米管作为一维纳米材料

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能……碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。
管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。
是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。
碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。
对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。
碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。
碳纳米管是目前可制备出的具有最高比强度的材料。
若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。
碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。
碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。
理论预测其导电性能取决于其管径和管壁的螺旋角。
当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。
有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。
碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。
VLS法制备一维纳米材料

四 常用的催化剂与可制备的材料
Au:Si、Ge元素纳米线,ZnO、氧化镓等氧化物纳米线, CdS、ZnS纳米线 Fe:Si 、Ge元素纳米线,SiC 纳米线、 GaN纳米线 Ni: Si纳米线、GaN纳米线
精品课件
五 制备中的两个重要问题 A 如何得到纳米级的催化剂团簇? B 如何提供出所需的蒸气?
2. 膜自组织 蒸镀Au薄膜在GaAs基体上,可形成大量的
纳米级的Au-As合金液滴 制备Zn0纳米线时,将Au薄膜蒸镀在蓝宝
石衬底上,形成纳米级的Au-Zn合金液滴
A4 高温快速加热法:激光烧蚀Si-Fe目标靶,产生蒸气,迅 速浓缩成液态纳米团簇
精品课件
1. B1 激光烧蚀:用含少量的Au、Fe或Ni的硅粉作为靶,以 Ar气作为保护气体,在石英管内,在一定温度下激光烧蚀 即可制得Si纳米线
精品课件
二 生长机理: 在适当温度下,催化剂纳米团簇与生长材料的组元互溶形
成纳米级共溶液滴。
共熔液滴持续吸入生长材料的组元蒸气,以至达到过饱和, 促成了生长材料的晶体晶核在液滴上生成。
蒸气继续被吸入,晶体在已生成的固液界面处不断析出, 推动固液界面移动,从而长出一维纳米材料
第四章-一维纳米材料ppt课件

Au-Ag-Au-Ag nanowire
17
1.3 硬模板:碳纳米管(carbon nanotubes)
用于制备碳化物纳米棒的反应路线示意图
18
碳纳米管
以碳纳米管为模板合成的
GaN纳米线
19
1.4 硬模板:外延模板法
“外延模板法”制备单晶GaN 纳米管的过程示意图 20
A) TEM images of Ag/SiO2 coaxial nanocables that were prepared by directly coating silver nanowires with an amorphous silica sheath using the sol-gel method.
10
1.2 硬模板:多孔氧化铝膜(AAO)
结构特点是孔洞为六边形或圆形且垂直于膜面,呈 有序平行排列。孔径在5至200nm 范围内调节,孔密 度可高达1011 个/cm2。
184nm
477nm
666nm
11
利用AAO模板合成纳米材料
沉积
电抛光 纳米棒
阳极氧化
Al 纳米有序阵列复合结构
纳米管
纳米粒子
32
2.6 软模板法特点: (1) 模拟生物矿化; (2)软模板的形态具有多样性; (3)容易构筑,不需要复杂的设备; (4)稳定性较差,模板效率不够高。
33
2.7 模板法制备纳米材料的比较 共性:能提供一个有限大小的反应空间 区别:硬模板提供的是静态的孔道,物质只能从开口
处进入孔道内部 软模板:提供的则是处于动态平衡的空腔,物质可以
杂后的C60表现出良好的导电性和超导性。 57
碳60超导体
C60中掺杂,引入碱金属、碱土金属原子,
一维纳米材料的制备

的优点,被称为纳米多孔金属材料。
由于贵金属价格昂贵,且资源稀少,提高其利用率以减少其载量对催 化剂的设计非常重要。
江苏大学
6
氮化碳除了具备高硬度和高弹性外,还具有耐磨损、防腐蚀、 耐高温等优异性能,其耐高温和化学稳定性要大大优于金刚石, 在机械加工领域具有良好的应用前景。 它还具有宽能带间隙、高热导、光学非线性,是制造半导体和 光学器件的候选材料,也有可能是一种理想的场致发射材料。
江苏大学
30
江苏大学
31
3、石墨烯及其制备
2004年,英国曼切斯特大学科学家Geim A K等人,通过胶带反复剥离石墨片获得一个 原子厚度的石墨单片—石墨烯(graphene)。
石墨烯是普遍存在于其他碳材料中,并可以 看作是其他维度碳基材料的组成单元。
三维的石墨可以看作是由石墨烯单片经过堆 砌而形成;零维的富勒烯可看作由特定石墨 烯形状团聚而成;而石墨烯卷曲后就可形成 一维的碳纳米管结构。
先进材料的制备及加工技术
江苏大学材料科学与工程学院
江苏大学
第三讲 一维纳米材料的制备
纳米线的制备
纳米柱的制备
碳纳米管制备
碳纳米管阵列制备
江苏大学
2
第四讲 二维纳米材料制备
纳米薄膜简介
纳米薄膜制备技术
石墨烯及其制备
江苏大学
3
1、纳米薄膜简介
典型的碳纳米管在溶液中易聚集成束,几乎不溶于任何溶剂,大大 限制了CNTs在各方面的应用。 近年来,人们利用表面活性剂的包裹作用或CNT 与大π共轭体系之 间的π- π相互作用,成功的将CNTs分散在不同溶剂包括水中。 经过化学反应修饰和各种官能化, 除能获得CNTs的分散液外,还 能增加其与基体的界面结合力,为CNTs的组装及表面反应提供了可 能,基于CNT分散液的诸多薄膜材料相继被成功开发。 由于具有优良的电子电导性、化学稳定性,以及高的比表面积等独 特的物理化学性能,CNT 薄膜可在化学催化、智能响应等领域得到 应用。
一维纳米材料

一维纳米材料
一维纳米材料是指至少有一个尺寸在纳米尺度(10^-9米)范围内的材料,但
其它两个维度的尺寸可以远远大于纳米尺度。
一维纳米材料包括纳米线、纳米棒、纳米管等,这些材料在纳米尺度下呈现出特殊的物理和化学性质,因此被广泛应用于各种领域。
一维纳米材料的制备方法多种多样,包括化学气相沉积、溶液法合成、电化学
沉积等。
其中,化学气相沉积是一种常用的方法,通过在高温下将气态前驱体转化为固态纳米材料,可以制备出高质量、高纯度的一维纳米材料。
溶液法合成则是通过在溶液中加入适当的前驱体,利用溶剂的挥发或化学反应来制备一维纳米材料,这种方法简单易行,适用于大规模生产。
一维纳米材料具有许多独特的性质,例如,纳米线的电学性质优异,可以用于
制备高性能的电子器件;纳米管具有优异的力学性能和热学性能,被广泛应用于纳米材料复合材料的制备;而纳米棒则具有优异的光学性能,可用于制备高效的光电器件。
这些特殊的性质使得一维纳米材料在电子、光电、传感、催化等领域有着广泛的应用前景。
除了应用领域的广泛性外,一维纳米材料还具有很强的研究价值。
通过对一维
纳米材料的研究,可以深入了解纳米尺度下的物理和化学性质,为纳米材料的设计与制备提供理论基础。
同时,一维纳米材料还可以作为纳米材料复合材料的增强相,提高复合材料的力学性能和热学性能。
总的来说,一维纳米材料具有独特的物理和化学性质,具有广泛的应用前景和
研究价值。
随着纳米技术的不断发展,一维纳米材料必将在各个领域发挥重要作用,推动科技的进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.3 模板法制备
定义:所谓模板合成就是将具有纳米结构且形状容易控制的物 质作为模板(模子),通过物理或化学的方法将相关材料沉积 到模板的孔中或表面,而后移去模板,得到具有模板规范形貌 与尺寸的纳米材料的过程。
优点:①多数模板不仅合成方便,而且其性质可在广泛范围内 精确调控;②合成过程相对简单,很多方法适合批量生产;③ 可同时解决纳米材料的尺寸与形状控制及分散稳定性问题;④ 特别适合一维纳米结构( 如纳米线和纳米管)的合成。因此模 板合成是公认的合成纳米材料及纳米阵列的最理想方法之一。
1. 阳极氧化铝模板法
❖AAO(anodic aluminum oxide)阳极氧化铝模板是由很多规则的六角形的单 元(cell)所组成的,结构单元间彼此呈六角密排分布,有序孔占据结构单元 的中间位置,是由六角密排高度有序的孔阵列构成的。 ❖孔的轴向与其表 面垂直,孔的底部和铝片之间隔了一层阻挡层(barrier layer) 。阳极氧化铝 模板的孔径一般在5~420nm范围内可调控,孔密度为109~1012个孔/cm2, 膜的厚度可达100m以上。 ❖热稳定性和化学稳定性都很好,且对可见光 透明,便于光学性质的研究以及光电器件的制作,是一种比较理想的模板, 也是目前应用最多的硬模板。
(3) 自催化气-液-固生长(self-catalytic VLS)
通过VS生长的纳米线,源材
料中一般没有金属催化剂。
然而,近年来的研究发现,
尽管有些源材料中并没有使
用金属催化剂,但在一些外
在条件( 如加热等) 作用下,
源材料自身内部可产生内在
反应( 如分解等) ,形成具
有催化作用的低熔点金属
( 合金) 液核,并以此促进
TCO: Transparent Conductive Oxide.
2. 纳米线异质结(超晶格)的合成
Heterostructure, Superlattice
气相合成纳米线异质结和超晶格的基本思路如图4-14所示,即 利用金属催化VLS生长方法,通过交替控制提供气相源材料A和 B来获得单个异质结或周期结构的超晶格。
❖被PVP覆盖的某些晶面其生长速率将会大大减小,如此导致 Ag纳米晶的高度各向异性生长,使纳米Ag颗粒逐渐生长Ag纳 米线。如果PVP的浓度太高,Ag纳米粒子的所有晶面都可能被 PVP覆盖,这样就会丧失各向异性生长,得到的主要产物将是 Ag纳米颗粒,而不是一维Ag纳米线。
Organic-capped Anatase TiO2 nanorods
纳米线以VLS方式生长,我
们将这种通过源材料内在反 应形核,使纳米线以 VLS生 长的现象称为“ 自催化 VLS 生长”(self-catalytic VLS
growth).
Sn液滴
SnO2 SnO、O2
SnO2纳米线
Sn、O 溶进Sn液滴 SnO2过饱和析出
❖纯SnO粉作为热蒸发的原料,刚玉管腔内热蒸发,680C;
EDS (Energy dispersive X-ray spectroscopy) 能谱
4.1.2 液相法制备
气相法适合于制备各种无机半导体纳米线( 管) 。 对于金属纳米线,利用气相法却难以合成。液相法可 以合成包括金属纳米线在内的各种无机、有机纳米线 材料,因而是另一种重要的合成一维纳米材料的方法。 液相法包括“毒化”晶面控制生长和溶液-液相-固 相法 (solution-liquid-solid, SLS)。
InP 米 线 SLS 生 长 机 制 : 在 低 温 加 热 条 件 下 , 溶 液 中 的 前 驱 物 , (tBu)3M(tri-tert-butylindane,三叔丁基茚) 会热分解产生金属In液滴 (flux droplet),这类In液滴将作为纳米线生长的液态核心。与此同时, 化学反应产物InP会不断溶入In液滴中。当溶至过饱和后,就会析出 固相InP,这样又会导致In液滴欠饱和,再继续溶入反应产物InP又导致 过饱和析出,如此反复,就可在In液滴的约束下,长成一维纳米线。
❖等离子氧;
❖Ar气流并加热至 440℃,然后通入 10~80sccm的SiH4 气体。
(2) 气-固生长(Vapor Solid, VS)
Selected area electron diffraction, SAED, 不同于EDS/EDX
“气 -固” 生长机理是人们研究晶须(whisker) 生长提出的一种生长机理。该生长 机理认为晶须的生长需要满足两个条件:①轴向螺旋位错:晶须的形成是晶核内含 有的螺旋位错延伸的结果,它决定了晶须快速生长的方向;②防止晶须侧面成核: 首先晶须的侧面应该是低能面,这样,从其周围气相中吸附在低能面上的气相原子 其结合能低、解析率高,生长会非常缓慢。此外,晶须侧面附近气相的过饱和度必 须足够低,以防止造成侧面上形成二维晶核,引起径向(横向) 生长。
2. 溶液-液相-固相法 (solution-liquid-solid, SLS)
❖美国华盛顿大学Buhro等人采用溶液-液相-固相(SLS)法, 在低温下(111℃ ~203℃)合成了III -V族化合物半导体(InP, InAs,GaP,GaAs)纳米线。纳米线一般为多晶或单晶结构, 纳米线的尺寸分布范围较宽,其直径为20~200nm,长度约1 0m。这种低温SLS生长方法的机理非常类似于前面说过的高 温VLS生长机制。 ❖碳氢溶剂+质子型助剂、三叔丁基铟或镓烷 ❖AsH3和PH3等为砷、磷源。 ❖铟、镓等为低熔点金属。
❖In粉和SnO粉,按 90:10的重量比配制,混 研后装入陶瓷舟,放入 管式炉中的石英管腔中。 ❖热蒸发温度设定920℃, 保温20min,在瓷舟顶部 和外壁可以收集到蓬松 的黄绿色产物,经分析, 产物为掺锡氧化铟纳米 线。
In2O3:Sn, Sn: 4-9 atm.%, ITO: Indium Tin Oxide:
4.1. 一维纳米材料的合成制备 4.2. 一维半导体纳米线的物性 4.3. 碳纳米管
4.1.1 气相法制备 4.1.2 液相法制备 4.1.3 模板法制备
4.1.1 气相法制备
1. 气相生长理论 (1) 气-液-固(VLS)生长 (2) 气-固生长(VS) (3) 自催化气-液-固生长(self-catalytic VLS)
P. D. Cozzili, A. Korowski, H. Weller, J. Am. Chem. Soc., 2003, 125, 14539-14548.
Bulk Anatase
TiO2 nanorods non-hydrolytic sol-gel ester elimination J. Joo, et al., J. Phys. Chem. B 2005, 109, 15297-15302.
1. 气相生长理论
(1) 气-液-固(VLS) 所生谓长VLS生长,是指气相反应系统中存
在纳米线产物的气相基元(B)(原子、离 子、分子及其团簇)和含量较少的金属 催化剂基元(A),产物气相基元(B)和催化 剂气相基元(A)通过碰撞、集聚形成合 金团簇,达到一定尺寸后形成液相生核 核心(简称液滴)合金液滴的存在使得气 相基元(B)不断溶入其中从图4-2(b)相图 上看,意味着合金液滴成分[不断向右 移动],当熔体达到过饱和状态时(即成 分移到超过c点时),合金液滴中即析出 晶体(B)。析出晶体后的液滴成分又回 到欠饱和状态,通过继续吸收气相基元 (B),可使晶体再析出生长。如此反复, 在液滴的约束下,可形成一维结构的晶 体(B)纳米线。
长径比? Aspect ratio Length-to-diameter
Web of Science中 以“Onedimensional nanostructures ”为主题 词检索结果分析(2010.06.24)
主要内容
4.1. 一维纳米材料的合成制备 4.2. 一维半导体纳米线的物性 4.3. 碳纳米管
分类:软模板(soft template)和硬模板(hard template)。 典型代表为:阳极氧化铝模板法( 硬模板法)和表面活性剂模 板法( 软模板)。
❖硬模板:具有相对刚性结构的模板,如阳极氧化铝膜、高分子 模板、分子筛、胶态晶体、碳纳米管和限域沉积位的量子阱等。 ❖软模板:无固定的组织结构而在一定空间范围内具有限域能力 的分子体系,如表面活性剂分子形成的胶束模板、聚合物模板、 单分子层模板、液晶模板、囊泡、LB膜以及生物大分子等。
第四章 一维纳米材料
一维纳米结构单元主要包括纳米管、纳米线、 纳米带、纳米同轴电缆等。
纳米管 纳米电缆
纳米线
纳米 带
纳米纤维
纳米棒
从基础研究的角度 看,一维纳米材料 是研究电子传输行 为和光学、磁学等 物理性质和尺寸、 维度间关系的理想 体系;从应用前景 上看,一维纳米材 料特定的几何形态 将在构筑纳米电子、 光学器件方面充当 重要的角色。
❖软模板并不能严格控制产物的尺寸和形状,但具有方法简单、 操作方便、成本低等优点,成为制备组装纳米材料的重要手段。 ❖两者都能提供一个有限大小的反应空间,区别在于一个提供的 是静态的孔道,物质只能从开口处进入孔道内部;而另一个提供 的则是处于动态平衡的空腔,物质可透过腔壁扩散进出。 ❖软模板的形态具有多样性,一般都很容易构筑,不需要复杂的 设备。但软模板结构的稳定性较差,因此模板效率通常不够高。 硬模板具有较高的稳定性和良好的空间限域作用,能严格地控制 纳米材料的尺寸和形貌。但硬模板结构比较单一,因此用硬模板 制备的纳米材料其形貌变化通常也较少。
在VLS法中,纳米线生长所需的蒸气(气相)既可由物理技术 方法获得,也可由化学技术方法来实现。由此派生出一些名称 各异的纳米线制备方法,物理技术方法有激光烧蚀法(Laser Ablation)、热蒸发(Thermal Evaporation)等;化学方法有化学气 相沉积(Chemical Vapor Deposition-CVD)、金属有机化合物气 相外延法(Metal Organic Vapor Phase Epitaxy-MOVPE)以及化学 气相传输法(Chemical Vapor Transport)等等。 MOCVD?