必修1课件:1-2-2-2 分段函数与映射【

合集下载

数学必修Ⅰ人教新课标A版1-2-2-2分段函数及映射课件(35张)

数学必修Ⅰ人教新课标A版1-2-2-2分段函数及映射课件(35张)

数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
分段函数 在函数的定义域内,对于自变量 x 的不同取值区间,有着不同的对应关系, 这样的函数通常叫做分段函数.
映射 设 A、B 是两个_非__空___集合,如果按某一个确定的_对___应__关__系__,使对于集 合 A 中的_任___意__一个元素 x,在集合 B 中都有_唯__一___确定的元素 y 与之对应, 那么就称对应__f_:__A_→__B____为从集合 A 到集合 B 的一个映射.
教案·课堂探究
练案·学业达标
解析: (1)由-5∈(-∞,-2],- 3∈(-2,2), -52∈(-∞,-2],知 f(-5)=-5+1=-4, f(- 3)=(- 3)2+2(- 3)=3-2 3. ∵f-52=-52+1=-32,且-2<-32<2, ∴ff-52=f-32=-322+2×-32=94-3=-34.
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
[归纳升华] 1.求分段函数的函数值的方法 先确定要求值的自变量的取值属于哪一段区间,然后代入该段的解析式求 值.当出现 f[f(a)]的形式时,应从内到外依次求值,直到求出值为止. 2.求某条件下自变量的值的方法 先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的 值,切记代入检验.
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
数学 必修1
第一章 集与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
1.下列给出的式子是分段函数的是( ) ①f(x)=x22x+,1x,<11.≤x≤5, ②f(x)=xx+ 2,1x,≥x2∈. R,

1-2-2-2 分段函数与映射

1-2-2-2  分段函数与映射

第一章
1.2
1.2.2
第2课时
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.2
1.2.2
第2课时
成才之路 ·数学 ·人教A版 · 必修1
自主预习 1.当自变量 x 在不同的取值区间(范围)内取值时,函数 的对应法则也不同的函数为 分段函数. 分段函数是一个函数,不是几个函数,只是在定义域的 不同范围上取值时对应法则不同,分段函数是普遍存在又比 较重要的一种函数.
[答案] D
)
B.f(x)=-(x-1)2+1 D.f(x)=(x-1)2-1
第一章
1.2
1.2.2
第2课时
成才之路 ·数学 ·人教A版 · 必修1
4.下列各图中,不能是函数 f(x)图象的是(
)
[答案]
C
第一章
1.2
1.2.2
第2课时
成才之路 ·数学 ·人教A版 · 必修1
5.已知 g(x+2)=2x+3,则 g(3)等于( A.2 C.4 B.3 D.5
第一章
1.2
1.2.2
第2课时
成才之路 ·数学 ·人教A版 · 必修1
2.设 A、B 是两个集合,如果按照某种对应关系 f,对于 集合 A 中的 任何 一个元素, 在集合 B 中有 唯一 确定的元素 和它对应, 那么这样的对应(包括 A、 B 以及对应关系 f)叫做集 合 A 到 B 的映射,记作 f:A→B .
第一章 集合与函数概念
成才之路 ·数学 ·人教A版 · 必修1
第一章
第 2 课时 分段函数与映射
第一章 集合与函数概念
成才之路 ·数学 ·人教A版 · 必修1
课前自主预习
名师辩误做答 方法警示探究

数学必修Ⅰ人教新课标A版1-2-2-2分段函数及映射课件(37张)

数学必修Ⅰ人教新课标A版1-2-2-2分段函数及映射课件(37张)

第二段的定义域为[0,2],值域为[-1,0].
所以该分段函数的定义域为[-1,2],值域为[-1,1).
(2)①当0≤x≤2时,f(x)=1+x-2 x=1;
当-2<x<0时,f(x)=1+-x2-x=1-x.
∴f(x)=11,-x,
0≤x≤2, -2<x<0.
②函数f(x)的图象如图所示,
③由②知,f(x)在(-2,2]上的值域为[1,3). [答案] (1)[-1,2] [-1,1)
[活学活用] 4-x2,x>0,
已知函数f(x)=2,x=0, 1-2x,x<0.
(1)求f(f(-2))的值; (2)求f(a2+1)(a∈R)的值; (3)当-4≤x<3时,求f(x)的值域.
解:(1)∵f(-2)=1-2×(-2)=5, ∴f(f(-2))=f(5)=4-52=-21. (2)当a∈R时,a2+1≥1>0,∴f(a2+1)=4-(a2+1)2=-a4- 2a2+3(a∈R). (3)①当-4≤x<0时,f(x)=1-2x, ∴1<f(x)≤9; ②当x=0时,f(x)=2; ③当0<x<3时,f(x)=4-x2, ∴-5<f(x)<4. 故当-4≤x<3时,函数f(x)的值域是(-5,9].
[类题通法] 1.求分段函数的函数值的方法 先确定要求值的自变量的取值属于哪一段区间,然后代入 该段的解析式求值.当出现f(f(a))的形式时,应从内到外依次求 值,直到求出值为止. 2.求某条件下自变量的值的方法 先假设所求的值在分段函数定义区间的各段上,然后相应 求出自变量的值,切记代入检验.
第二课时 分段函数与映射
分段函数 [提出问题] 某市空调公共汽车的票价按下列规则制定: (1)5千米以内,票价2元; (2)5千米以上,每增加5千米,票价增加1元(不足5千米的按5 千米计算). 已知两个相邻的公共汽车站间相距1千米,沿途(包括起点站 和终点站)有11个汽车站.

高中数学第一章集合与函数概念1.2.2.2分段函数及映射课件新人教版

高中数学第一章集合与函数概念1.2.2.2分段函数及映射课件新人教版

即时自测
1.思考判断(正确的打“√”,错误的打“×”) (1)分段函数的定义域是各段上“定义域”的并集,其值 域是各段上“值域”的并集.( ) (2)从映射 f:A→B 的角度理解函数,A 就是函数的定义 域,函数的值域 C⊆B.( ) (3)函数 y=x22x-+11,,xx∈∈((-0,2,2]0],的值域是(-1,5).
每个男生对应自己的身高.
A.①②
B.③④ C.②④ D.①③
(2)设集合 A=B={(x,y)|x∈R,y∈R},从 A 到 B 的映射 f:
(x,y)→(x+2y,2x-y).在映射下,B 中的元素(1,1)对应 A
中的元素( )
A.(1,3)
B.(1,1) C.35,15 D.12,12
解析 (1)①中,当 x=2 时,在 B 中没有元素与之对应,不是映射. ②中,f:x→y=(x-1)2+3 对 A 中任意元素,在 B 中有唯一元素与 之对应,这个对应是映射. ③中,平面内的圆的内接矩形不唯一,这个对应不是映射. ④中,A 中的每名男生,在 B 中有唯一的身高对应,是映射. (2)依据映射的定义,x2+x-2yy= =11.,解之得 x=35且 y=15. ∴B 中的元素(1,1)对应 A 中的元素为35,15. 答案 (1)C (2)C
第2课时 分段函数及映射
目标定位 1.理解分段函数的本质,能用分段函数解 决一些简单的数学问题.2.了解映射概念,了解函数是 一种特殊的映射,并能根据映射的概念判别哪些对应 关系是映射.
自主预习
1.分段函数
在函数的定义域内,对于自变量x的不同取值区间,有 着不同的_对__应__关__系__,这样的函数通常叫做分段函数. 它的图象由几条曲线共同组成. 温馨提示:分段函数不是由几个不同的函数构成的.分 段函数的定义域只有一个,只不过在定义域的不同区 间上对应关系不同,所以分段函数是一个函数.

高一数学同步课件:1-2-2-2分段函数及映射(新人教A必修1)

高一数学同步课件:1-2-2-2分段函数及映射(新人教A必修1)

第2镌分段函数及映射时•【课标要求】•1.通过具体实例,了解简单的分段函数, 并能简单应用.• 2. 了解映射的概念.•【核心扫描】• 1.分段函数的图象及求值.(重点)• 2.对映射概念的理解.(难点)01» 新知探究教材为本探究学习• 3.通过分段函数的学习体会分类讨论的思•新知导学• 1・分段函数如果函数y = f(x), xG/4,根据自变量x在力中不同的取值诡魅有着不同的则称这样的函数为分段函数.温馨提示:分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.• 2.映射•设力、B是聲个______ 的集合,如果按某一个确定的对应关系f,使对于集合力中的任n蠹雌个元素x ,在集合B冲黑筋的元秦y与之对应,那么就祿对应为从集合力到集合B的一个映射.•互动探究•探究点1 “分段函数是几个函数”这句话正确吗?•提示不正确,分段函数是一个函数z而非几个函数,只不过在定义域的不同子集上其解析式不同而已.•探究点2映射一定是函数吗?•提示映射是函数的推广,而函数是映射的特殊情况,函数是非空数集力到非空数集B的映射,对映射而言,A , 3不一定是菲空数集,所以映射不一定是函数,函数一(2)(2013-成都高一检测)已知函数/(x) = x2+l(x^0), 一2x(x<0),= 10,贝!)x= _________[思路探索]判断自变量满足的范围分段函数确定适宜的函数式字母变量冬分类讨论-求值2解析⑴当兀=3>1时,于(3)=3<1,(2\ (2\ 13・•・/(/⑶)=闱=[寸+1=&•(2)当兀$0 时,/(x)=x2+l = 10, Ax=3(舍去一3);当兀V0 时,f(x)=—2x=109 Ax=—5.综上知,兀的值为一5或3・答案(1)D (2)-5 或3•[规律方法]1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得・若题目含有多层5.应按“由里到外”的顺序层层处理.• 2 .如果所给变量范围不明确,计算时要采用分类讨论的思想.x—2, IxlWl, 【活学活用1】⑴已知函数/(兀)=1+兀2,比>i,x+1, x^O,(2)已知函数于(兀)=]丄、x<0,若/(兀)=2,则x=1 1 1若x<0,由匚|=2,得x = +y 舍去兀= 综上可知,兀=1或X=—2* 答案(l)y (2)1 或一*解析⑴由于t W1,所以r 3) 訝=4—沪 i+〔—「 I 2丿(2)若由兀+1=2,得x =1 ;29类型二分段函数的图象与解析式°【例2】⑴(2013讪头高一检测)作/(对=兀+¥的图象. (2)如图,根据函数y=/(x)的图象,写出它的解析式.[思路探索](1)去绝对值号,化简/(兀)的解析式并写出分段函数,再逐段画出图象.(2)根据图象列出每一段的解析式,合在一起形成介兀)的解析式.[x+l(x>0), 一 ~ t解(听尸L_gvo),图象如图・⑵当OWxWl 时,/(x)=2x;y/当 1 VxV2 时,/(x)=2;r当x^2时,/(x)=3.o X>-12x, OWxWl,/故 /(兀)=(2, 1<X<293, x^2.•[规律方法]1 •对含有绝对值的函数,要作出其图象,首先应根据绝对值的定义脱去绝对值符号,将函数转化为分段函数,然后分段作出函数的图象・•2・由于分段函数在定义域的不同区间内解析式不同,因此画图时要注意区间端点处对应点的实虚问题・•3 •根据分段函数的图象求解析式时,首先求出每一段的解析式,然后写成分段函数的形式.x2, —lWxWl,【活学活用2】已知并)=1,—或*_].(1)画出/(对的图象;⑵求/(兀)的定义域和值域.解⑴利用描点法,作出/(兀)的图象,如图所示.(2)由条件知,函数/(X)的定义域为R.由图象知,当一lWxWl时,/&)=”的值域为[0,1], 当兀>1或兀V —1时,/(x) = 1, 歹类型三映射的概念【例3】判断下列对应是不是从集合A到集合〃的映射:(1)A=N\ 对应关系兀f lx-31;(2)A = {平面内的圆}, B = {平面内的矩形},对应关系/:“作(3)A = {高一⑴班的男生}, B=R9对应关系/:每个男生对应自己的身高;(4)A = {xlOWxW2}, B={ylOWyW6}, 对应关系X—j=|x.•[思路探索]根据映射的定义,只要检验对力中的任何元素,按对血关系匚是否社B申都有唯一的元素与之对应.•解(1)力中元素3在对应关系f的作用下与3的差的绝对值为0,而0GB,故不是映射.-(2)因为一个圆有无数个内接矩形,即集合力中任何一个元素在集合B中有无数个元素与之对应,故不是映射.-(3)对力中任何一个元素,按照对应关系f,在B 中都有唯一的元素与之对应,符合映射定义,是映射.• (4)是映射,因为力中每一个元素在f:x-^y=x •[规律方法]判断对应f :力是否是力到B 的映射,必须做到几点:(1)明确集合力z B 中的元素・⑵根据映射定义判断力中每个元素是否在£申能找至!]睢一确定的对应元臺z 可以“一对一”,也可以“多对一”,但“一对多”不是映射.【活学活用3】判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(2)A=Z, B = Q,对应关系/: x-*j=p (3)设A = {矩形}, B = {实数},对应关系/:矩形和它的面积对 应. •解(1)对于集合力中任意一个非负数在集合 B 中都有唯一元素1与之对应,对于力中任意 一个负数在(1)A=R, B = {O,1},对应关系于: [1(x^0),ba vo ),集合B中都有唯一元素0与之对应,所以这个对应是映射.•(2)集合力中的元素0在集合B中没有元素与之对应,故不是映射.•(3)对于每一个矩形,它的面积是唯一确定的,所以f是从集合力到集合B的映射.易错辨析忽略分段函数各区间上的范围致误【示例】己知函数金J若f(x)=3f求" 的值.[错解]由”一1=3,得x=±2;由2x+l=3,得x=l,故x的值为2, —2或1.[错因分析]要紧扣"分段”的特征,即函数在定义域的不同部分,有不同的对应关系,求值时不能忽视兀的取值范围. •[正解]当沧0时,由0 —1=3,得x=2或x=-2(舍去);当xvO时,由2x+1=3,得X— 1 (舍去),故x=2.•[防范措施](1)分段函数是一个函数而不是几个函数,处理分段函数体现了数学的分类讨论思想分段求解”是解决分段函数问题的基本原则・•⑵“对号入座”,根据自变量取值的范围 ,准确确定相应的对应关系,转化为一般函数在指定区间上的问题・不能准确理解分段函数的概念是导致出错的主要原因■03» 感悟提升总结评价反思提高 C D•课堂达标 是映射的是•解析结合映射的定义可知A、B、C均满足M 中任意一个数x,在2中有唯一确定的y 与之对应,而D中元素1在2中有m , b两个元素与之对应,故不是映射・•答案D• 2.函数r=|x|的图象是)•解析C-101\xD •••B选项正确.答案Bfx2+l(x^0),3.函^/(X)=|2_X(_2^X<0)的值域是 ---------------- •解析当xMO时,/(x&l, 当一2WxV0 时,2V/(x)W4, .V(x)1 或2V/(x)W4,即/(兀)的值域为[1, +8).答案[1,+8)4-已知从集合A到集合〃的映射是/1:x-2x-l,从B到C的映射是力:丁〜召,则从A~c的映射为____________ 解析依题设2(2^1=占•••A-C的映射为兀一吕亍答案x4x—1⑴求于(2), /[/⑵]的值;(2)^/(x 0) = 8,求兀o 的值.5. 己知函数/3)=“ x 2—4, 0WxW2 2x, x>2.解(l)T0WxW2 时,/(x)=x2—4,•\/(2)=22-4=0,加2)]=/(0)=02_4=_4・⑵当0Wx()W2时,由-Vo—4=8,得x0=±2^3(舍去);当兀0>2时,由2xo=8,得Xo=4.•・兀0=4・•课堂小结• 1.对映射的定义,应注意以下几点:•⑴集合力和B必须是非空集合,它们可以是数集、点集,也可以是其他集合.•(2)映射是一种特殊的对应,对应关系可以用图示或文字描述的方法来表达.• 2.理解分段函数应注意的问题:•(1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏. •(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.•(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画岀来,从而得到整个函数的图象.。

高中数学 1-2-2-2分段函数与映射课件 新人教A版必修1

高中数学 1-2-2-2分段函数与映射课件 新人教A版必修1
整理课件
[解析]
由于
y

|x

1|

|x| x

- 2-x,x,(x(<0<0)x,<1), x,(x≥1),
其图象如图所示:
整理课件
• 总结评述:函数的图象可以是一些线 段,一段曲线,甚至是一些点.表示函 数的式子也可以不止一个,这类用几个 式子表示的函数叫做分段函数.分段函 数是一个函数,而不是几个函数,必须 分段画出函数图象,尤其需注意特殊 点.
整理课件
• ①方向性:映射是有次序的,一般地从A 到B的映射与从B到A的映射是不同的;
• ②任意性:集合A中的任意一个元素都有 象,但不要求B中的每一个元素都有原象;
• ③唯一性:集合A中元素的象是唯一的, 即不允许“一对多”但可以“多对一”.
整理课件
整理课件
• [分析] 图象法是表示函数的方法之一, 画函数的图象时,以定义域、对应法则为 依据,采用列表、描点法作图.
整理课件
(3)假设 A 中的元素(x,y)与 B 中元素(a,a2)对应,则有
x+y=a, xy=a2;
∴x、y 应是方程 z2-az+a2=0 的两个实数根,
所以 Δ=a2-4a2≥0,即-3a2≥0,注意到 a 为实数可知:当
且仅当 a=0 时,B 中形如(a,a2)的元素在 A 中存在相对应的
• [分析] 由对应法则,可以根据A中元素与 B中元素的对应关系建立起关于x、y的方 程组.其中第(3)问整理即课件是判断相应的方程组
[解析] (1)依题意,(-2,3)→(-2+3,-2×3),所以 A 中元素(-2,3)的象是(1,-6);
(2)设 B 中元素(2,-3)的原象为(x、y),由已知的对应 法则有xx+ y=y-=23, ; 所以 x、y 是方程 z2-2z-3=0 的两个根, 解得xy==3-,1; 或xy==-3;1, 即 B 中元素(2,-3)的原象为 (3,-1)和(-1,3)两个;

高中数学 1.2.2.2分段函数与映射课件 新人教版必修1

高中数学 1.2.2.2分段函数与映射课件 新人教版必修1

2.分段函数各段上的对应关系不同,那么分段函数是 由几个函数构成的吗?
提示:(1)分段函数是一个函数,切不可把它看成是几 个函数,它只不过是在定义域的不同子集内解析式不一样 而已.
(2)分段函数在书写时用大括号把各段函数合并写成一 个函数的形式,并且必须指明各段函数自变量的取值范 围.
3.分段函数分几段,其图象就有相应的几个吗? 提示:分段函数是一个函数,只有一个图象,作图时 只能将各段函数图象画在同一坐标系中,而不能将它们分 别画在不同的坐标系中.
的图象如图,观察图象得函数的值域为[1,+∞).
(2)将原函数的解析式中的绝对值符号去掉,化为分段 函数
-2x+1 x≤-1, y=3 -1<x≤2,
2x-1 x>2.
它的图象如图.
观察图象,显然函数值y≥3,所以函数的值域为[3, +∞ ).
映射问题
【例3】 下列对应关系中,哪些是从集合A到集合
通法提炼 1分段函数求值,一定要注意所给自变量的值所在的 范围,代入相应的解析式求得.2多层“f”的问题,要按照 “由里到外”的顺序,层层处理.3已知分段函数的函数值 求相对应的自变量的值,可分段利用函数解析式求得自变 量的值,但应注意检验分段解析式的适用范围,也可先判 断每一段上的函数值的范围,确定解析式再求解.
映射
设A、B是两个 非空 的集合,如果按某一个确定的 对应关系f,使对于集合A中的任意一个元素x,在集合B 中都有 唯一确定 的元素y与之对应,那么就称对应 f:A→B 为从集合A到集合B的一个映射.
4.如何判断一个对应是不是映射? 提示:只要检验对于A中的任意一个元素,按对应关系 f,是否在B中有唯一确定的元素与之对应即可.若是,则 这个对应是映射,否则,不是映射.

2018-2019学年人教A版必修一 1.2.2.2分段函数与映射 课件(23张)

2018-2019学年人教A版必修一     1.2.2.2分段函数与映射  课件(23张)

解析:f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(-1 +2)=f(1)=2×1=2. 答案:2
x2+2,x≤2,
3.函数 f(x)=45x,x>2.
若 f(x0)=8,则 x0=________.
解析:当 x0≤2 时,f(x0)=x20+2=8,即 x20=6, ∴x0=- 6或 x0= 6(舍去); 当 x0>2 时,f(x0)=45x0,∴x0=10. 综上可知,x0=- 6或 x0=10. 答案:- 6或 10
解:利用描点法,作出 f(x)的图象,如图所示.
题点三:由函数的图象确定其解析式 3.已知函数 f(x)的图象如右图所示,则 f(x) 的解析式是________.
解析:由图可知,图象是由两条线段组成,当-1≤x<0 时,设 f(x) =ax+b,将(-1,0),(0,1)代入解析式,则- b=a+ 1. b=0, ∴ab==11,. 当 0≤x≤1 时,设 f(x)=kx,将(1,-1)代入,则 k=-1. 答案:f(x)=x-+x1,,0- ≤1x≤ ≤x1<0,
分段函数的图象及应用
题点一:分段函数的图象的判定 1.函数 f(x)=|x-1|的图象是( )
解析:法一:函数的解析式可化为 y=x1--1x,,xx≥<11,. 画出此 分段函数的图象,故选 B. 法二:由 f(-1)=2,知图象过点(-1,2),排除 A、C、D,故 选 B. 答案:B
题点二:分段函数图象的作法 2.已知 f(x)=x12,,x->11≤或xx≤<1-,1, 画出 f(x)的图象.
第二课时 分段函数与映射
(1)什么是分段函数?分段函数是一个还是几个函数? (2)怎样求分段函数的值?如何画分段函数的图象?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
(3)解不等式f(x)>a:
x∈I , 1 f(x)>a⇔ f1x>a, x∈I , 2 或 f2x>a.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
自主预习 1.当自变量 x 在不同的取值区间(范围)内取值时,函数 的对应法则也不同的函数为 分段函数. 分段函数是一个函数,不是几个函数,只是在定义域的 不同范围上取值时对应法则不同,分段函数是普遍存在又比 较重要的一种函数.
)
[答案]
D
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
6.某班连续进行了 5 次数学测试,其中智方同学 成绩 如表所示,在这个函数中,定义域是 {1,2,3,4,5} {85,88,86,93,95} . 次数 1 2 88 3 93 4 86 5 95 ,值域是
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
思路方法技巧
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
1
分段函数及其应用
学法指导:分段函数的应用
f x,x∈I , 1 1 设分段函数f(x)= f2x,x∈I2.
规律总结:(1)分段函数求值,一定要注意所给自变量 的值所在的范围,代入相应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的 顺序,层层处理.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
2
映射的概念
学法指导:(1)给定两集合A,B及对应关系f,判断是 否从集合A到集合B的映射,主要利用映射的定义.用通俗 的语言讲:A→B的对应有“多对一”、“一对一”、“一 对多”,前两种对应是A到B的映射,而最后一种不是A到B 的映射.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
x+1 x>0 x=0 已知f(x)=π 0 x<0 [分析]
,求f(f(f(-3))).
由题目可获取以下主要信息:
①函数f(x)是分段函数;②本例是求值问题. 解答本题需确定f(f(-3))的范围,为此又需确定f(-3)的 范围,然后根据所在定义域代入相应解析式逐步求解.
能力强化提升
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
课前自主预习
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
温故知新 1.函数图象的作法: 列表 、 描点 、 连线 成图.
a a≥0 -a a<0
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
[解析]
∵-3<0,
∴f(-3)=0, ∴f(f(-3))=f(0)=π, 又π>0,∴f(f(f(-3)))=f(π)=π+1, 即f(f(f(-3)))=π+1.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
[例2]
判断下列对应是不是从集合A到集合B的映射:
(1)A=N*,B=N*,对应关系f:x→|x-3|; (2)A={平面内的圆},B={平面内的矩形},对应关系 f:作圆的内接矩形; (3)A={北京奥运会火炬手},B={火炬手的体重},对应 关系f:每个火炬手对应自己的体重;
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
2.设 A、B 是两个集合,如果按照某种对应关系 f,对于 集合 A 中的 任何 一个元素, 在集合 B 中有 唯一 确定的元素 和它对应, 那么这样的对应(包括 A、 以及对应关系 f)叫做集 B 合 A 到 B 的映射,记作 f:A→B .
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
[解析]
对于①,∵0∈A,在对应关系 f 下 0→|0|=0∉B,
∴该对应不是从集合 A 到集合 B 的映射. ②∵1∈A,在对应关系 f 下 1→|1-1|=0∉B,∴该对应不 是从集合 A 到集合 B 的映射. ③对于任意 x∈A,依对应关系 f:x→x2∈R,∴该对应是 从集合 A 到集合 B 的映射.
(1)已知x0,求f(x0); ①判断x0的范围,即看x0∈I1,还是x0∈I2; ②代入相应解析式求解.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
(2)已知f(x0)=a,求x0: ①当x0∈I1时,由f1(x0)=a,求x0; ②验证x0是否属于I1,若是则留下,反之则舍去; ③当x0∈I2时,由f2(x0)=a,求x,判断是否属于I2,方法 同上; ④写出结论.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
③唯一性: 集合 A 中元素的在 B 中对应的元素是唯一的, 即不允许“一对多”但可以“多对一”. 通过以上所学,完成下列练习. x≤0 x (1)试画出函数 y= 1 的图象. x x>0
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
[分析] 分类 ―→ 求值 讨论
判断自变量 分段函数 确定适宜 字母变量 ――→ ――→ 满足的范围 的函数式
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
(3)f(m)>m⇔
m≥2, m>1
m≤-2, m+1>m,

m≥2, 2m-1>m
⇔m≤-2,或
⇔m≤-2,或m≥2.
所以,所求m的取值范围是(-∞,-2]∪[2,+∞).
第一章
1.2.2 函数的表示法
第一章 集合与函数概念
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
第2课时 分段函数与映射
第一章 集合与函数概念
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
课前自主预习
名师辩误做答 方法警示探究
思路方法技巧
基础巩固训练
探索延拓创新
分数 85
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
新课引入 某魔术师猜牌的表演过程是这样的,表演者手中持有六 张扑克牌,不含王牌和牌号数相同的牌,让 6 位观众每人从 他手里任摸一张,并嘱咐摸牌时看清和记住自己的牌号,牌 号数是这样规定的,A 为 1,J 为 11,Q 为 12,K 为 13,其余 的以牌上的数字为准,然后,表演者让他们按如下的方法进 行计算,将自己的牌号乘 2 加 3 后乘 5,再减去 25,把计算 结果告诉表演者(要求数值绝对准确), 表演者便能立即准确地 猜出谁拿的是什么牌,你能说出其中的道理吗?
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
(4)A={x|0≤x≤2},B={y|0≤y≤6},对应关系f:x→y 1 =2x. [分析] 由题目可获取以下主要信息:
本例为判断一个对应是否为映射问题,且对应关系明 确. 解答本题可由映射定义出发,观察A中任何一个元素在B 中是否都有唯一元素与之对应.
第一章Leabharlann 1.21.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
[答案]
(2)判断下列对应是否是从集合 A 到集合 B 的映射: ①A=R,B={x|x>0 且 x∈R},f:x→y,y=|x|; ②A=N,B=N*,f:x→y,y=|x-1|; ③A={x|x>0 且 x∈R},B=R,f:x→y,y=x2.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
映射是一种特殊的对应,它具有: ①方向性:映射是有次序的,一般地从 A 到 B 的映射与 从 B 到 A 的映射是不同的; ②任意性:集合 A 中的任意一个元素在 B 中都有元素和 它对应,但不要求 B 中的每一个元素在 A 中都有元素和它对 应;
相关文档
最新文档