(完整版)江西省2018年最新中考数学模拟试卷(2)(含答案)
2018年江西各市中考数学试题及答案汇总

2018年江西各市中考数学试题及答案汇总
中考频道以最快的速度为大家呈现《2018年江西各市中考数学试题及答案汇总》,如果您需要查找的真题及答案没有显示,请按ctrl+F5刷新。
9
2018年江答案
11
2018年江西景德镇中考数学试题及答案
整理
1
2018年江西鹰潭中考数学试题及答案
2
2018年江西萍乡中考数学试题及答案
3
2018年江西新余中考数学试题及答案
4
2018年江西抚州中考数学试题及答案
5
2018年江西宜春中考数学试题及答案
6
2018年江西赣州中考数学试题及答案
7
2018年江西吉安中考数学试题及答案
8
2018年江西上饶中考数学试题及答案
最新-2018年江西省中招考试数学试题卷及答案【word版】 精品

江西省2018年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ . 三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A 'x处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F . (1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后ABCDFA 'B 'EB A告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.1228 ⎪⎝⎭,于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.030.29 (4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.96644-+==,≈,≈.)江西省南昌市2018年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C图1图2B (E A (F D图3H DACB图4二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +-11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+ ··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得直线2BD 的解析式为1y x =--. ······································································ 6分 ③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:ABabBAaba ABbb ABa所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.AE a =,AB b =,222a b c ∴+=. ······························································ 6分(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;A B CD F A 'B ' E ABCDFA 'B 'E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分 AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC = ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.1112224AOC S AC OF ∴==⨯=△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分34AOC AOC S S S π∴=-=-△阴影扇形. ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分BA23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.····································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.···························································· 8分 (3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分 A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上.····························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,14GQ IQ GI ∴=-=-. ····································································· 7分 B (EA (FD14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12= ···················································································· 7分解得1x =14x y ∴==-. ················································································· 8分 (3)α0 153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DB。
(真题)江西省2018年中考数学试题(有答案)

机密★2018年6月19日江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a)2▪ba 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a)2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为ABCD【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形ABCD 从当前位置开始进行一次平移操作, 平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A.3个B. 4个 C. 5个 D. 无数个第3题(第4题)乓球径毛球球球(第5题)【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A(m,0),B(m ﹢2,0)作x 轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲线y =3x的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是√10,所以B 正确;当−2﹤m ﹤0时,l 1在y 轴 的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是(m,3m )和(m +2,3m+2),两交点的距离是√4+36[m (m+2)]2 ,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项. 【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式1x−1有意义,则x 的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以x −1≠0. 【答案】x ≠1★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.a <10【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤【答案】6×104★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两。
2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
江西省2018年最新中考数学模拟试卷(2)(含答案)

2018年江西中考模拟卷(二)一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ) A .-1 B .0 C.12D .- 22.不等式4-2x >0的解集在数轴上表示为( )3.下列运算正确的是( ) A .a 3·a 2=a 6 B .2a (3a -1)=6a 3-1 C .(3a 2)2=6a 4 D .2a +3a =5a4.如图所示的物体由两个紧靠在一起的圆柱体组成,它的左视图是( )5.如图,直线a ∥b ,直角三角形BCD 按如图放置,∠DCB =90°.若∠1+∠B =70°,则∠2的度数为( ) A .20° B .40° C .30° D .25°第5题图 第9题图 第10题图 第11题图6.已知二次函数y =ax 2+bx +c (a ≠0)与x 轴交于点(x 1,0)与(x 2,0),其中x 1<x 2,方程ax 2+bx +c -a =0的两根为m ,n (m <n ),则下列判断正确的是( )A .m <n <x 1<x 2B .m <x 1<x 2<nC .x 1+x 2>m +nD .b 2-4ac ≥0二、填空题(本大题共6小题,每小题3分,共18分)7.函数y =3-x 的自变量x 的取值范围是________. 8.分解因式:x 2y -y =____________.9.如图,已知AB 为⊙O 的直径,∠CAB =30°,则∠ADC =________°.10.如图,过反比例函数y =k x 图象上三点A ,B ,C 分别作直角三角形和矩形,图中S 1+S 2=5,则S 3=________.11.如图,有一个正三角形图片高为1米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,工人将图片沿数轴正方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是________.12.以线段AC 为对角线的四边形ABCD (它的四个顶点A ,B ,C ,D 按顺时针方向排列),已知AB =BC =CD ,∠ABC =100°,∠CAD =40°,则∠BCD 的度数为________.三、(本大题共5小题,每小题6分,共30分)13.(1)解方程组:⎩⎪⎨⎪⎧x +2y =4,3x -4y =2.(2)如图,Rt △ABC 中,∠ACB =90°,将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE .求证:DE ∥BC .14.先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中x =2.15.某商场欲购进一种商品,当购进这种商品至少为10kg ,但不超过30kg 时,成本y (元/kg)与进货量x (kg)的函数关系如图所示.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)若该商场购进这种商品的成本为9.6元/kg ,则购进此商品多少?16.请你按照下列要求用无刻度的直尺作图(不写作法,保留作图痕迹):(1)如图①,请你作一条直线(但不过A ,B ,C ,D 四点)将平行四边形的面积平分;(2)如图②,在平行四边形ABCD 中挖去一个矩形,准确作出一条直线将剩下图形的面积平分.17.某地区在一次九年级数学质量检测试题中,有一道分值为8分的解答题,所有考生的得分只有四种,即0分,3分,5分,8分.老师为了解本题学生得分情况,从全区4500名考生试卷中随机抽取一部分,分析、整理本题学生得分情况并绘制了如下两幅不完整的统计图:请根据以上信息解答下列问题:(1)本次调查从全区抽取了________份学生试卷;扇形统计图中a =________,b =________; (2)补全条形统计图;(3)该地区这次九年级数学质量检测中,请估计全区考生这道8分解答题的平均得分是多少?得8分的有多少名考生?四、(本大题共3小题,每小题8分,共24分)18.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P . (1)若⊙O 的半径为5,CD =8,求OP 与BD 的长度; (2)若∠AOC =40°,求∠B 的度数.19.如图,已知反比例函数y 1=kx (k ≠0)的图象经过点⎝⎛⎭⎫8,-12,直线y 2=x +b 与反比例函数图象相交于点A 和点B (m ,4).(1)求上述反比例函数和直线的解析式; (2)当y 1<y 2时,请直接写出x 的取值范围.20.某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A ,B ,C 分别表示三位家长,他们的孩子分别对应的是a ,b ,c .(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A ,a 的概率是多少(直接写出答案)? (2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少(画出树状图或列表)?五、(本大题共2小题,每小题9分,共18分)21.如图①是一个新款水杯,水杯不盛水时按如图②所示的位置放置,这样可以快速晾干杯底,干净透气;将图②的主体部分抽象成图③,此时杯口与水平直线的夹角为35°,四边形ABCD 可以看作矩形,测得AB =10cm ,BC =8cm ,过点A 作AF ⊥CE ,交CE 于点F .(1)求∠BAF 的度数;(2)求点A 到水平直线CE 的距离AF 的长(精确到0.1cm ,参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002).22.如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,4),C 在x 轴的负半轴,抛物线y =-43(x -2)2+k 过点A .(1)求k 的值;(2)若把抛物线y =-43(x -2)2+k 沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.六、(本大题共12分)23.如图,在矩形ABCD 中,AB =2,BC =4,M 是AD 的中点,动点E 在线段AB 上,连接EM 并延长交射线CD 于点F ,过点M 作EF 的垂线交BC 于点G ,连接EG ,FG .(1)求证:△AME ≌△DMF ; (2)在点E 的运动过程中,探究:①△EGF 的形状是否发生变化?若不变,请判断△EGF 的形状,并说明理由; ②线段MG 的中点H 运动的路程最长为多少(直接写出结果)?(3)设AE =x ,△EGF 的面积为S ,求当S =6时,求x 的值.参考答案与解析1.D 2.D 3.D 4.C 5.A6.B 解析:当a >0时,∵方程ax 2+bx +c -a =0的两根为m ,n ,∴二次函数y =ax 2+bx +c 与直线y =a 的交点在x 轴上方,其横坐标分别为m ,n ,∴m <x 1<x 2<n .当a <0时,∵方程ax 2+bx +c -a =0的两根为m ,n ,∴二次函数y =ax 2+bx +c 与直线y =a 的交点在x 轴下方,其横坐标分别为m ,n ,∴m <x 1<x 2<n .故选B.7.x ≤3 8.y (x +1)(x -1) 9.60 10.5 11.2 3 12.80°或100° 解析:∵AB =BC ,∠ABC =100°,∴∠1=∠2=∠CAD =40°,∴AD ∥BC .点D 的位置有两种情况:(1)如图①,过点C 分别作CE ⊥AB 于E ,CF ⊥AD 于F .∵∠1=∠CAD ,∴CE =CF .在Rt △ACE 与Rt △ACF 中,⎩⎪⎨⎪⎧AC =AC ,CE =CF ,∴Rt △ACE ≌Rt △ACF ,∴∠ACE =∠ACF .在Rt △BCE 与Rt △DCF 中,⎩⎪⎨⎪⎧CB =CD ,CE =CF ,∴Rt △BCE ≌Rt △DCF ,∴∠BCE =∠DCF ,∴∠ACD =∠2=40°,∴∠BCD =80°.(2)如图②,∵AD ′∥BC ,AB =CD ′,∴四边形ABCD ′是等腰梯形,∴∠BCD ′=∠ABC =100°.综上所述,∠BCD =80°或100°.13.(1)解:⎩⎪⎨⎪⎧x =2,y =1.(3分)(2)证明:∵将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE ,∴∠AED =∠CED =90°,(4分)∴∠AED=∠ACB ,∴DE ∥BC .(6分)14.解:原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1,(4分)当x =2时,原式=4.(6分)15.解:(1)设成本y (元/kg)与进货量x (kg)的函数解析式为y =kx +b ,由图可知⎩⎪⎨⎪⎧10=10k +b ,8=30k +b ,,解得⎩⎪⎨⎪⎧k =-0.1,b =11.(3分)故y 关于x 的函数解析式为y =-0.1x +11,其中10≤x ≤30.(4分) (2)令y =-0.1x +11=9.6,解得x =14.故该商场购进这种商品的成本为9.6元/kg 时,购进此商品14kg.(6分)16.解:(1)如图①,直线l 即为所求.(3分)(2)如图②,直线MN 即为所求.(6分)17.解:(1)240 25 20(1.5分) (2)图略.(3分)(3)0×10%+3×25%+5×45%+8×20%=4.6(分),4500×20%=900(名).答:估计全区考生这道8分解答题的平均得分是4.6分,得8分的约有900名考生.(6分)18.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CP =DP .∵CD =8,∴CP =DP =4.∵OC =5,OP 2+CP 2=OC 2,∴OP =3,(3分)∴BP =8.∵DP 2+BP 2=BD 2,∴BD =4 5.(5分)(2)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴AC ︵=AD ︵,∴∠B =12∠AOC .(7分)∵∠AOC =40°,∴∠B =20°.(8分)19.解:(1)∵反比例函数y 1=k x (k ≠0)的图象经过点⎝⎛⎭⎫8,-12,∴-12=k8,∴k =-4,∴反比例函数的解析式为y 1=-4x .(2分)∵点B (m ,4)在反比例函数y 1=-4x 上,∴4=-4m ,∴m =-1.∵B (-1,4)在y 2=x +b 上,∴4=-1+b ,∴b =5,∴直线的解析式为y 2=x +5.(5分)(2)联立方程组⎩⎪⎨⎪⎧y =-4x ,y =x +5,解得⎩⎪⎨⎪⎧x 1=-1,y 1=4,⎩⎪⎨⎪⎧x 2=-4,y 2=1.∴点A 的坐标为(-4,1).由图象可知,当y 1<y 2时x的取值范围为-4<x <-1或x >0.(8分)20.解:(1)P (恰好是A ,a )=19.(3分)(2)共有9(AC ,ac ),(BC ,bc )3种,故恰好是两对家庭成员的概率是39=13.(8分)21.解:(1)∵四边形ABCD 是矩形,∴∠D =∠BCD =90°,∴∠DAF =∠DCE =90°-35°=55°,∴∠BAF =90°-55°=35°.(3分)(2)如图,过点B 作BM ⊥AF 于M ,BN ⊥EF 于N ,则MF =BN =BC ·sin35°≈8×0.5736≈4.59(cm),AM =AB ·cos35°≈10×0.8192≈8.20(cm),∴AF =AM +MF ≈8.20+4.59≈12.8(cm),即点A 到水平直线CE 的距离AF 的长约为12.8cm.(8分)22.解:(1)∵y =-43(x -2)2+k 经过点A (3,4),∴-43×(3-2)2+k =4,解得k =163.(3分)(2)设抛物线与x 轴的另一个交点为E ,AB 与y 轴交于点D ,则AD ⊥y 轴,AD =3,OD =4,∴OA =AD 2+OD 2=32+42=5.∵四边形OABC 是菱形,∴OA =AB =OC =5,BD =AB -AD =2,∴B (-2,4).(4分)令y =0,得-43(x -2)2+163=0,解得x 1=0,x 2=4,∴抛物线y =-43(x -2)2+163与x 轴交点为O (0,0)和E (4,0),OE =4.当m =OC =5时,平移后的抛物线为y =-43(x +3)2+163,令x =-2,得y =-43(-2+3)2+163=4,∴当点B在平移后的抛物线y =-43(x +3)2+163上;当m =CE =9时,平移后的抛物线为y =-43(x +7)2+163,令x =-2,得y =-43(-2+7)2+163≠4,∴点B 不在平移后的抛物线y =-43(x +7)2+163上.综上所述,当m =5时,点B在平移后的抛物线上;当m =9时,点B 不在平移后的抛物线上.(9分) 23.(1)证明:∵四边形ABCD 是矩形,∴∠A =∠MDF =90°.(1分)∵M 是AD 的中点,∴AM =DM .(2分)在△AME 与△DMF 中,⎩⎪⎨⎪⎧∠A =∠MDF ,AM =DM ,∠AME =∠DMF ,∴△AME ≌△DMF .(3分)(2)解:①△EGF 的形状不发生变化,始终是等腰直角三角形.(4分)理由如下:过点G 作GN ⊥AD 于N ,如图①.∵∠A =∠B =∠ANG =90°,∴四边形ABGN 是矩形.∴GN =AB =2.∵MG ⊥EF ,∴∠GME =90°.∴∠AME +∠GMN =90°.∵∠AME +∠AEM =90°,∴∠AEM =∠GMN .∵AD =BC =4,M 是AD 的中点,∴AM =2,∴AM =NG ,∴△AEM ≌△NMG ,∴ME =MG .∴∠EGM =45°.由(1)得△AME ≌△DMF ,∴ME =MF .∵MG ⊥EF ,∴GE =GF .∴∠EGF =2∠EGM =90°,∴△GEF 是等腰直角三角形.(7分)②线段MG 的中点H 运动的路程最长为1.(9分) 解析:如图②,当点E 运动到A 时,MG ⊥AD ,∴MG ⊥BC ,∴G 为BC 的中点;当点E 运动到B 时,点G 与C 重合,∴CG =12BC =2,∴HH ′=12CG =1,∴线段MG 的中点H 运动的路程最长为1.(3)解:在Rt △AME 中,AE =x ,AM =2.根据勾股定理得EM 2=AE 2+AM 2=x 2+4.∴S =12EF ·GM =EM 2=x 2+4,即x 2+4=6.∴x 1=2,x 2=-2(舍去).∴当x =2时,S =6.(12分)。
2018年江西省中考数学试卷含答案

数学试卷第1页(共28页)数学试卷第2页(共28页)绝密★启用前江西省2018年中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共18分)一、选择题(本大题共6小题,每小题3分,共18分.每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的绝对值是()A .2-B .2C .12-D .122.计算22()ba a- 的结果为()A .bB .b-C .abD .b a3.如图所示的几何体的左视图为()ABCD4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A .3个B .4个C .5个D .无数个6.在平面直角坐标系中,分别过点(),,02,0()A m B m +作x 轴的垂线和1l 和2l ,探究直线1l ,直线2l 与双曲线3y x=的关系,下列结论中错误的是()A .两直线中总有一条与双曲线相交B .当1m =时,两直线与双曲线的交点到原点的距离相等C .当20m -<<时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)7.若分式11x -有意义,则x 的取值范围为.8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为.9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共28页)数学试卷第4页(共28页)头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y两,依题意,可列出方程组为.10.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为.11.一元二次方程2420x x +=-的两根为1x ,2x ,则2111242x x x x -+的值为.12.在正方形ABCD 中,6AB =,连接AC ,BD ,P 是正方形边上或对角线上一点,若2PD AP =,则AP 的长为.三、解答题(本大题共11小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分6分,每题3分)(1)计算:2(1)(1)(2)a a a +---;(2)解不等式:2132x x --+≥.14.(本小题满分6分)如图,在ABC △中,8AB =,4BC =,6CA =,CD AB ∥,BD 是ABC ∠的平分线,BD 交AC 于点E .求AE 的长.15.(本小题满分6分)如图,在四边形ABCD 中,AB CD ∥,2AB CD =,E 为AB 的中点.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中,画出ABD △的BD 边上的中线;(2)在图2中,若BA BD =,画出ABD △的AD 边上的高.16.(本小题满分6分)2018年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.数学试卷第5页(共28页)数学试卷第6页(共28页)17.(本小题满分6分)如图,反比例函数 ()0ky k x=≠的图象与正比例函数 2y x =的图象相交于()1,A a ,B两点,点C 在第四象限,CA y ∥轴,o90ABC ∠=.(1)求k 的值及点B 的坐标(2)求tan C的值.18.(本小题满分8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间.过程如下.收集数据从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min ):30608150401101301469010060811201407081102010081整理数据按如下分段整理样本数据并补全表格:课外阅读时间(min)x 040x ≤<4080x ≤<80120x ≤<120160x ≤<等级D CB A人数38分析数据补全下列表格中的统计量:平均数中位数众数80得出结论(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B ”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(本小题满分8分)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视图简化示意图,已知轨道120AB cm =,两扇活页门的宽60cm OC OB ==,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若o 50OBC∠=,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.参考数据:o sin 500.77≈,o cos500.64≈,o tan 50 1.19≈,π取3.14.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________图1图2数学试卷第7页(共28页)数学试卷第8页(共28页)20.(本小题满分8分)如图,在ABC △中,O 为AC 上一点,以点O 为圆心,OC 的半径作圆,与BC 相切于点C ,过点A 作AD BO ⊥交BO 的延长线于点D ,且AOD BAD ∠=∠.(1)求证:AB 为O 的切线;(2)若6BC =,4tan 3ABC ∠=,求AD 的长.21.(本小题满分9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(本小题满分9分)在菱形ABCD 中,60ABC ∠=︒,点P 是射线BD 上一动点,以AP 为边向右侧作等边APE △,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是,CE 与AD 的位置关系是;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2图3中的一种情况予以证明或说理).(3)如图4,当点P 在线段BD 的延长线上时,连接BE ,若23AB =,219BE =,求四边形ADPE 的面积.23.(本小题满分12分)小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线23y x bx =-+-经过点()1,0-,则b =,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是;抽象感悟我们定义:对于抛物线()20y ax bx c a =++≠,以y 轴上的点()0,M m 为中心,作该抛物线关于点M 对称的抛物线y ',则我们又称抛物线y '为抛物线y 的“衍生抛物线”,点M 为“衍生中心”.(2)已知抛物线225y x x =--+关于点(0,)m 的衍生抛物线为y ',若这两条抛物线有交点,求m 的取值范围;问题解决(3)已知抛物线22(0)y ax ax b a =+-≠.①若抛物线y 的衍生抛物线为222(0)y bx bx a b '=-+≠,两抛物线有两个交点,且恰好是它们的顶点,求a ,b 的值及衍生中心的坐标;②若抛物线y 关于点2(01)k +,的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;…;关于点2(0,)k n +的衍生抛物线为n y ,其顶点数学试卷第9页(共28页)数学试卷第10页(共28页)为n A ;…(n 为正整数).求()1n n A A +的长(用含n 的式子表示).江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是2,故选B .【考点】绝对值的概念2.【答案】A 【解析】2222()b b a a b a a -==,故选A .【考点】分式的运算3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D .【考点】几何体的左视图4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C .【考点】频数分布直方图5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C .【考点】利用轴对称设计图案,平移的性质6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3),直线2l 与双曲线交点为(3,1),到原点的距离,故当1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D .【考点】反比例函数的图象与性质第Ⅱ卷二.填空题7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠.【考点】分式有意义的条件8.【答案】4610⨯【解析】460000610=⨯.【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.数学试卷第11页(共28页)数学试卷第12页(共28页)【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形,∴AD BC =,o90D ∠=由旋转的性质可知AB AE =,BC EF =∴3EF AD ==.∵DE EF =∵3DE =.在Rt ADE △中,AE ===∴AB =.【考点】矩形的性质,旋转的性质,勾股定理11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中,得211420x x -+=,∴21142x x -=-根据根与系数的关系,得122x x = ,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时,①当点P 在AD 边上时,如图1,11233AP AD AB ===;②当点P 在AB 边上时,如图2,设AP x =,则2PD x =,∴2226(2)x x +=解得x =③点P 不可能在BC ,CD上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3,∵2PD OA <,AP OA ≥,∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,32OP x =-,32OD =在Rt OPD △中,222(32)2)(2)x x +=,解得114262x =<,2142x =-(舍去).综上所述,2AP =,23142-.【考点】正方形的性质、勾股定理、分类讨论思想三、解答题13.【答案】(1)45a -(2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法14.【答案】4AE =【解析】∵BD 平分ABC ∠.数学试卷第13页(共28页)数学试卷第14页(共28页)∴ABD CBD ∠=∠∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△.∴CBD D ∠=∠,AB AECD EC =∴BC CD=∵8AB =,6CA =,4CD BC ==,∴846AE AE =-.∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质15.【答案】画法如图所示.(1)AF即为所求(2)BF即为所求【解析】画法如图所示.(1)AF即为所求(2)BF即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心.16.【答案】(1)不可能,随机,14.(2)解法一:根据题意,可以画出如下的树状图:小悦小悦小惠小悦小悦小艳小倩小艳小艳小艳小悦小悦小惠小惠小惠小倩小倩由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.解法二:根据题意,可以列出表格如下:小悦小惠小艳小倩小悦小悦、小惠小悦、小艳小悦、小倩小惠小惠、小悦小惠、小艳小惠、小倩数学试卷第15页(共28页)数学试卷第16页(共28页)小艳小艳、小悦小艳、小惠小艳、小倩小倩小倩、小悦小倩、小惠小倩、小艳由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。
最新-2018年九年级数学中考全真模拟试题及答案【江西省】 精品

2018年江西省中考数学仿真模拟试题说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案,请将正确答案的序号填在题后的括号内)1.32-的相反数是( ) A.23- B.23 C.32D.32-2.下列运算正确的是( )A. 236x x x ⋅= B. 22232x x x -+= C. 236()x x -= D. 221(2)4x x --=-3.下列A 、B 、C 、D 四幅“福牛乐乐”图案中,能通过顺时针旋转180°图案(1)得到的是( )B4.某运动场的面积为3002m ,则它的万分之一的面积大约相当于( )A .课本封面的面积B .课桌桌面的面积C .黑板表面的面积D .教室地面的面积 5.已知一次函数y=kx+b(k 、b 为常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b<0的解集是( )6. 如图是由相同小正方体组成的立体图形,它的主视图为( )7.教室地面的瓷砖如图所示,一把钥匙被藏在某种颜色的一块瓷砖下面,则下列判断正确的是( )A.被藏在白色瓷砖下的概率大 B.被藏在黑色瓷砖下的概率大C.被藏在两种瓷砖下的概率一样大 D.无法确定A .B .C .D .8.若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-81my nx ny mx 的解,则m,n 的值分别为( )A.m=2,n=1B.m=2,n=3C.m=1,n=8D.m=-2,n=39.将一副三角板按如图所示的位置叠放,则△AOB 与△DOC 的面积之比等于( )A. B. 12 C. 13 D. 1410. 如图,一量角器放置在∠AOB 上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20°,点D 处的度数为110°,则∠AOB 的度数是( )A.20°B. 25°C.45°D. 55°二、填空题(本大题共6小题,每小题3分,共18分)11.新华网济南2月24日电 ,据山东省经贸委提供的数据,截至22日,山东省累计销售并已登录信息系统的家电下乡试点产品140.46万台,实现销售收入超过20.53亿元,居全国第一。
江西省2018年中考数学试题及答案解析版

江西省2018年中等学校招生考试数学试卷解读说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。
2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题<本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是< ).A.1 B.-1 C.±1D.0【答案】 B.【考点解剖】本题考查了实数的运算性质,要知道什么是倒数.【解题思路】根据倒数的定义,求一个数的倒数,就是用1除以这个数,所以-1的倒数为1(1)1÷-=-,选B.【解答过程】∵1(1)1÷-=-,∴选B.【方法规律】根据定义直接计算.【关键词】实数倒数2.下列计算正确的是< ).A.a3+a2=a5 B.(3a-b>2=9a2-b2 C.a6b÷a2=a3b D.(-ab3>2=a2b6iFtlXqEnFx【答案】 D.【考点解剖】本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.iFtlXqEnFx【解题思路】根据法则直接计算.【解答过程】 A.3a与2a不是同类项,不能相加<合并),3a与2a相乘才得5a;B.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为222-=-+;C.两个(3)96a b a ab b单项式相除,系数与系数相除,相同的字母相除<同底数幂相除,底数不变,指数相减),正确的结果为624÷=;D.考查幂的运算a b a a b性质<积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选D.iFtlXqEnFx 【方法规律】熟记法则,依法操作.【关键词】单项式多项式幂的运算3.下列数据是2018年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是< ).A.164和163 B.105和163 C.105和164D.163和164【答案】 A.【考点解剖】本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】根据中位数、众数的定义直接计算.【解答过程】根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间<数据个数为奇数时)的数或中间两个数的平均数<数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以342、163、165、45、227、163的中位数是163和165的平均数164,众数为163,选A.iFtlXqEnFx 【方法规律】熟知基本概念,直接计算.【关键词】统计初步中位数众数4交于A,B两点,则当线段4.如图,直线y=x+a-2与双曲线y=xAB的长度取最小值时,a的值为< ).iFtlXqEnFxA.0 B.1 C.2 D.5【答案】 C.【考点解剖】本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.iFtlXqEnFx 【解题思路】反比例函数图象既是轴对称图形又是中心对称图形,只有当A、B、O三点共线时,才会有线段AB的长度最小OA OB AB+=,<当直线AB的表达式中的比例系数不为1时,也有同样的结论).iFtlXqEnFx【解答过程】把原点<0,0)代入2=+-中,得2y x aa=.选C..【方法规律】要求a的值,必须知道x、y的值<即一点的坐标)由图形的对称性可直观判断出直线AB过原点<0,0)时,线段AB才最小,把原点的坐标代入解读式中即可求出a的值.iFtlXqEnFx 【关键词】反比例函数一次函数双曲线线段最小5.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是< ).【答案】 C.【考点解剖】本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.【解题思路】可用排除法,B、D两选项有迷惑性,B是主视图,D 不是什么视图,A少了上面的一部分,正确答案为C.iFtlXqEnFx 【解答过程】略.【方法规律】先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.iFtlXqEnFx【关键词】三视图坐凳6.若二次涵数y=ax+bx+c(a ≠0>的图象与x 轴有两个交点,坐标分别为(x1,0>,(x2,0>,且x1<x2,图象上有一点M (x0,y0>在x 轴下方,则下列判断正确的是< ).iFtlXqEnFx A .a>0B .b2-4ac ≥0C .x1<x0<x2D .a(x0-x1>( x0-x2><0iFtlXqEnFx 【答案】 D.【考点解剖】 本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.iFtlXqEnFx 【解题思路】 抛物线与x 轴有不同的两个交点,则240b ac ->,与B 矛盾,可排除B 选项;剩下A 、C 、D 不能直接作出正误判断,我们分a>0,a<0两种情况画出两个草图来分析<见下图).iFtlXqEnFx由图可知a 的符号不能确定<可正可负,即抛物线的开口可向上,也右向下),所以012,,x x x 的大小就无法确定;在图1中,a>0且有102x x x <<,则0102()()a x x x x --的值为负;在图2中,a<0且有102x x x <<,则0102()()a x x x x --的值也为负.所以正确选项为D.iFtlXqEnFx【解答过程】略.【方法规律】先排除错误的,剩下的再画图分析<数形结合)【关键词】二次函数结论正误判断二、填空题<本大题共8小题,每小题3分,共24分)7.分解因式x2-4= .【答案】 (x+2>(x-2>.【考点解剖】本题的考点是因式分解,因式分解一般就考提取公因式法和公式法<完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.iFtlXqEnFx【解题思路】直接套用公式即.【解答过程】24(2)(2)-=+-.x x x【方法规律】先观察式子的特点,正确选用恰当的分解方法.【关键词】平方差公式因式分解8.如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.【答案】65°.【考点解剖】 本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较为简单,但有些考生很简单的计算都会出错,如犯18015535︒-︒=︒之类的错误.iFtlXqEnFx 【解题思路】 由1155∠=︒,可求得25BCD CDE ∠=∠=︒,最后求65B ∠=︒.【解答过程】 ∵∠ADE =155°, ∴∠EDC =25°.又∵DE ∥BC ,∴∠C=∠EDC =25°,在△ABC 中,∠A=90°,∴∠B+∠C=90°,∴∠B=65°.【方法规律】 一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形内角和定理、两直线平行,内错角相等,等量代换等知识和方法.iFtlXqEnFx 【关键词】 邻补角 内错角 互余 互补9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .iFtlXqEnFx 【答案】⎩⎨⎧+==+12,34y x y x . 【考点解剖】 本题考查的是列二元一次方程组解应用题<不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.iFtlXqEnFx【解题思路】 这里有两个等量关系:井冈山人数+瑞金人数=34,井冈山人数=瑞金人数×2+1.所以所列方程组为34,2 1.x y x y +=⎧⎨=+⎩.iFtlXqEnFx 【解答过程】 略.【方法规律】 抓住关键词,找出等量关系【关键词】 列二元一次方程组10.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB=22,BC=23,则图中阴影部分的面积为 .iFtlXqEnFx【答案】 26.【考点解剖】 本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半<即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.iFtlXqEnFx【解题思路】△BCN与△ADM全等,面积也相等,口DFMN与口BEMN的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.iFtlXqEnFx【解答过程】1⨯=.2【方法规律】仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】矩形的面积二次根式的运算整体思想11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为 <用含n的代数式表示).iFtlXqEnFx【答案】 (n+1>2 .【考点解剖】本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示.【解答过程】略.【方法规律】由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】找规律连续奇数的和12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程.iFtlXqEnFx【答案】 x2-5x+6=0.【考点解剖】本题是道结论开放的题<答案不唯一),已知直角三角形的面积为3<直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况<即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3为根的一元二次方程为2560-+=;也可以以1、6为直角边长,x x得方程为2760-+=.<求作一元二次方程,属“一元二次方程根与x x系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)iFtlXqEnFx【解题思路】先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】略.【方法规律】求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.【关键词】直角三角形根求作方程13.如图,□ABCD 与□DCFE 的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为 .iFtlXqEnFx【答案】 25°.【考点解剖】 本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】 已知两个平行四边形的周长相等,且有公共边CD,则有AD=DE,即△ADE 为等腰三角形,顶角∠ADE=∠BCF =60°+70°=130°,∴∠DAE =25°.iFtlXqEnFx 【解答过程】 ∵□ABCD 与□DCFE 的周长相等,且有公共边CD ,∴AD=DE, ∠ADE=∠BCF =60°+70°=130°.∴∠DAE=11(180)502522ADE ︒-∠=⨯︒=︒.【方法规律】 先要明确∠DAE 的身份<为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD=130°转化为∠BCD =130°,∠F=110°转化为∠DCF =70°,从而求得∠ADE=∠BCF =130°.iFtlXqEnFx 【关键词】 平行四边形 等腰三角形 周长 求角度14.平面内有四个点A 、O 、B 、C ,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC 长度为整数的值可以是 .iFtlXqEnFx 【答案】2,3,4.【考点解剖】 本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.iFtlXqEnFx 【解题思路】 由∠AOB=120°,AO=BO=2画出一个顶角为120°、腰长为2的等腰三角形,由60︒与120︒互补,60︒是120︒的一半,点C 是动点想到构造圆来解决此题.iFtlXqEnFx 【解答过程】【方法规律】 构造恰当的图形是解决此类问题的关键.【关键词】 圆 整数值三、<本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来. 【答案】解:由x+2≥1得x ≥-1,由2x+6-3x 得x<3,∴不等式组的解集为-1≤x<3.解集在数轴上表示如下:【考点解剖】本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分<不等式组的解集),注意空心点与实心点的区别.iFtlXqEnFx【解答过程】【方法规律】要保证运算的准确度与速度,注意细节<不要搞错符号).【关键词】不等式组数轴16.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图.iFtlXqEnFx<1)在图1中,画出△ABC的三条高的交点;<2)在图2中,画出△ABC中AB边上的高.【答案】 <1)如图1,点P就是所求作的点;<2)如图2,CD为AB边上的高.【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题<1)是要作点,题<2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.iFtlXqEnFx 【解题思路】 图1点C 在圆外,要画三角形的高,就是要过点B 作AC 的垂线,过点A 作BC 的垂线,但题目限制了作图的工具<无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图<这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC 与圆的交点为E, 连接BE,就得到AC 边上的高BE ;同理设BC 与圆的交点为D, 连接AD,就得到BC 边上的高AD ,则BE 与AD 的交点就是△ABC 的三条高的交点;题<2)是题<1)的拓展、升华,三角形的三条高相交于一点,受题<1)的启发,我们能够作出△ABC 的三条高的交点P ,再作射线PC 与AB 交于点D ,则CD 就是所求作的AB 边上的高.iFtlXqEnFx 【解答过程】 略.【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考.【关键词】 创新作图 圆 三角形的高四、<本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-xx x x x x ,在0,1,2,三个数中选一个合适的,代入求值.【答案】解:原式=x x 2)2(2-·)2(2-x x x +1 =212x -+ =2x . 当x=1时,原式=21. 【考点解剖】 本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.iFtlXqEnFx 【解题思路】 先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到212x -+,可通分得22212222x x x --+=+=,也可将22x -化为12x -求解.iFtlXqEnFx 【解答过程】 略.【方法规律】 根据式子的特点选用恰当的解题顺序和解题方法.【关键词】 分式 化简求值18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物<里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.iFtlXqEnFx <1)下列事件是必然事件的是< ).A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物<2)甲、乙、丙3人抽到的都不是自己带来的礼物<记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.iFtlXqEnFx 【答案】<1)A .<2)依题意画树状图如下:从上图可知,所有等可能结果共有6种,其中第4、5种结果符合,∴P(A>=62=31 .【考点解剖】 本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.iFtlXqEnFx 【解题思路】 <1)是选择题,根据必然事件的定义可知选A ;<2)三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为6种,其中只有第4、5种结果符合,∴P(A>=62=31 ;也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴P(A> =31 .iFtlXqEnFx 【解答过程】 略.【方法规律】 要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.iFtlXqEnFx 【关键词】 必然事件 概率 抽取礼物五、<本大题共2小题,每小题8分,共16分)19.如图,在平面直角坐标系中,反比例函数xk y (x>0>的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB=2,AD=4,点A 的坐标为(2,6> .iFtlXqEnFx <1)直接写出B 、C 、D 三点的坐标;<2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解读式.iFtlXqEnFx【答案】<1)B<2,4),C<6,4),D<6,6).<2)如图,矩形ABCD 向下平移后得到矩形''''A B C D ,设平移距离为a,则A′<2,6-a),C′<6,4-a)k的图象上,∵点A′,点C′在y=x∴2(6-a>=6(4-a>,解得a=3,∴点A′<2,3),.∴反比例函数的解读式为y=6x【考点解剖】本题以矩形为背景考查用待定系数法求反比例函数的解读式.【解题思路】先根据矩形的对边平行且相等的性质得到B、C、D 三点的坐标,再从矩形的平移过程发现只有A、C两点能同时在双曲k线上<这是种合情推理,不必证明),把A、C两点坐标代入y=x 中,得到关于a、k的方程组从而求得k的值.iFtlXqEnFx【解答过程】略.【方法规律】把线段的长转化为点的坐标,在求k的值的时候,由于k的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a>=6(4-a>,求出a后再由坐标求k,实际上也可把A、C两点坐标k中,得到关于a、k的方程组从而直接求得k的代入y=x值.iFtlXqEnFx【关键词】矩形反比例函数待定系数法20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A.全部喝完;1;C.喝剩约一半;D.开瓶但基本未喝.同学们根据统B.喝剩约3计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:iFtlXqEnFx<1)参加这次会议的有多少人?在图<2)中D所在扇形的圆心角是多少度?并补全条形统计图;<计算结果请保留整数).iFtlXqEnFx<2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?<3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用<2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水<500ml/瓶)约有多少瓶?<可使用科学计算器)iFtlXqEnFx 【答案】<1)根据所给扇形统计图可知,喝剩约31的人数是总人数的50%,∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=36°, ∴D 所在扇形圆心角的度数为36°,补全条形统计图如下;<2)根据条形统计图可得平均每人浪费矿泉水量约为: (25×31×500+10×500×21+5×500>÷50 =327500÷50≈183毫升; <3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.iFtlXqEnFx 【考点解剖】 本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.iFtlXqEnFx【解题思路】 <1)由扇形统计图可看出B类占了整个圆的一半即50%<遗憾的是扇形中没有用具体的数字<百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图又知B类共25人,这样已知部分数的百分比就可以求出总人数,而D类有5人,已知部分数和总数可以求出D类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知总人数和A、B、D类的人数可求出C类的人数为10人,将条形统计图中补完整;<2)用总的浪费量除以总人数50就得到平均每人的浪费量;<3)每年开60次会,每次会议将有40至60人参加,这样折中取平均数算一年将有3000人参加会议,用3000乘以<2)中的结果<平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可.iFtlXqEnFx【解答过程】略.【方法规律】能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求什么<不要被其它无关信息干扰).iFtlXqEnFx【关键词】矿泉水统计初步六、<本大题共2小题,每小题9分,共18分)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm ,雨刮杆AB 长为48cm ,∠OAB=120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.iFtlXqEnFx <1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;<结果精确到0.01)<2)求雨刮杆AB 扫过的最大面积.<结果保留π的整数倍) <参考数据:sin60°=23,cos60°=21,tan60°=3,721≈26.851,可使用科学计算器)【答案】解:<1)雨刮杆AB 旋转的最大角度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH ,∵∠OAB=120°,∴∠OAE =60°在Rt △OAE 中,∵∠OAE=60°,OA=10,∴sin ∠OAE=OA OE =10OE , ∴OE=53,∴AE=5.∴EB=AE+AB=53,在Rt △OEB 中,∵OE=53,EB=53,∴OB=22BEOE =2884=2721≈53.70;<2)∵雨刮杆AB旋转180°得到CD,即△OCD与△OAB关于点O 中心对称,∴△BAO≌△OCD,∴S△BAO=S△OCD,1π(OB2-OA2>∴雨刮杆AB扫过的最大面积S=2=1392π.【考点解剖】本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意<提供的实物图也不够清晰,人为造成一定的理解困难).iFtlXqEnFx【解题思路】将实际问题转化为数学问题,<1)AB旋转的最大角度为180°;在△OAB中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB=120°想到作AB边上的高,得到一个含60°角的Rt△OAE和一个非特殊角的Rt△OEB.在Rt△OAE中,已知∠OAE=60°,斜边OA=10,可求出OE、AE的长,进而求得Rt△OEB中EB的长,再由勾股定理求出斜边OB的长;<2)雨刮杆AB扫过的最大面积就是一个半圆环的面积<以OB、OA为半径的半圆面积之差).iFtlXqEnFx 【解答过程】略.【方法规律】将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】刮雨器三角函数解直角三角形中心对称扇形的面积22.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P<4,2)是⊙O外一点,连接AP,直线PB与⊙O 相切于点B,交x轴于点C.iFtlXqEnFx<1)证明PA是⊙O的切线;<2)求点B的坐标;<3)求直线AB的解读式.【答案】<1)证明:依题意可知,A<0,2)∵A<0,2),P<4,2),∴AP∥x轴.∴∠OAP=90°,且点A在⊙O上,∴PA是⊙O的切线;<2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,∵PB切⊙O于点B,∴∠OBP=90°,即∠OBP=∠PEC,又∵OB=PE=2,∠OCB=∠PEC.∴△OBC ≌△PEC .∴OC=PC .<或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt △PCE 中,∵PC2=CE2+PE2,∴x2=(4-x>2+22,解得x=25,…………………… 4分∴BC=CE=4-25=23, ∵21OB ·BC=21OC ·BD ,即21×2×23=21×25×BD ,∴BD=56. ∴OD=22BD OB -=25364-=58, 由点B 在第四象限可知B<58,56-);解法二:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥y 轴于点D , ∵PB 切⊙O 于点B ,∴∠OBP=90°即∠OBP=∠PEC .又∵OB=PE=2,∠OCB=∠PEC ,∴△OBC ≌△PEC .∴OC=PC<或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt △PCE 中,∵PC2=CE2+PE2,∴x2=(4-x>2+22,解得x=25,……………………………… 4分∴BC=CE=4-25=23,∵BD ∥x 轴,∴∠COB=∠OBD ,又∵∠OBC=∠BDO=90°,∴△OBC ∽△BDO , ∴BD OB =OD CB =BO OC , 即BD 2=BD 23=225. ∴BD=58,OD=56. 由点B 在第四象限可知B<58,56-);<3)设直线AB 的解读式为y=kx+b ,由A<0,2),B<58,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ; 解得⎩⎨⎧-==,2,2k b ∴直线AB 的解读式为y=-2x+2. 【考点解剖】 本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解读式等.iFtlXqEnFx【解题思路】<1)点A在圆上,要证PA是圆的切线,只要证PA⊥OA<∠OAP=90°)即可,由A、P两点纵坐标相等可得AP∥x 轴,所以有∠OAP+∠AOC=180°得∠OAP=90°;<2)要求点B的坐标,根据坐标的意义,就是要求出点B到x轴、y轴的距离,自然想到构造Rt△OBD,由PB又是⊙O的切线,得Rt△OAP≌△OBP,从而得△OPC为等腰三角形,在Rt△PCE中, PE=OA=2, PC+CE=OE=4,列出关于CE的方程可求出CE、OC的长,△OBC的三边的长知道了,就可求出高BD,再求OD即可求得点B的坐标;<3)已知点A、点B的坐标用待定系数法可求出直线AB的解读式.iFtlXqEnFx 【解答过程】略.【方法规律】从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.iFtlXqEnFx 【关键词】切线点的坐标待定系数法求解读式七、<本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 <填序号即可)iFtlXqEnFx1AB;②MD=ME;③整个图形是轴对称图形;①AF=AG=2④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;iFtlXqEnFx●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.iFtlXqEnFx答:.【答案】解:●操作发现:①②③④●数学思考:答:MD=ME,MD⊥ME,1、MD=ME;如图2,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江西中考模拟卷(二)时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ) A .-1 B .0 C.12D .- 22.不等式4-2x >0的解集在数轴上表示为( )3.下列运算正确的是( )A .a 3·a 2=a 6B .2a (3a -1)=6a 3-1C .(3a 2)2=6a 4D .2a +3a =5a4.如图所示的物体由两个紧靠在一起的圆柱体组成,它的左视图是( )5.如图,直线a ∥b ,直角三角形BCD 按如图放置,∠DCB =90°.若∠1+∠B =70°,则∠2的度数为( ) A .20° B .40° C .30° D .25°第5题图 第9题图 第10题图 第11题图6.已知二次函数y =ax 2+bx +c (a ≠0)与x 轴交于点(x 1,0)与(x 2,0),其中x 1<x 2,方程ax 2+bx +c -a =0的两根为m ,n (m <n ),则下列判断正确的是( )A .m <n <x 1<x 2B .m <x 1<x 2<nC .x 1+x 2>m +nD .b 2-4ac ≥0二、填空题(本大题共6小题,每小题3分,共18分) 7.函数y =3-x 的自变量x 的取值范围是________.8.分解因式:x 2y -y =____________.9.如图,已知AB 为⊙O 的直径,∠CAB =30°,则∠ADC =________°.10.如图,过反比例函数y =k x 图象上三点A ,B ,C 分别作直角三角形和矩形,图中S 1+S 2=5,则S 3=________.11.如图,有一个正三角形图片高为1米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,工人将图片沿数轴正方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是________.12.以线段AC 为对角线的四边形ABCD (它的四个顶点A ,B ,C ,D 按顺时针方向排列),已知AB =BC =CD ,∠ABC =100°,∠CAD =40°,则∠BCD 的度数为________.三、(本大题共5小题,每小题6分,共30分)13.(1)解方程组:⎩⎪⎨⎪⎧x +2y =4,3x -4y =2.(2)如图,Rt △ABC 中,∠ACB =90°,将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE .求证:DE ∥BC .14.先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中x =2.15.某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围;(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少?16.请你按照下列要求用无刻度的直尺作图(不写作法,保留作图痕迹):(1)如图①,请你作一条直线(但不过A,B,C,D四点)将平行四边形的面积平分;(2)如图②,在平行四边形ABCD中挖去一个矩形,准确作出一条直线将剩下图形的面积平分.17.某地区在一次九年级数学质量检测试题中,有一道分值为8分的解答题,所有考生的得分只有四种,即0分,3分,5分,8分.老师为了解本题学生得分情况,从全区4500名考生试卷中随机抽取一部分,分析、整理本题学生得分情况并绘制了如下两幅不完整的统计图:请根据以上信息解答下列问题:(1)本次调查从全区抽取了________份学生试卷;扇形统计图中a=________,b=________;(2)补全条形统计图;(3)该地区这次九年级数学质量检测中,请估计全区考生这道8分解答题的平均得分是多少?得8分的有多少名考生?四、(本大题共3小题,每小题8分,共24分) 18.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P . (1)若⊙O 的半径为5,CD =8,求OP 与BD 的长度; (2)若∠AOC =40°,求∠B 的度数.19.如图,已知反比例函数y 1=kx (k ≠0)的图象经过点⎝⎛⎭⎫8,-12,直线y 2=x +b 与反比例函数图象相交于点A 和点B (m ,4).(1)求上述反比例函数和直线的解析式; (2)当y 1<y 2时,请直接写出x 的取值范围.20.某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A ,B ,C 分别表示三位家长,他们的孩子分别对应的是a ,b ,c .(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A ,a 的概率是多少(直接写出答案)?(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少(画出树状图或列表)?五、(本大题共2小题,每小题9分,共18分)21.如图①是一个新款水杯,水杯不盛水时按如图②所示的位置放置,这样可以快速晾干杯底,干净透气;将图②的主体部分抽象成图③,此时杯口与水平直线的夹角为35°,四边形ABCD 可以看作矩形,测得AB =10cm ,BC =8cm ,过点A 作AF ⊥CE ,交CE 于点F .(1)求∠BAF 的度数;(2)求点A 到水平直线CE 的距离AF 的长(精确到0.1cm ,参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002).22.如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,4),C 在x 轴的负半轴,抛物线y =-43(x -2)2+k 过点A .(1)求k 的值;(2)若把抛物线y =-43(x -2)2+k 沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.六、(本大题共12分)23.如图,在矩形ABCD中,AB=2,BC=4,M是AD的中点,动点E在线段AB上,连接EM并延长交射线CD于点F,过点M作EF的垂线交BC于点G,连接EG,FG.(1)求证:△AME≌△DMF;(2)在点E的运动过程中,探究:①△EGF的形状是否发生变化?若不变,请判断△EGF的形状,并说明理由;②线段MG的中点H运动的路程最长为多少(直接写出结果)?(3)设AE=x,△EGF的面积为S,求当S=6时,求x的值.参考答案与解析1.D 2.D 3.D 4.C 5.A6.B 解析:当a >0时,∵方程ax 2+bx +c -a =0的两根为m ,n ,∴二次函数y =ax 2+bx +c 与直线y =a 的交点在x 轴上方,其横坐标分别为m ,n ,∴m <x 1<x 2<n .当a <0时,∵方程ax 2+bx +c -a =0的两根为m ,n ,∴二次函数y =ax 2+bx +c 与直线y =a 的交点在x 轴下方,其横坐标分别为m ,n ,∴m <x 1<x 2<n .故选B.7.x ≤3 8.y (x +1)(x -1) 9.60 10.5 11.2 312.80°或100° 解析:∵AB =BC ,∠ABC =100°,∴∠1=∠2=∠CAD =40°,∴AD ∥BC .点D 的位置有两种情况:(1)如图①,过点C 分别作CE ⊥AB 于E ,CF ⊥AD 于F .∵∠1=∠CAD ,∴CE =CF .在Rt △ACE 与Rt △ACF 中,⎩⎪⎨⎪⎧AC =AC ,CE =CF ,∴Rt △ACE ≌Rt △ACF ,∴∠ACE =∠ACF .在Rt △BCE 与Rt △DCF 中,⎩⎪⎨⎪⎧CB =CD ,CE =CF ,∴Rt △BCE ≌Rt △DCF ,∴∠BCE =∠DCF ,∴∠ACD =∠2=40°,∴∠BCD =80°.(2)如图②,∵AD ′∥BC ,AB =CD ′,∴四边形ABCD ′是等腰梯形,∴∠BCD ′=∠ABC =100°.综上所述,∠BCD =80°或100°.13.(1)解:⎩⎪⎨⎪⎧x =2,y =1.(3分)(2)证明:∵将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE ,∴∠AED =∠CED =90°,(4分)∴∠AED =∠ACB ,∴DE ∥BC .(6分)14.解:原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1,(4分)当x =2时,原式=4.(6分)15.解:(1)设成本y (元/kg)与进货量x (kg)的函数解析式为y =kx +b ,由图可知⎩⎪⎨⎪⎧10=10k +b ,8=30k +b ,,解得⎩⎪⎨⎪⎧k =-0.1,b =11.(3分)故y 关于x 的函数解析式为y =-0.1x +11,其中10≤x ≤30.(4分) (2)令y =-0.1x +11=9.6,解得x =14.故该商场购进这种商品的成本为9.6元/kg 时,购进此商品14kg.(6分)16.解:(1)如图①,直线l 即为所求.(3分)(2)如图②,直线MN 即为所求.(6分) 17.解:(1)240 25 20(1.5分) (2)图略.(3分)(3)0×10%+3×25%+5×45%+8×20%=4.6(分),4500×20%=900(名).答:估计全区考生这道8分解答题的平均得分是4.6分,得8分的约有900名考生.(6分)18.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CP =DP .∵CD =8,∴CP =DP =4.∵OC =5,OP 2+CP 2=OC 2,∴OP =3,(3分)∴BP =8.∵DP 2+BP 2=BD 2,∴BD =4 5.(5分)(2)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴AC ︵=AD ︵,∴∠B =12∠AOC .(7分)∵∠AOC =40°,∴∠B =20°.(8分)19.解:(1)∵反比例函数y 1=k x (k ≠0)的图象经过点⎝⎛⎭⎫8,-12,∴-12=k8,∴k =-4,∴反比例函数的解析式为y 1=-4x .(2分)∵点B (m ,4)在反比例函数y 1=-4x 上,∴4=-4m ,∴m =-1.∵B (-1,4)在y 2=x +b 上,∴4=-1+b ,∴b =5,∴直线的解析式为y 2=x +5.(5分)(2)联立方程组⎩⎪⎨⎪⎧y =-4x ,y =x +5,解得⎩⎪⎨⎪⎧x 1=-1,y 1=4,⎩⎪⎨⎪⎧x 2=-4,y 2=1.∴点A 的坐标为(-4,1).由图象可知,当y 1<y 2时x的取值范围为-4<x <-1或x >0.(8分)20.解:(1)P (恰好是A ,a )=19.(3分)(2)依题意作统计表如下.(6分)孩子家长 abacbcAB AB ,ab AB ,ac AB ,bc AC AC ,ab AC ,ac AC ,bc BCBC ,abBC ,acBC ,bc共有9种情形,每种发生的可能性相等,其中恰好是两对家庭成员的有(AB ,ab ),(AC ,ac ),(BC ,bc )3种,故恰好是两对家庭成员的概率是39=13.(8分)21.解:(1)∵四边形ABCD 是矩形,∴∠D =∠BCD =90°,∴∠DAF =∠DCE =90°-35°=55°,∴∠BAF =90°-55°=35°.(3分)(2)如图,过点B 作BM ⊥AF 于M ,BN ⊥EF 于N ,则MF =BN =BC ·sin35°≈8×0.5736≈4.59(cm),AM =AB ·cos35°≈10×0.8192≈8.20(cm),∴AF =AM +MF ≈8.20+4.59≈12.8(cm),即点A 到水平直线CE 的距离AF 的长约为12.8cm.(8分)22.解:(1)∵y =-43(x -2)2+k 经过点A (3,4),∴-43×(3-2)2+k =4,解得k =163.(3分)(2)设抛物线与x 轴的另一个交点为E ,AB 与y 轴交于点D ,则AD ⊥y 轴,AD =3,OD =4,∴OA =AD 2+OD 2=32+42=5.∵四边形OABC 是菱形,∴OA =AB =OC =5,BD =AB -AD =2,∴B (-2,4).(4分)令y =0,得-43(x -2)2+163=0,解得x 1=0,x 2=4,∴抛物线y =-43(x -2)2+163与x 轴交点为O (0,0)和E (4,0),OE =4.当m =OC =5时,平移后的抛物线为y =-43(x +3)2+163,令x =-2,得y =-43(-2+3)2+163=4,∴当点B在平移后的抛物线y =-43(x +3)2+163上;当m =CE =9时,平移后的抛物线为y =-43(x +7)2+163,令x =-2,得y =-43(-2+7)2+163≠4,∴点B 不在平移后的抛物线y =-43(x +7)2+163上.综上所述,当m =5时,点B在平移后的抛物线上;当m =9时,点B 不在平移后的抛物线上.(9分)23.(1)证明:∵四边形ABCD 是矩形,∴∠A =∠MDF =90°.(1分)∵M 是AD 的中点,∴AM =DM .(2分)在△AME 与△DMF 中,⎩⎪⎨⎪⎧∠A =∠MDF ,AM =DM ,∠AME =∠DMF ,∴△AME ≌△DMF .(3分)(2)解:①△EGF 的形状不发生变化,始终是等腰直角三角形.(4分)理由如下:过点G 作GN ⊥AD 于N ,如图①.∵∠A =∠B =∠ANG =90°,∴四边形ABGN 是矩形.∴GN =AB =2.∵MG ⊥EF ,∴∠GME =90°.∴∠AME +∠GMN =90°.∵∠AME +∠AEM =90°,∴∠AEM =∠GMN .∵AD =BC =4,M 是AD 的中点,∴AM =2,∴AM =NG ,∴△AEM ≌△NMG ,∴ME =MG .∴∠EGM =45°.由(1)得△AME ≌△DMF ,∴ME =MF .∵MG ⊥EF ,∴GE =GF .∴∠EGF =2∠EGM =90°,∴△GEF 是等腰直角三角形.(7分)②线段MG 的中点H 运动的路程最长为1.(9分) 解析:如图②,当点E 运动到A 时,MG ⊥AD ,∴MG ⊥BC ,∴G 为BC 的中点;当点E 运动到B 时,点G 与C 重合,∴CG =12BC =2,∴HH ′=12CG =1,∴线段MG 的中点H 运动的路程最长为1.(3)解:在Rt △AME 中,AE =x ,AM =2.根据勾股定理得EM 2=AE 2+AM 2=x 2+4.∴S =12EF ·GM =EM 2=x 2+4,即x 2+4=6.∴x 1=2,x 2=-2(舍去).∴当x =2时,S =6.(12分)。