导数的概念及其几何意义PPT教学课件

合集下载

5.1.2导数的概念及其几何意义(上课课件)

5.1.2导数的概念及其几何意义(上课课件)

/人A数学/ 选择性必修 第二册
返回导航 上页 下页
1.导数的几何意义就是切线的斜率,因此比较导数大小的问题可以用 数形结合思想来解决.
曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况, 由切线的倾斜程度,可以判断出曲线升降的快慢.
/人A数学/ 选择性必修 第二册
返回导航 上页 下页
4.(1)某家电制造集团为尽快实现家电下乡提出四种运 输方案,据预测,这四种方案均能在规定时间T内完成预期的运输任务 Q0,各种方案的运输总量Q与时间t的函数关系如下所示.在这四种方 案中,运输效率(单位时间内的运输量)逐步提高的是( B )
/人A数学/ 选择性必修 第二册
返回导航 上页 下页
2.f(x)在x=x0处的导数、曲线f(x)在x=x0附近的升降情况、点(x0,f(x0))处切 线的斜率与点(x0,f(x0))处切线的倾斜角的关系如表所示.
f(x)在 x=x0 处的导数
f′(x0)>0 f′(x0)<0 f′(x0)=0
曲线f(x)在x =x0附近的 升降情况
/人A数学/ 选择性必修 第二册
返回导航 上页 下页
[刻画曲线h(t)在上述 三个时刻附近的变化情况. (1)当t=t0时,曲线h(t)在t=t0处的切线l0平行于t轴,h′(t0)=0. 这时,在t=t0附近曲线比较平坦,几乎没有升降. (2)当t=t1时,曲线h(t)在t=t1处的切线l1的斜率h′(t1)<0. 这时,在t=t1附近曲线下降,即函数h(t)在t=t1附近单调递减.
/人A数学/ 选择性必修 第二册
返回导航 上页 下页
(2)已知函数f1(x),f2(x),f3(x),f4(x),它们在平面直角坐标系中的图象 如图所示,则f1′(x0),f2′(x0),f3′(x0),f4′(x0)的大小关系是( A ) A.f1′(x0)>f2′(x0)>f3′(x0)>f4′(x0) B.f1′(x0)>f3′(x0)>f2′(x0)>f4′(x0) C.f4′(x0)>f1′(x0)>f3′(x0)>f2′(x0) D.f1′(x0)>f3′(x0)>f4′(x0)>f2′(x0)

导数的概念与几何意义课件ppt

导数的概念与几何意义课件ppt

1.有关导数的定义较少 考查; 2.导数的几何意义考查 较多,有时以客观题 形式出现,有时在解 题的某一问中出现。
利用导数几何意义、求参
数)
1.导数的概念
函数y=f(x)在x=x0处的导数,称函数y=f(x)在x=x0处的瞬时变化率
lim
Δx→0
ΔΔyx=_Δl_ixm→_0__f_x_0_+__ΔΔ_xx_-__f__x0__为函数 y=f(x)在 x=x0 处的导数,记作
(6)直线y=kx与曲线相切,求k值。
求参数问题
求切点问题
变式:直线y=kx与曲线y=lnx相切,求k值。
命题角度一 求切线方程
1.(2015·高考新课标卷Ⅰ)已知函数 f(x)=ax3+x+1 的图象在 点(1,f(1))处的切线过点(2,7),则 a=________. 2. 已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y =f(x)相切,则直线 l 的方程为( ) A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0
1.导数定义:
f
x0
lim y x0 x
lim
x0
f
(x0
x) x
f
( x0 )
练习1
若 f x0 -3 则 lim h0
f (x0 h) f (x0 3h) (
h
C)
A. -10 B -11 C -12 D -16
2.导数的几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是 曲线y=f(x)在点P(x0,y0)处的 __切__线__的_斜__率_____。 相应地,切线方程为___y_-_y_0_=__f′_(x_0_)·_(_x-__x_0_) ____。

高等数学导数的概念教学ppt课件.ppt

高等数学导数的概念教学ppt课件.ppt

h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )

lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,

1.1.3导数的几何意义课件共35张PPT

1.1.3导数的几何意义课件共35张PPT

(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.

5.1.2导数的概念及其几何意义第一课时课件(人教版)

5.1.2导数的概念及其几何意义第一课时课件(人教版)

函数值 y:

平均变化率:

=
( +△)−( )
.

注 : x是一个整体符号, 而不是与x相乘.
∆y
∆x
追问 3:函数 y f x 在 x x0 处的瞬时变化率如何表示?
∆x→0时,看平均变化率


=
( +△)−()
的变化情况.

y
探究:当 x 无限趋近于 0 时,平均变化率
率上升.
结合图象和导数的意义,函数先降落且降落趋势逐渐平缓,表明温度在逐渐降落,且降落速
率逐渐减小,直至到图象最低点所对应的时刻,它温度在该时刻的瞬时变化率为0;此后每一时
刻温度的瞬时变化率都为正,且每一时刻的瞬时变化率都在增大.
理解导数(瞬时变化率)的意义
例3.一 辆汽车在公路上沿直线变速行驶,假设t s时汽车的速度(单位: m/s) 为
在第6 s附近,汽车速度大约以6 m/s的速率减少.
v'(t0) (t0≥0)反应了汽车
速度在时刻t0附近的变
化情况
课堂小结
1.什么是导数?导数是如何描述事物的运动变化情况的?
2.计算导数的步骤是什么?
3.本节课蕴含了什么思想方法?
通过一种现象(从“平均变化率”到“瞬时变化率”

,利用一种运算(极限)
v(t)=﹣t²+6t+60,求汽车在第2 s与第6 s时的瞬时加速度,并说明它们的意义.
2
2
v(t0 t ) v(t0 )

(
t


t
)

6
(
t


t
)

导数的概念及几何意义 PPT课件

导数的概念及几何意义 PPT课件
思考?
观察函数y=f(x)的图象,平均变化率 y f (x0 x) f (x0 ) 表示什么?
x
x
瞬时变化率
f '(x0)xlim0 yxxlim0
f (x0
x) f (x0) x
表示什么?
我们容易发现,平均变化率
y f (x0 x) f (x0)
x
x
表示割线P0P的斜率
如图,在曲线y=f(x)任取一点P(x,f(x)),如果当点P(x,f(x))沿着曲线y=f(x)无限趋近于点P0(x0,f(x0))时, 割线P0P无限趋近于一个确定的位置,这个确定位置的直线P0T称为曲线y=f(x)在点P0处的 。
数学上常用简单的对象刻画复杂的 对象。例如,用有理数3.1416近似 代替无理数π,这里,我们用曲线上 某点处的切线近似代替这一点附近 的曲线,这是微积分中重要的思想 方法——以直代曲。
例1.如图,是高台跳水运动中运动员的重心相对于水面的高度随时间变化的函数 h ( t )=一 4.9t2十4.8t十11的图象。根据图象,请描述、比较曲线 h(t )在t=t0 ,t1,t2,附近的变化情况.
解析:我们用曲线h(t)在t=t0,t1,t2处的切 线斜率,刻画曲线h(t)在上述三个小刻 附近的变化情况。 (1)当t=t0时,曲线h(x)在t=t0处的切线 l0平行于t轴,h’(t0)=0.这时,在t=t0附近 曲线比较平坦,几乎没有升降。 (2)当t=t1时,曲线h(x)在t=t1处的切线 l0平行于t轴,h’(t0)<0.这时,在t=t1附近 曲线下降,即函数h(t)在t=t1附近单调递 减。 (3)当t=t2时,曲线h(x)在t=t2处的切线 l0平行于t轴,h’(t0)<0.这时,在t=t2附近 曲线下降,即函数h(t)在t=t2附近单调递 减。 可以看出,直线l1的倾斜程度小于直线l2 的倾斜程度,这说明曲线h(t)在t=t1附近 比在t=t2附近下降得缓慢。

5.1导数的概念及其几何意义课件(人教版)

5.1导数的概念及其几何意义课件(人教版)

x
x
第二步,求极限 lim y, x0 x
若 lim 存y 在,则 x0 x
f
(
x0
)
lim
x0
y x
.
导数的概念
例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原 油进行冷却和加热. 已知在第 x h时,原油的温度(单位:℃)为 y f (x) x2 7x 15 (0 ≤ x ≤8). 计算第2 h与第6 h时,原油温度的瞬时变化率,并说明它 们的意义. 追问1 这个实际问题与导数有什么关系? 答案 导数是瞬时变化率的数学表达.
导数的概念
例1 设 f (x) 1,求 f (1). x
分析:
因为
f
(x0 )
lim
x0
y x
lim
x0
f
( x0
x) x
f
(x0 ) ,
所以 f (1) lim y lim f (1 x) f (1) .
x x0
x0
x
为了便于计算,我们可以先求出 y ,再对它取极限. x
导数的概念
t 0
t
抛物线的切线斜率
f (x) x2
割线斜率 ——平均变化率
k f (1 x) f (1) x 2 x
切线斜率 ——瞬时变化率
lim f (1 x) f (1) 2
x0
x
答案 都采用了由“平均变化率”逼近“瞬时变化率”的思想方法.
导数的概念
问题2 一般地,对于函数 y=f (x),你能用“平均变化率”逼近 “瞬时变化率”的思想方法研究其在某点 (如 x = x0)处 的瞬时变化率吗?
所以 v(2) lim y lim(t 2) 2.

课件3:5.1.2 导数的概念及其几何意义

课件3:5.1.2 导数的概念及其几何意义

2.导数的几何意义
函数 y=f(x)在 x=x0 处的导数 f′(x0)就是切线 P0T 的斜率 k0, lim fx0+Δx-fx0
即 k0=__Δ_x_→_0______Δ_x________=f′(x0).
知识点二 导函数的概念
1.定义:当 x 变化时,y= f′(x) 就是 x 的函数,我们
[规律方法] 求切点坐标可以按以下步骤进行 (1)设出切点坐标; (2)利用导数或斜率公式求出斜率; (3)利用斜率关系列方程,求出切点的横坐标; (4)把横坐标代入曲线或切线方程,求出切点纵坐标.
[跟踪训练] 直线 l:y=x+a(a≠0)和曲线 C:y=x3-x2+1 相切,则 a 的值为___________,切点坐标为____________. 解析:设直线 l 与曲线 C 的切点为(x0,y0), 因为 y′=Δlxi→m0x+Δx3-x+ΔxΔ2x+1-x3-x2+1=3x2-2x, 则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13, 当 x0=1 时,y0=x30-x02+1=1, 又(x0,y0)在直线 y=x+a 上,
答案:B
4.已知函数 y=f(x)的图象在点 M(1,f(1))处的切线方程是 y=12x+2, 则 f(1)+f′(1)=________. 解析:由导数的几何意义得 f′(1)=12,由点 M 在切线上得 f(1)=12×1+2=52,所以 f(1)+f′(1)=3. 答案:3
5.曲线 y=x2-3x 的一条切线的斜率为 1,则切点坐标为________. 解析:设切点坐标为(x0,y0), y′=Δlxi→m0x0+Δx2-3xΔ0+x Δx-x20+3x0 =Δlxi→m02x0Δx-3ΔΔxx+Δx2=2x0-3=1,故 x0=2, y0=x20-3x0=4-6=-2,故切点坐标为(2,-2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

孔府
亚圣孟子
战国时期伟大的思想家, 名轲,邹(今山东邹县) 人。他幼年丧父,家庭贫 困,在母亲的教导下勤奋 学习。青年时以士的身份 游说诸侯,推行自己的政 治主张,后来退居讲学。 孟子继承和发展了孔子的 思想,提出一套完整的思 想体系,对后世产生了极 大的影响,被尊奉为“亚 圣”。
孔子和孟 子作为凡 人的一面
综合性学习 我所了解的孔子和孟子
圣人孔子
▪ 孔子,名丘,字仲尼, 春秋时期鲁国人。他 的祖先是宋国贵族, 大约在孔子前几世没 落了,失掉了贵族的 地位,《史记》称 “孔子贫且贱”,孔 子自己也说:“吾少 也贱,故能多鄙事。” (《论语·子罕》)
孔子十五岁立志学习,先后 做过吹鼓手、仓库和牧场管 理员、小司空(掌管工程)及 司寇(掌管刑法),曾拜老子 为师;五十多岁后周游列国, 宣传自己的政治主张。晚年 收徒讲学,并著书立说,编 修整理了《诗》、《书》、 《礼》、《乐》、《周易》、 《春秋》等书,直至七十三 岁逝世。
息。
孔子和孟子 作为圣人体现 出的思想光辉
寓学于乐
让我们用游戏的方式体会他们的不平凡
看故事 猜成语 明事理 学做人
孔子在齐国,有机会欣赏到 他认为最美妙的韶乐. 谓其 “尽善矣,又尽美也!”(极动 听优美)而后大受感动,一 连好多天老是想着它,吃肉 也没有味道了.
尽善尽美:
形容做事情力求完美, 毫无缺陷
▪ 孔子为人,有时很豪放,他说他自己是“发愤忘食,乐以忘 忧,不知老之将至”的人;可是有时又很拘谨,循规蹈矩不 敢超越古代的礼仪一步,他走进朝廷的门,那种谨慎的样子,
好像自己没有容身之地一般。
▪ 孔子不懂农业生产, 也鄙视劳动。
▪ 孔子也有被难倒的 时候,并非“万事 通”。
从上面这些事实看来,孔子并不是一个道貌岸然 的超人,更不是先天的圣人,而是一个有感情、有 性格、有抱负、又有世俗心理的现实的人。
二、教法分析
类比联想、研究探讨、直观想象、启发诱导、建 立模型、讲练结合、学会应用、发展潜能、形成能 力、提高素质。
由于本节课安排在高中数学学习的后期,正是 学生提高逻辑思维能力的最佳时机,因此,在教学 中,一方面通过电教手段,把概念,方法或知识关 键点制成了投影片,既节省时间,又增加其直观性 和趣味性,起到事半功倍的作用;另一方面,在教 学中,通过具体问题的分析与处理,将导数的概念 这一知识点形成的全过程逐步展现给学生,让学生 体会知识发生、发展的过程及其规律,从而提高学 生分析和解决实际问题的能力。
对于高三学生来说已具备一定的接受新事 物独立思考并解决问题的能力,因此本节的重 点是使学生掌握根据导数的定义求简单函数的 导数的方法,主要通过具体实例的讲解结合学 生的练习总结一般方法突破重点。难点是对导 数概念的理解,导数概念比较抽象,其定义学 生也不太熟习,教学中通过瞬时速度,光滑曲 线的切线斜率等实际背景,从物理和几何两方 面入手,引导学生逐步理解,同时根据定义求 导数练习帮助学生进一步理解导数的概念。
三、学法指导
教学矛盾的主要方面是学生的学。学是中 心,会学是目的。因此,在教学中要不断指导 学生学会学习。根据本节内容的特点,这节课 主要是教给学生“动脑想;动手练,严格证, 多训练,勤钻研。”的研讨式学习方法。这样 做,增加了学生主动参与的机会,增强了参与 意识,教给学生获取知识的途径;思考问题的 方法。使学生真正成为教学的主体。也只有这 样做,才能使学生“学”有新“思”,“思” 有所“得”,“练”有所“获”。学生才会逐 步感到数学美,会产生一种成功感,从而提高 学生学习数学的兴趣;也只有这样做,才能适 应素质教育下培养“创新型”人才的需要。
讲例题4进一步体会导数的概念及简单应用
补充练习:1、抛物线y=x2在哪一点处的切线 平行于直线y=4x-5?并求该点处的切线方程。
(通过该题练习使学生进一步掌握导数的几何 意义与导数的应用,以及数学的转化与化归 思想)
五、小结:导数的定义;导数的几何意义
六、作业:P114习题 3.1 3、4、5、6、9
孟子也非天生的圣人,他也 有过性格不稳定的幼年,能成为 “亚圣”,多得力于他的母亲。 孟子的母亲是位伟大的女性,她 含辛茹苦坚守志节,抚育儿子, 从慎始、励志、敦品、勉学以至 于约礼、成金,数十年如一日, 毫不放松,既成就了孟子,更为 后世的母亲留下一套完整的教子
方案。
孟母三迁
孟子很小的时候,孟母就十分注意对他的 培养,只要周围的环境对他的成长有不好的影响, 孟母就会立即搬家。起初,孟母带着年幼的孟子 住在一所公墓的附近,孟子看见人家哭哭啼啼埋 葬死人,他也学着玩,孟母心想:“我的孩子住 在这里不合适。”就立刻搬家。他们母子搬到了 集市的附近,孟子看见商人自吹自夸地卖东西赚 钱,他又学着玩,孟母又在心里想:“我的孩子 住在这里也不合适。”就连忙又搬家。最后,孟 母和孟子搬到了学堂的附近,这时,孟子开始学 习礼节并要求上学,孟母这才在心里高兴地说:
孔子和孟子的生平
孔子和孟子是春秋战国时期著名的 思想家、教育家,在两千多年的封建社 会里,被尊为“圣人”和“亚圣”。他 们的思想观念,对中国社会产生过深远 的影响,甚至远及日本、朝鲜、欧洲等 地,在世界文化史上占有相当重要的地
位。 让我们走近这两位先哲,让他们思 想的光环也闪耀在我们这一代人的心中!
“这里才是适合我的孩子居住的地方!”
断织督学
做事必须要有恒心。孟子具有天生的灵性,但也有 一般幼童的贪玩。一天,孟子竟逃学到外面玩了半天。
儿子回家时,孟母不声不响拿起剪刀将织成的锦绢
拦腰剪成两段,就在孟子惊愕不解时,孟母说道: “你的废学,就像我剪断织绢!一个君子学以成名,
你今天不读书,今后永远就只做一些萦萦苟苟的小 事。”孟母用“断织”来警喻“辍学”,指出做事半 途而废,后果是十分严重的。这一幕在孟子小小的心 灵中,留下了鲜明印象,从此孜孜汲汲,日夜勤学不
x
如果当x0 时,x 有极限,我们就说函数f(x)在点x0 处可导, 并把这个极限叫做f(x)在x0处的导数(或变化率)
记作 f (x0 )或y |xx0
即 f ( x0 )
lim
x 0
f (x0
x) x
f (x0 )
说 明:从以下方面透析概念
1.函数应在点 x0 的附近有定义,否则导数不存在。
例2:已知函数 y = x
(1)求 yˊ
(2)求函数 y = x 在 x = 2 处的导数。
解:函数改变量: y= x+x x
算比值, y x x x
1
x
x
x x x
取极限,
lim y lim
x x0
x0
所以 y 1
2x
学生练习
1
1
x x x 2 x
y' |x2 f '(2)
y 的极限
x
2.引入新课 —— 导数的概念
定义:设函数y=f(x)在点x0处及其附近有定义,
当自变量x在点x0处有改变量x时,函数y相应的
增量
比值 y x
y= f(x0+
就叫做y f
x) - f(x0)
( x )在x0到x0
x之






率,即
y f (x0 x) f (x0 )
x y
切线方程是 y y0 f (x0 )(x x0 )
yy 1 x3
例3 如图,已知曲线 y (1)点P处的切线的斜率.
1 3
x3上一点P(2,
8),求 3
4 3 2
3
P
(2)点P处的切线的方程. (引导学生完成,并总结一
1
-2 -1 O -1
x 12
般方法)
-2
学生练习演排:P114 :3、4
2、教学内容
本节主要学习导数的概念及其几何意 义,并利用导数的定义求函数的导数及 求切线的斜率。通过回顾曲线的切线及 瞬时速度的概念介绍函数增量的概念类 比引入导数的概念,并得出按定义求导 数的一般步骤。类比曲线切线的概念给 出导数的几何意义,并得出求曲线切线 的一般方法。
3、教学目的
根据大纲考纲的要求,以及本节教材的特 点和高三学生的认知特点,我把本节课的教 学目的确定为:
▪ 孔子并不像后来我国封建社会的统治者所吹捧、所神化的那 样,是什么不食人间烟火的“文宣王”“大成至圣先师”等 等,他也是一个有血有肉的现实社会中的人。
▪ 他赞美颜回安于贫困,又汲汲于追求富贵,甚至奔走于权贵 之门,国君召唤他,他等不及驾好车马,就赶快跑了去。
▪ 孔子对他的学生很严厉,批评起来不讲情面,他批评“宰予 昼寝”说:“朽木不可雕也,粪土之墙不可圬也”(《论 语·公冶长》);而有时对他的学生也很亲切
2 4
P114: 1 、2 (以学生演排教师评讲的形式
使学生基本掌握用定义求导数的一 般方法)
4. 导数的几何意义
函数 y=f(x) 在点x0处的导数的几何意义, 就是曲线 y=f(x) 在点P(x0 ,f(x0)) 处的切线的斜 率。
曲线 y=f(x)在点P(x0 ,f(x0))处的切线斜率是f ′(x0)
(1)、使学生理解导数的概念及几何意义;
(2)、使学生掌握用定义求函数的导数及求 曲线斜率的一般方法;
(3)、通过导数的教学进行客观事物的相互 制约、相互转化、对立统一的辨证关系等观 点的教育,培养辨证唯物主义观点,提高逻 辑思维能力和辨证思维能力。进一步提高学 生学习数学的积极性。
4、教学重点、难点
在点 x0 处不可导。
7、求函数y=f(x) 在点 x0处导数的方法:
(1)求函数改变量 △y = f(x0 + △x)-f(x0)
(2)求平均变化率
y f (x0 x) f (x0 )
x
x
(3)求极限, lim y lim f (x0 x) f (x0 )
相关文档
最新文档