整式的加减PPT课件
合集下载
《整式的加减 》课件

根据乘法分配律,将代数式中 的每一项分别乘以另一个代数 式中的每一项,再将结果相加 。
整式的除法运算
转化为乘法运算,再按照乘法 运算法则进行计算。
整式的混合运算实例
整式加法实例
$2x^2y + 3xy^2 + 4xz$
整式乘法实例
$(x + y)^2 times (x - y)^3$
整式减法实例
$5x^3 - 3x^2y + 4y^2 - 2y^3$
整式的分类
单项式
只包含一个项的整式,如: 3x^2y、4a。
多项式
包含多个项的整式,如:x^2 3x + 2、a^3 - 2a^2 + a。
整式的加减运算规则
同类项合并
幂次不变
同类项是指具有相同变量和幂次的项 ,同类项可以合并,如:2x^2 + 3x^2 = 5x^2。
在进行加减运算时,变量的幂次保持 不变,如:x^2 + x = x^2 + x。
整式除法实例
$frac{x^4 - y^4}{x + y}$
04
CATALOGUE
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
01
02
03
代数方程求解
通过整式的加减运算,可 以求解代数方程,如一元 一次方程、二元一次方程 等。
函数图像变换
整式的加减可以用于函数 图像的平移、伸缩等变换 ,有助于理解函数的性质 和变化规律。
几何图形面积计算
在几何图形中,整式的加 减可以用于计算图形的面 积和周长,如矩形、三角 形等。
整式的加减在实际生活中的应用
购物计算
在购物时,整式的加减可以用于 计算折扣、找零等,方便快捷。
整式的除法运算
转化为乘法运算,再按照乘法 运算法则进行计算。
整式的混合运算实例
整式加法实例
$2x^2y + 3xy^2 + 4xz$
整式乘法实例
$(x + y)^2 times (x - y)^3$
整式减法实例
$5x^3 - 3x^2y + 4y^2 - 2y^3$
整式的分类
单项式
只包含一个项的整式,如: 3x^2y、4a。
多项式
包含多个项的整式,如:x^2 3x + 2、a^3 - 2a^2 + a。
整式的加减运算规则
同类项合并
幂次不变
同类项是指具有相同变量和幂次的项 ,同类项可以合并,如:2x^2 + 3x^2 = 5x^2。
在进行加减运算时,变量的幂次保持 不变,如:x^2 + x = x^2 + x。
整式除法实例
$frac{x^4 - y^4}{x + y}$
04
CATALOGUE
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
01
02
03
代数方程求解
通过整式的加减运算,可 以求解代数方程,如一元 一次方程、二元一次方程 等。
函数图像变换
整式的加减可以用于函数 图像的平移、伸缩等变换 ,有助于理解函数的性质 和变化规律。
几何图形面积计算
在几何图形中,整式的加 减可以用于计算图形的面 积和周长,如矩形、三角 形等。
整式的加减在实际生活中的应用
购物计算
在购物时,整式的加减可以用于 计算折扣、找零等,方便快捷。
第四章 整式的加减 数学活动课件(共19张PPT) 2024-2025学年人教版数学七年级上册

你能猜想出月历中“+”形和“H”形的一般结论吗?请你说明结论成立的理由.
互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.
互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.
4.2 整式的加减第1课时 合并同类项 课件(共37张PPT)

-
1 3
+
1 3
c2
abc.
当a
-
1 6
,b
2,c
-3
时,原式
-
1 6
2
-3
=1.
3 合并同类项的应用
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方 商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土 豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹 果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话 有道理吗?请你用所学的有关数学知识加以判定.
周长为30x .当时 x 2cm ,周长为 60 cm.
5.合并同类项: (1)-a-a-2a=__-_4_a____; (2)-xy-5xy+6yx=__0____; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2b_-_2_a_b_2_+_3_.
=- x2y+xy2
练一练
合并同类项: (1)6x+2x2-3x+x2+1; (2)-3ab+7-2a2-9ab-3.
先分组, 再合并
解:(1)原式=(6x-3x)+(2x2+x2)+1 =3x+3x2+1
(2)原式=(-3ab-9ab)-2a2+(7-3) =-12ab-2a2+4
归纳总结
“合并同类项”的方法: 一找,找出多项式中的同类项,不同类的同类项用不同 的标记标出; 二移,利用加法的交换律,将不同类的同类项集中到不 同的括号内; 三并,将同一括号内的同类项相加即可.
答案:下降1.5a
当堂练习
✓ 当堂反馈 ✓ 即学即用
整式的加减的ppt课件

多项式
由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例
由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例
数学人教版(2024)七年级上册4.2.3整式的加减 课件(共18张PPT)

4.一名同学在计算3A+B时,误将“3A+B”看成了“3A-B”,求得的结果 是6x2-5x+8,已知B=3x2+7x+3,则3A+B的正确答案为 12x2+9x+14 .
5.已知x+2y=5,3a-4b=7,则代数式(9a-4y)-2(6b+x)的值为 11 .
6.多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项,则m= -3 .
高/cm c 2c
类型 小纸盒 大纸盒
长/cm a
1.5a
宽/cm b 2b
(2)做大纸盒比做小纸盒多用纸多少平方厘米?
高/cm c 2c
解:(6ab+8bc +6ca)-(2ab+2bc +2ca) =6ab+8bc+6ca-2ab-2bc-2ca =4ab+6bc+4ca. 答:做大纸盒比做小纸盒多用纸(4ab+6bc+4ca) cm².
9
2
解:x²-5xy-3x²-2(1-2xy-x²)
=x²-5xy-3x²-2+4xy+2x²
=-xy-2.
当x 1,y 9 时,
9
2
原式 ( 1) 9 2 1 2 3 .
92
2
2
获取新知
探究点3 整式加减的实际应用
利用整式的加减来解决实际问题的步骤: 1.明确已知条件和需要求解的目标; 2.用字母表示问题中的未知数; 3.用代数式表示各个量之间的关系; 4.对所列代数式进行加减运算; 5.通过计算得到最终结果; 6.检查结果是否合理; 7.写出问题的解答和结论.
2.4.4 整式的加减课件(共18张PPT)华东师大版(2024)数学七年级上册

= -2y3 + 3xy2 - x2y - 2xy2 + 2y3 = xy2 - x2y.
典例精析 例3 先化简,再求值:2x2y - 3xy2 + 4x2y - 5xy2,其中 x = 1,y = -1.
解:2x2y - 3xy2 + 4x2y - 5xy2
= (2x2y + 4x2y) + (-3xy2 - 5xy2) = 6x2y - 8xy2. 当 x = 1,y = -1 时, 原式 = 6×12×(-1) - 8×1×(-1)2 = -14.
链接真题 2. (文山·期末) 先化简,再求值: -(4xy2 - xy + 2y) - 2(xy - y - 2xy2),且 x = -2,y = .
解:原式 = -4xy2 + xy - 2y - 2xy +xy2) + (xy - 2xy) + (-2y + 2y)
练一练 1. 求多项式 4 5x2 3x 与 2x 7x2 3的和. 解:(4 5x2 3x) (2x 7x2 3)
4 5x2 3x 2x 7x2 3 (5x2 7x2 ) (3x 2x) (4 3) 2x2 x 1.
典例精析 例2 计算:-2y3 + (3xy2 - x2y) - 2(xy2 - y3). 解:-2y3 + (3xy2 - x2y) - 2(xy2 - y3)
解:(1) 因为 A = 4x2 - 2xy + y2,B = x2 - xy + 5y2, 所以 A - 3B = (4x2 - 2xy + y2) - 3(x2 - xy + 5y2) = 4x2 - 2xy + y2 - 3x2 + 3xy - 15y2 = x2 - 14y2 + xy.
典例精析 例3 先化简,再求值:2x2y - 3xy2 + 4x2y - 5xy2,其中 x = 1,y = -1.
解:2x2y - 3xy2 + 4x2y - 5xy2
= (2x2y + 4x2y) + (-3xy2 - 5xy2) = 6x2y - 8xy2. 当 x = 1,y = -1 时, 原式 = 6×12×(-1) - 8×1×(-1)2 = -14.
链接真题 2. (文山·期末) 先化简,再求值: -(4xy2 - xy + 2y) - 2(xy - y - 2xy2),且 x = -2,y = .
解:原式 = -4xy2 + xy - 2y - 2xy +xy2) + (xy - 2xy) + (-2y + 2y)
练一练 1. 求多项式 4 5x2 3x 与 2x 7x2 3的和. 解:(4 5x2 3x) (2x 7x2 3)
4 5x2 3x 2x 7x2 3 (5x2 7x2 ) (3x 2x) (4 3) 2x2 x 1.
典例精析 例2 计算:-2y3 + (3xy2 - x2y) - 2(xy2 - y3). 解:-2y3 + (3xy2 - x2y) - 2(xy2 - y3)
解:(1) 因为 A = 4x2 - 2xy + y2,B = x2 - xy + 5y2, 所以 A - 3B = (4x2 - 2xy + y2) - 3(x2 - xy + 5y2) = 4x2 - 2xy + y2 - 3x2 + 3xy - 15y2 = x2 - 14y2 + xy.
《整式的加减法》课件

除法运算的技巧
在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题
在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题
2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册

2.4 整式的加减
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.化简:3a-5a=_______. 【解析】3a-5a=(3-5)a=-2a. 答案:-2a
5.合并同类项: (1) x2 2x 1 x2 3x.
2
(2)a2-3a+8-3a2-7+5a. (3)x2-2xy+2yx-3x+5+2x.
【解析】(1) x2 2x 1 x2 3x
(打“√”或“×”) (1)-10与6是同类项.( √ ) (2)b与x不是同类项.( √ ) (3)abc与-ab是同类项.( × ) (4)-5xy-6xy=-xy.( × ) (5)4ab+abc=5abc.( × )
知识点 1 同类项的辨别及合并 【例1】合并下列各式中的同类项: (1)-8a2b+6ab2+3a2b-2ab2. (2)3x2y-4xy2-3+5x2y+2xy2+5. 【思路点拨】找出同类项→利用加法交换律、结合律把同类项 放在一起→合并各同类项的系数,字母及其指数不变
3
(4)3xy和-yx.
【归纳】同类项 1.定义: 所含字母_相__同__,并且_相__同__字__母__的__指__数__也相同的项. 2.特例:几个_常__数__项__也是同类项.
二、逆用分配律填空: (1)5x+2x=_7_x. (2)5ab2-2ab2=_3_ab2. (3)-7xy+3xy=_-_4_xy.
2.计算2xy2+3xy2结果是( ) A.5xy2 B.xy2 C.5x2y4 D.x2y4 【解析】选A.2xy2+3xy2=5xy2.
3.如果2a2bn+1与-4amb3是同类项,那么m=_______,n=_______. 【解析】由题意知,m=2,n+1=3, 解得m=2,n=2. 答案:2 2
【思考】1.观察以上等式,等号两边的单项式有什么特点? 提示:所含字母相同,相同字母的指数也相同(同类项). 2.以上三个等式的实质是将两个同类项合并成一项,通过观察, 你能发现合并前后的系数、字母有怎样的变化吗? 提示:把同类项的系数相加,相同字母及指数不变.
【总结】合并同类项 1.定义:把多项式中的_同__类__项__合并成一项. 2.法则:合并同类项后,所得项的系数是合并前各同类项的系 数的_和__,且字母连同它的指数_不__变__.
题组二:合并同类项的应用
1.已知x4my与-x9y可以合并,则式子12m-10的值是______.
【解析】由x4my与-x9y可以合并,, 4
所以 12m 10 12 9 10 17.
4
答案:17
2.当a=1,b=2时,多项式3ab2-2a2b-4ab2+5a2b的值是多少? 【解析】3ab2-2a2b-4ab2+5a2b=(3-4)ab2+(-2+5)a2b= -ab2+3a2b. 当a=1,b=2时, 原式=-1×22+3×12×2=-4+6=2.
【总结提升】化简多项式“四步法”
1.找出同类项并做标记; 2.运用交换律、结合律将多项式的同类项结合; 3.运用分配律合并同类项; 4.按同一个字母的降幂(或升幂)排列。 化简多项式应注意: 1.运用交换律、结合律将多项式变形时,不要丢掉各 项系数的符号; 2.不要漏项; 3.运算结果通常按某一个字母的降幂(或升幂)排列。
知识点 2 合并同类项的应用 【例2】当x=2 013时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的 值. 【思路点拨】根据合并同类项的法则,将多项式进行合并,然 后将x的值代入即可.
x4-5x2+2x3-x4+5x2-2x3+2x-1 =x4-x4-5x2+5x2+2x3-2x3+2x-1 =(x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 =2x-1, 当x=2 013时,原式=2×2 013-1=4 025.
2
=( x2 1 x2) (2x 3x)
2
=(1 1)x2 2 3 x
2
= 1 x2 x.
2
(2)a2-3a+8-3a2-7+5a =(a2-3a2)+(-3a+5a)+(8-7) =(1-3)a2+(-3+5)a+(8-7) =-2a2+2a+1. (3)x2-2xy+2yx-3x+5+2x =x2+(-2xy+2xy)+(-3x+2x)+5 =x2+(-2+2)xy+(-3+2)x+5=x2-x+5.
【总结提升】多项式化简求值“三步法”
题组一:同类项的辨别及合并 1.下列各组单项式是同类项的是( )
A.5x与xy C.3x2y3与-y3x2
B. 1 x2y与2xy2
2
D.a与b
【解析】选C.根据所含字母相同,且相同字母的指数也相同可 判定选项C中的两个单项式是同类项.
【归纳整合】同类项的判断 1.判断几个单项式是不是同类项,要抓住两点:一是看这几个 单项式中的所含字母是否相同;二是看每个相同字母的指数是 否也相同,只有两个条件同时具备的单项式,才是同类项. 2.判断几个单项式是不是同类项,与单项式的系数无关,与字 母的排列顺序无关.
3.求多项式4x2+2xy+9y2-2x2-3xy+y2的值.其中x=2,y=1. 【解析】4x2+2xy+9y2-2x2-3xy+y2 =(4-2)x2+(2-3)xy+(9+1)y2 =2x2-xy+10y2. 当x=2,y=1时, 原式=2×22-2×1+10×12=8-2+10=16.
2.2 整式的加减 第1课时
黄土岗中心学校 黄远海
1.理解同类项的概念,会判断同类项.(重点) 2.理解合并同类项的法则,会进行合并同类项.(重点、难点)
一、仔细观察每组中的单项式,所含字母及相同字母的指数 有什么共同特征:
(1) 1 a3b和 a3b.
2
(3)5a2和-a2.
(2) 4m和 m .
(1)-8a2b+6ab2+3a2b-2ab2 =-8a2b+3a2b+6ab2-2ab2 =(-8a2b+3a2b)+(6ab2-2ab2) =(-8+3)a2b+(6-2)ab2 =-5a2b+4ab2. (2)3x2y-4xy2-3+5x2y+2xy2+5 =3x2y+5x2y-4xy2+2xy2+5-3 =(3x2y+5x2y)+(-4xy2+2xy2)+(5-3) =(3+5)x2y+(-4+2)xy2+(5-3) =8x2y-2xy2+2