三角函数PPT课件

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )

任意角的三角函数-课件1PPT课件一等奖新名师优质课获奖比赛公开课

任意角的三角函数-课件1PPT课件一等奖新名师优质课获奖比赛公开课

m5
m5
m ________.
(4)若角 旳终边过点 Pa,8,且 cos 3 ,
5
则 a ________.
(5)角 旳终边在直线 y 2x上,求 旳六个三
角函数值.
正弦上为正, 余弦右为正, 正切余切一三正, 其他为负不为正
例2:
1、判断下列各三角函数旳符号 A.260 B. 4 C. 672 10 D.11 3
2、若sin 0且 tan 0,那么是第几象限角?
3、已知是第三象限角,试判定: sin( cos ) cos(sin )的符号
练习:
(1)若角 终边上有一点P 3,0,则下列函数值不
§1.2.1 任意角旳三角函数
设 是任意角, 旳终边上任意一点 P旳坐标是x,y,
当角 在第一、二、三、四象限时旳情形,它与原点
旳距离为 r ,则 r x 2 y 2 x2 y2 0 .
任意角旳三角函数
1、定义:
①比值 y 叫做 旳正弦,记作sin ,即 sin y .
r
r
x
②比值
叫做
旳余弦,记作cos ,即cos
Байду номын сангаас
x

r
r
③比值 y 叫做 旳正切,记作tan,即 tan y .
x
x
④比值 x 叫做 旳余切,记作cot ,则 cot x .
y
y
⑤比值 r 叫做 旳正割,记作sec ,则 sec r .
x
x
⑥比值 r 叫做 旳余割,记作csc ,则csc r .
y
y
我们把正弦、余弦,正切、余切,正割及余割都 看成是以角为自变量,以比值为函数值旳函数,以上 六种函数统称三角函数.

三角函数认识ppt课件

三角函数认识ppt课件

辅助角公式
总结词
用于将三角函数式化为单一三角函数的形式。
详细描述
辅助角公式是三角函数中常用的化简工具,它可以将复杂的三角函数式化为单一三角函数的形式,便于计算和理 解。具体公式如下:sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
三角函数认识ppt课件
目录
• 三角函数的定义 • 三角函数的图像与性质 • 三角函数的应用 • 三角函数的变换公式 • 三角函数的特殊值
01
三角函数的定义
角度与弧度的关系
角度制
以度(°)为单位,规定一周为 360度,每度分为60分,每分为 60秒。
弧度制
以弧度(rad)为单位,规定圆的 周长为2π弧度。角度与弧度的转 换公式为:1° = π/180 rad。
三角函数的基本恒等式
正弦、余弦、正切之间的基本恒等式。
利用这些恒等式,可以方便地进行三角函数的转换和化简,对于解决三角函数问 题非常有用。
THANK YOU
积的和差公式
总结词
用于计算两个角的三角函数值的乘积之和或之差。
详细描述
积的和差公式也是三角函数中常用的公式之一,它可以计算两个角的三角函数值 的乘积之和或之差。具体公式如下:sin(x-y)=sinxcosy-cosxsiny,cos(xy)=cosxcosy+sinxsiny,tan(x-y)=(tanx-tany)/(1+tanxtany)。
详细描述
和差角公式是三角函数中非常重要的公式之一,它可以将两个角的三角函数值 相加或相减,得到新的三角函数值。具体公式如下: sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。

三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

2m
C
BD
5
∴∠BDE≈51.12°.
cos 51.120 DB
DE
DE
DB cos 51.120
,
5 0.6277
400
D
7.97m.
5m
B
答:钢缆ED旳长度约为7.97m.
都来当个小教授!
A
B 咋 办
2 如图,水库大坝旳截面是梯形
ABCD,坝顶AD=6m,坡长CD=8m.坡底
D
BC=30m,∠ADC=1350. (1)求坡角∠ABC旳大小;
目前你能完毕这个任务吗?
B
请与同伴交流你是怎么想旳?
准备怎么去做?

AD
C
我是最棒旳!
解:如图,根据题意可知,∠A=350,∠BDC=400,DB=4m.
求(1)AB-BD旳长,(2)AD旳长.
sin 400 BC , BD
BC BD sin 400.
B
4m
sin 350 BC , AB
350 400
义务教育教科书(北师)九年级数学下册
第一章直角三角形旳边角关系
直角三角形旳边角关系
直角三角形三边旳关系: 勾股定理 a2+b2=c2.
直角三角形两锐角旳关系:两锐角互余 ∠A+ ∠B=900.
直角三角形边与角之间旳关系:锐角三角函数
sin A cos B a , cos A sin B b ,
(2)假如坝长100m,那么修建这个 C 大坝共需多少土石方(成果精确到
0.01m3 ).
先构造直 角三角形!
你会构建两个直角三角 形求解吗?
解:如图,(1)求坡角∠ABC旳大小; 过点D作DE⊥BC于点E,过点A作 AF⊥BC于点F.

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版
2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

三角函数的概念 课件(39张)

三角函数的概念 课件(39张)







tan cos = × +1× = .



数学
方法总结
诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些
角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值
相等.其作用是可以把任意角转化为0°~360°之间的角.






因为 a<0,所以 a=- ,所以 P 点的坐标为( ,- ),



所以 sin α=- ,cos α= ,






所以 sin α+2cos α=- +2× = .
数学
[变式训练1-1] 若将本例中“a<0”删掉,其他条件不变,结果又是什么?



解:因为点 P 在单位圆上,则|OP|=1,即 (-) + () =1,解得 a=± .
②若 a<0,则 r=-5a,且 sin α=
-





-

-
=- ,cos α=
所以 sin α+2cos α=- +2× = .
= .
数学
方法总结
由角α终边上任意一点的坐标求其三角函数值
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正弦函数、余
弦函数、正切函数的定义求出相应三角函数值.

②在α的终边上任选一点 P(x,y),P 到原点的距离为 r(r>0),则 sin α= ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2kπ+π/2, 2kπ+3π/2)
(k ∈Z)
f(x)=sinx
-1 -
f(x)= cosx
图 象
-1 -
定义域 值 域
R [1,1]

ymax=1 时 ymin= 1
R [1,1]

ymax=1 时 ymin= 1
最 值
f(x)= 0
【例1】求下列函数的最大值,并求出最大值时x的集合: (1)y=cos 解:(1)当cos ,xR ; (2) y=2-sin2x,xR
m≤3/2
a=±b
正弦、余弦函数的图象

几何描点法
1. 正弦曲线、余弦曲线 代数描点法(五点作图)
y 1 o -1 y=sinx,x[0, 2] y=cosx,x[0, 2]

x
2.三角函数的基本性质 定义域、值域、周期性、奇偶性、单调性
习题4。8 2 同步作业本2奇函数 单调增区间: 单调性 单调减区间:
π 2π 3π 4π
o
-1
x
观察正弦曲线和余弦曲线,写出满足下列条件的 x 的区间:
1)sinx>0
2 ) sinx<0 3) cosx>0
(2kπ , 2kπ + π ) (k ∈Z) (2kπ -π , 2kπ) (k ∈Z) (2k-π /2, 2kπ+π /2) (k ∈Z)
4) cosx<0
=1,即x=6k (kZ)时,ymzx=1
∴函数的最大值为1, 取最大值时x的集合为{x|x=6k,kZ}. (2)当sin2x=-1时,即 x=k-
(kZ)时,ymax=3 (kZ)}
∴函数的最大值为3,取最大值时x的集合为{x|x=k-
(5) y=asinx+b
思考题:
练习: 1 函数y=2sinx+2的最大值和最小值分别是( B ) A 2, -2 B 4, 0 C 2, 0 D 4, -4 2 函数y=2cos(x-60°) (30°≤x≤120°)的最大 值和最小值分别是( D ) A -2 , 1 B -1 ,2 C 1 , D 1, 2 3 要使下列各式有意义应满足什么条件。
f(x)= cosx
x
x
2 偶函数
单调增区间: 单调减区间:
【例2】求下列函数的单调区间:
(1) (2)
解(1)
一、复习回顾上节课的内容:
1、正弦函数、余弦函数图像的作法: (1)描点法:列表、描点、连线;
(2)几何法:利用三角函数线;
2、正弦、余弦函数图像的简便作法: “五点法”
y
1 -4π -3π -2π -π
y=sinx x∈R
π 2π 3π 4π
o
-1
x
y
1 -4π -3π -2π -π
y=cosx x∈R
相关文档
最新文档