常见数量关系

合集下载

小学数学常见数量关系式

小学数学常见数量关系式

小学数学常见数量关系式常见的小学数学数量关系、运算定律、计算公式和单位进率如下:1.单价乘以数量等于总价;2.单产量乘以面积等于总产量;3.速度乘以时间等于路程。

相应的计算公式为:总价除以数量等于单价;总产量除以面积等于单产量;路程除以速度等于时间。

4.效率乘以时间等于工作量;5.对应量除以标准量等于对应分率;6.图上距离除以实际距离等于比例尺。

相应的计算公式为:工作量除以时间等于效率;标准量乘以对应分率等于对应量;实际距离乘以比例尺等于图上距离。

7.加法交换律:a+b=b+a;8.加法结合律:a+b+c=(a+b)+c=a+(b+c)=(a+c)+b;9.乘法交换律:a×b=b×a;10.乘法结合律:a×b×c=(a×b)×c=a×(b×c)=(a×c)×b;11.乘法分配律:a×(b+c)=a×b+a×c,或者a×(b-c)=a×b-a×c;12.减法的运算性质:a-b-c=a-(b+c);13.除法的运算性质:a÷b÷c=a÷(b×c);14.商不变的性质:a÷b=(a×c)÷(b×c)=(a÷c)÷(b÷c),其中c≠0;15.比的基本性质:a:b=(a×c):(b×c)=(a÷c):(b÷c),其中c≠0;16.比例的基本性质:因为a:b=c:d,所以a×d=b×c;17.长方形的周长C=(a+b)×2,面积S=ab;18.正方形的周长C=4a,面积S=a²;19.平行四边形的面积S=a×h;20.三角形的面积S=a×h÷2;21.梯形的面积S=(a+b)×h÷2;22.圆的周长C=2πr或C=πd,面积S=πr²或S=π(d÷2)²;23.长方体的表面积S=(ab+ah+bh)×2,体积V=abh;24.正方体的表面积S=6a,体积V=a³;25.圆柱体的表面积S=2πrh+2πr²,体积V=Sh或V=πr²h;26.圆锥体的体积V=Sh÷3或V=πr²h÷3;27.1吨=1000千克,1千克=1000克,1千克=1公斤=2市斤,1市斤=500克;28.1千米=1000米,1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米;29.1平方米=100平方分米,1平方分米=100平方厘米。

常见的数量关系

常见的数量关系

常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

小学常见数量关系

小学常见数量关系

小学常见数量关系:乘除关系的有:(1)单价×数量=总价,总价÷数量=单价,总价÷单价=数量。

(2)速度×时间=路程,路程÷速度=时间,路程÷时间=速度。

(3)相遇时间×速度和=总路程,总路程÷相遇时间=速度和,总路程÷速度和=相遇时间。

(4)工作时间×工作效率=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。

(5)砖块数×砖面积=铺地面积,铺地面积÷砖块数=砖面积,铺地面积÷砖那就=砖块数。

(6)因数×因数=积,积÷因数=另一个因数。

(7)被除数÷除数=商,被除数=商×除数,除数=被除数÷商。

(8)图上距离:实际距离=比例尺。

图上距离=实际距离×比例尺,实际距离=图上距离÷比例尺。

(9)平均数=总数÷总份数。

(10)正方形的面积=边长×边长。

正方形的周长=边长×4(11)长方形的面积=长×宽。

(12)平行四边形的面积=底×高。

(13)三角形的面积=底×高÷2。

(14)梯形的面积=(上底+下底)×高÷2(14)圆形的周长=直径×圆周率或者圆形的周长=半径×2×圆周率。

圆形的面积=半径×半径×圆周率。

(15)长方体的体积=长×宽×高。

(16)正方体的体积=棱长×棱长×棱长。

正方体的棱长总和=棱长×12.(17)正方体表面积=棱长×6,(18)圆柱体侧面积=底面周长×高。

(19)圆柱体积=底. 加面积×高。

(20)圆锥体积=底面积×高×13减关系的数量关系:(1)加数+加数=和,加数=和-另一个加数。

小学数学各种常见的数量关系式

小学数学各种常见的数量关系式

小学数学各种常见的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、一倍数×倍数=几倍数几倍数÷一倍数=倍数几倍数÷倍数=一倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形C周长 S面积 a边长周长=边长×4C=4a 面积=边长×边长S=a×a2、正方体V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形C周长 S面积 a边长周长=长+宽×2C=2a+b面积=长×宽S=ab4、长方体V:体积 s:面积 a:长 b: 宽 h:高1表面积长×宽+长×高+宽×高×2S=2ab+ah+bh2体积=长×宽×高V=abh5、三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s面积 a底 h高面积=底×高s=ah7、梯形s面积 a上底 b下底 h高面积=上底+下底×高÷2s=a+b× h÷28、圆形S面积 C周长∏ d=直径 r=半径1周长=直径×∏=2×∏×半径C=∏d=2∏r2面积=半径×半径×∏9、圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长1侧面积=底面周长×高2表面积=侧面积+底面积×23体积=底面积×高体积=侧面积÷2×半径10、圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式和+差÷2=大数和-差÷2=小数和倍问题和÷倍数-1=小数小数×倍数=大数或者和-小数=大数差倍问题差÷倍数-1=小数小数×倍数=大数或小数+差=大数植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×株数-1 株距=全长÷株数-1⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×株数+1 株距=全长÷株数+1 2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题盈+亏÷两次分配量之差=参加分配的份数大盈-小盈÷两次分配量之差=参加分配的份数大亏-小亏÷两次分配量之差=参加分配的份相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=顺流速度+逆流速度÷2 水流速度=顺流速度-逆流速度÷2 浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=售出价÷成本-1×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%折扣<1 利息=本金×利率×时间税后利息=本金×利率×时间×1-20%。

小学数学各种常见的数量关系式

小学数学各种常见的数量关系式

小学数学各种常见的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、一倍数×倍数=几倍数几倍数÷一倍数=倍数几倍数÷倍数=一倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2、正方体V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2(2)体积=长×宽×高V=abh5、三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s面积 a底 h高面积=底×高s=ah7、梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷28、圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高体积=侧面积÷2×半径10、圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。

常见的数量关系

常见的数量关系

常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=与一个加数=与+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法: 被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666、666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项与后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

常见数量关系式

常见数量关系式

六年级数学常见的数量关系及公式须掌握一、常见的数量关系式:1.解方程的数量关系式:一个加数+另一个加数=和一个加数 = 和-另一个加数被减数-减数=差被减数 = 减数+差减数 = 被减数-差一个因数×另一个因数=积一个因数 = 积÷另一个因数被除数÷除数=商除数 = 被除数÷商被除数 = 除数×商2.几种常用的应用题数量关系式:(1)相差关系:大数-小数 = 相差数小数=大数-相差数大数=小数+相差数(2)部总关系:部分数+部分数 = 总数部分数=总数-部分数(3)倍数关系:1倍数×倍数 = 几倍数倍数=几倍数÷1倍数 1倍数=几倍数÷倍数(4)份总关系:①单价×数量 = 总价单价=总价÷数量数量=总价÷单价②速度×时间 = 路程速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间速度和×相遇时间=相遇路程相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间③工作效率×工作时间 = 工作总量工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率④每份数×份数 = 总数每份数= 总数÷份数份数=总数÷每份数(5)利息=本金×利率×时间(6)图上距离÷实际距离=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺(7)比较量÷标准量=分率比较量=标准量×分率标准量=比较量÷分率3.常用的运算定律与性质:⑴①加法交换律: a+b = b+a ②加法结合律:(a+b)+c = a+(b+c)⑵减法的性质:① a-b-c = a-(b+c) a-(b+c)= a-b-c② a-b+c = a-(b-c) a-(b-c)= a-b+c⑶①乘法交换律:a×b = b×a ②乘法结合律:(a×b)×c = a×(b×c)③乘法分配律:a×c+b×c = (a+b) ×c (a+b) ×c = a×c+b×c⑷除法的性质:① a÷b÷c = a÷(b×c) a÷(b×c) = a÷b÷c② a÷b×c = a÷(b÷c) a÷(b÷c) = a÷b×c二、形体问题1 .正方形的周长=边长× 4 边长=正方形的周长÷4正方形的面积=边长×边长2 .长方形的周长=(长+宽)×2 长=周长÷2-宽宽=周长÷2-长长方形的面积=长×宽3. 三角形的面积=底×高÷2高=面积×2÷底底=面积×2÷高4. 平行四边形的面积=底×高底=平行四边形的面积÷高5. 梯形的面积=(上底+下底)×高÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底6.长方体的棱长总和=(长+宽+高)×4 长=棱长总和÷4 -宽-高正方体的棱长总和=棱长×12 棱长=棱长总和÷12长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×6长方体的体积=长×宽×高长=体积÷宽÷高正方体的体积=棱长×棱长×棱长长方体或正方体统一的体积公式=底面积×高底面积=体积÷高7.直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd= 2πr圆的面积=圆周率×半径×半径 s=πr28.圆柱的侧面积=底面圆的周长×高 S=ch=πdh= 2πrh圆柱的表面积=侧面积+上下底面面积 S= 2πrh +2πr2圆柱的体积=底面积×高 V=Sh=πr2h圆锥的体积=底面积×高÷3 V=Sh÷3=πr2h÷3三、量的计量(单位换算)1. 长度单位换算1千米=1000米 1米=10分米=100厘米 1分米=10厘米 1厘米=10毫米2. 面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米1平方厘米=100平方毫米3. 重量单位换算1吨=1000千克 1千克=1000克1千克=1公斤4. 体积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升5. 人民币单位换算1元=10角 1角=10分1元=100分6. 时间单位换算1世纪=100年 1年=12月一年四个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。

常见的数量关系式

常见的数量关系式

常见的数量关系式
数量关系式:
1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3,速度×时间=路程路程÷速度=时间路程÷时间=速度
4,单价×数量=总价总价÷单价=数量总价÷数量=单价
5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6,加数+加数=和一个加数=和-另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数×因数=积积÷一个因数=另一个因数
9,被除数÷除数=商被除数÷商=除数商
×除数=被除数
时间单位换算:
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
质量单位换算:
1吨=1000 千克1千克=1000克
1千克=1公斤
长度单位换算:
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不足之处:在对单价和速度的介绍时太过简单,不到位。在运用数量关系时没有给学生建立一个模型,学生在解决问题时不能做到灵活运用。
教师结合学生的汇报情况进行板书:
总价=单价×数量。钢笔的总价等于什么?练习本的总价呢?
(2)思考:通过这个数量关系,你还想到了什么?
师生交流后板书:
数量=总价÷单价
单价=总价÷数量
4.师生共同小结。
根据单价、数量和总价三个量的关系,只要知道两个量,就可以求出第三个量。那我们用这些数量关系解决问题时,是不是三个都要记住?
三、反馈完善
因为速度的不同,到达某地的时间也是不一样的。在平时的行程过程中,我们经常会遇到这样的问题,这不,下面这位司机大哥就遇到了麻烦,我们一起来帮帮他好吗?
猜猜看,回去的速度和去时的速度相比,快了还是慢了?为什么?
你会算一算吗?学生独立计算。
展示学生作业,说一说你是怎么做的?
(设计意图:通过刚刚的发现,让学生猜一猜,培养学生的估算能力。)
【渗透基本数学思想的策略选择】
建模思想,函数思想
【教学设计】
教学过程:
一、谈话引入
1.情境导入,揭示课题。
同学们,你们去商场购过物吗?你们乘过车吗?你们可知道,在购物、行程这些事情中都蕴含着丰富的数学知识,今天我们就来学习其中的一种(出示课题),我们一起来读一读。
这节课我们研究的常见的数量关系就从购物开始。(板书课题)
四、反思总结
通过本课的学习,你有什么收获?
【教学反思】
本节课我利用生活中的购物和乘坐交通工具,教学了两个常见的数量关系,让学生从生活出发,感知生活和数学的联系。教学过程中,我通过列表整理数据的策略,帮助学生建立单价、数量、总价以及速度、时间和路程的概念。初步建立速度、时间和路程以及单价、数量和总价数量关系的模型。让学生会利用数量关系解决实际问题。在探究的过程中,我给了学生充分的时间和空间,探究出单价、数量和总价的变化规律,让学生建立一定的函数思想。在解决问题中,我让学生通过所学知识,先估一估,再算一算进行验证。提高了学生的运用知识的能力和估算能力。
(二)教学速度、时间和路程的关系。
1.课件出示教材第28页例题3情境图。
生活中像刚刚这样的数量关系还有很多,我们一起来看一看。
引导学生读题,收集情境图中的信息。
出示表格,老师已经把信息和问题都整理好了,课件出示。
(设计意图:通过刚刚的学习,学生已经有了一定的学习经验,这里直接出示表格,节约了学习的时间,也给学生一个自主探索的空间。)
(设计意图:通过举例,让学生从生活中找到单价的例子,从而进一步认识理解单价的意义。)
3.理解单价、数量和总价的数量关系。
我们已经把信息全都整理出来了,你能求出什么问题?学生口答计算并交流(教师板书)
提问,你是怎么算的?
介绍总价。像48,15这样一共用去多少元,我们可以叫——总价。
(1)交流讨论:通过计算,你发现总价与单价、数量之间有什么关系?
如果都买2,想一想,谁的总价最多,你是怎么想的?
小明和爸爸妈妈买完文具准备回家,你建议他们乘坐什么交通工具比较好?说道交通工具,这儿还有一些有趣的问题,我们一起来看一看好不好?
(设计意图:通过买不同数量的物品,让学生通过计算理解单价相同数量越大单价总价越大,数量相同,单价越大总价越大,初步感知函数的思想)
(设计意图:通过计算,从乘法的意义中让学生找到三个量之间的数量关系,并能举一反三发现另外两个数量关系。给学生建立一个模型的思想)
5.理解单价、数量、路程之间的变化规律。
像单价的这种表示形式,我们生活中还有很多,我们一起来看一看。
选择一个你感兴趣的,说说它的单价。老师也刚好想买五香牛肉,我想买2盒,要多少元?买5盒呢?买8盒呢?你发现了什么?
5.理解速度、时间、路程的变化规律
小明买完文具,准备回家,商场离家有4800米,你建议他乘坐什么交通工具回家?根据表格中的两个量,你能求出第3个量吗?
学生独立完成,并交流。
观察表格,你发现了什么?
小结:路程相等时,速度越快,用的时间越少,速度越慢,用的时间越多。
(设计意图:通过让学生建议交通工具,提高学生学习的积极性。在通过计算,让学生发现速度路程不变,速度越快时间就越短。体验函数的思想。)
学生观察情境图,收集情境中的信息:钢笔每支12元,练习本每本3元;要买4支钢笔和5本练习本。(请一位同学上黑板列)
他这样列好不好?好在哪里?
(设计意图:让学生独立自主列表,把信息按类整理,初步感知每一类的数量是不同的,为下面介绍数量关系的名称做准备)
2、介绍单价和数量
每支12元和每本三元,我们可以称它为?单价。买了4支和5本可以叫做——数量。
2.理解“速度”“路程”和“时间”的含义。
(1)介绍:每分钟或每小时行驶的路我们叫它速度,行驶了几分钟或者几小时我们叫它时间,一共行驶的路,我们叫它路程。
说一说什么是速度?你能再举出这样的例子吗?
(设计意图:通过学生举例,让学生加深对速度意义的理解,并让学生感知生活中的数学处处可见。)
教师总结:速度就是单位时间里行驶的路程,比如每分行驶多少米,每小时行驶多少米。你还能举出这样的例子吗?
那你能说说什么是单价吗?你还能举出这样的例子码?学生举例
教师总结:单价就是某种商品单位数量的价格,也就是我们所说的每个,每支,每本等等的价格。
像钢笔的单价每支12元,我们还可以用这样的形式来பைடு நூலகம்示。介绍:读作12元每支,学生边用手比划边齐读。猜一猜,笔记本的单价可以怎么表示?学生尝试写,3元每本,学生边比划边齐读。
上课地点
上课时间
研究
内容
常见的数量关系
四年级下册
设计及执教人
页码:28-29
【教学目标】
1.理解并掌握“单价×数量=总价、速度×时间=路程”这两种数量关系,并能运用数量关系解决实际问题。
2.初步培养学生运用数学术语的能力,发展学生分析、比较、归纳、抽象、概括的能力。
3.感受数学知识与生活的密切联系,在解决问题的过程中感受三位数乘两位数笔算方法的应用价值。
(2)速度也有它自己的单位,通过刚刚的学习,你觉得应该怎么改?想不想自己试一试。先把速度的单位改一改,再求出路程。学生自主完成。
(设计意图:有了之前的学习经验,学生有了一定的模型可用,这里让学生自主探索体现了学生的主题地位。)
3.探究速度、路程和时间的数量关系。
(1)课件出示下表:
根据以上信息你会求出路程吗?学生先填写和谐号列车与李冬骑自行车的速度,再分别求出行驶的路程。教师巡视,发现错误及时纠正。
(设计意图:从学生生活中常遇到的事入手,直接揭示课题,让学生体会生活中处处有数学,提高他们的学习热情)
二、交流共享
(一)教学单价、数量和总价的关系。
1.课件出示教材第28页例题2情境图。
周末,小明独自一人去商场买东西,我们一起来看一看!
提问:你了解了哪些数学信息?能把它们用表格的形式整理出来吗?学生尝试列表
(2)交流讨论:路程与速度、时间之间有什么关系?教师结合学生的汇报情况进行板书:
路程=速度×时间
(3)思考:根据这个数量关系你还能写出其他的数量关系吗?
师生交流后板书:
时间=路程÷速度
速度=路程÷时间
4.小结。
根据同学们得出的三个数量关系,只要知道其中()个量,就能求出第()个量。
(设计意图:交流时,让学生充分展示自己的作业,在生与生的交流中得出数量关系,培养了学生的自主探索和交流的能力)
相关文档
最新文档