六年级下册《鸽巢问题》教案上课讲义
人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
5.1鸽巢问题(教案)人教版六年级下册数学

5.1 鸽巢问题(教案)人教版六年级下册数学我的教案:5.1 鸽巢问题一、教学内容今天我们要学习的章节是人教版六年级下册数学的第五章第一节——鸽巢问题。
这部分内容主要介绍了鸽巢问题的基本概念、原理和解决方法。
通过本节课的学习,学生将能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能应用于实际问题中。
二、教学目标1. 理解鸽巢问题的定义和原理;2. 掌握解决鸽巢问题的方法;3. 能够将鸽巢问题应用于实际问题中,提高解决问题的能力。
三、教学难点与重点1. 鸽巢问题的理解;2. 解决鸽巢问题的方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、文具。
五、教学过程1. 实践情景引入:讲述一个关于鸽巢问题的实际例子,引发学生对鸽巢问题的兴趣。
2. 理论知识讲解:通过PPT展示,讲解鸽巢问题的定义、原理和解决方法。
3. 例题讲解:给出一个典型的鸽巢问题,引导学生思考并解决问题。
4. 随堂练习:让学生独立解决一些鸽巢问题,巩固所学知识。
5. 板书设计:将鸽巢问题的解决方法进行板书,方便学生理解和记忆。
6. 作业设计:布置一些有关鸽巢问题的练习题,让学生课后巩固。
六、板书设计鸽巢问题解决方法:1. 确定鸽巢数量和鸽子数量;2. 利用排除法或枚举法,找到符合条件的解答。
七、作业设计1. 题目:小明有5个鸽巢,已知每个鸽巢至少要放一只鸽子,现有6只鸽子,请问如何放置这些鸽子?答案:可以将6只鸽子分别放入5个鸽巢中,保证每个鸽巢至少有一只鸽子。
2. 题目:有一个长10cm,宽8cm的长方形盒子,每只鸽子占一个格子,请问最多能放多少只鸽子?答案:长方形盒子可以分成108=80个格子,每只鸽子占一个格子,所以最多能放80只鸽子。
八、课后反思及拓展延伸通过本节课的学习,学生对鸽巢问题有了基本的认识和解决方法。
在课后,学生可以通过查阅资料,了解更多的鸽巢问题及其解决方法,提高自己的解决问题的能力。
六年级下册数学教案《第1课时鸽巢问题 》人教版

六年级下册数学教案《第1课时鸽巢问题》人教版一、教学目标1.知识与技能:–了解鸽巢问题的基本概念;–能够运用鸽巢原理解决问题。
2.过程与方法:–通过讨论与实例分析引导学生主动参与课堂;–培养学生的逻辑思维和问题解决能力。
3.情感态度价值观:–培养学生的合作意识,鼓励学生勇于尝试、探索未知领域;–正确认识数学知识与实际生活的联系,激发学生学习数学的兴趣。
二、教学重点与难点:•重点:掌握鸽巢问题的基本原理,并能运用到实际问题中。
•难点:发散式思维在解决鸽巢问题时的应用。
三、教学准备1.教材:人教版六年级数学下册教材。
2.教具、媒体:黑板、彩色粉笔、教学PPT。
3.课前准备:准备好教学内容,查看教材相关知识点,准备相关实例分析。
四、教学步骤第一步:导入(5分钟)•通过一个简单的生活场景引入鸽巢问题,激发学生的学习兴趣,引发思考。
第二步:讲授基本概念(10分钟)•概念解释:介绍鸽巢问题的基本概念,让学生对其有一个直观、清晰的认识。
第三步:示例分析(15分钟)•通过实例分析,让学生参与其中,讨论解决方法,引导学生理解鸽巢问题的解题思路。
第四步:概念强化(10分钟)•整理并归纳鸽巢问题解决的基本方法和技巧,强化学生对知识点的理解。
第五步:练习与讨论(15分钟)•分发练习题,让学生独立或合作完成,引导他们主动分享解题思路,进行讨论。
第六步:课堂总结(5分钟)•总结本节课的重点内容,并展示本课知识点与实际应用的联系,引导学生将所学内容与实际生活结合。
五、课后作业•完成教师留的相关练习题;•收集身边的实例来解决一个鸽巢问题。
六、教学反思在教学过程中,需要及时调整教学方法,引导学生主动参与课堂,激发他们的学习兴趣和求知欲,使学生在轻松氛围中掌握知识点。
以上就是本节课鸽巢问题的教学设计,希會一切顺利!。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
《鸽巢问题(第1课时)》(教案)六年级下册数学人教版

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版《鸽巢问题(第1课时)》教案一、教学内容1. 理解鸽巢问题的概念,掌握其基本性质。
2. 学会运用鸽巢原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学目标1. 了解并掌握鸽巢问题的基本概念和性质。
2. 能够运用鸽巢原理解决实际问题。
3. 提高自己的逻辑思维能力和解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。
难点在于如何引导学生理解并运用鸽巢原理。
四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、PPT、鸽巢模型等。
五、教学过程1. 实践情景引入:请大家想象一下,如果我们有一个鸽巢,里面有若干个鸽子,我们要如何确定鸽子的数量呢?2. 讲解鸽巢问题的概念:通过引入的实践情景,我会向大家讲解鸽巢问题的基本概念和性质。
3. 例题讲解:我会给大家讲解一些典型的鸽巢问题例题,让大家通过例题理解并掌握鸽巢原理。
4. 随堂练习:在讲解完例题后,我会给大家一些随堂练习题,让大家运用所学知识解决实际问题。
5. 鸽巢原理的应用:通过一些实际问题,让大家学会运用鸽巢原理解决问题。
六、板书设计板书设计如下:鸽巢问题1. 概念与性质2. 鸽巢原理3. 应用与实例七、作业设计作业题目:1. 请用一句话概括鸽巢问题的定义。
2. 请用一句话概括鸽巢原理。
3. 请举例说明如何运用鸽巢原理解决实际问题。
答案:1. 鸽巢问题是指在一定条件下,确定鸽子数量的问题。
3. 举例:假设一个班级有30个学生,如果有31个学生,那么至少有两个学生坐在同一个座位上。
八、课后反思及拓展延伸通过本节课的学习,我希望大家能够理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。
在课后,大家可以尝试解决一些更复杂的问题,也可以和同学互相交流心得和经验,共同提高。
《鸽巢问题-》教学设计教案

《鸽巢问题》教学设计教案第一章:教学目标1.1 知识与技能(1)让学生理解鸽巢问题的概念,了解鸽巢问题与鸽笼原理的关系。
(2)培养学生运用数学知识解决实际问题的能力。
1.2 过程与方法(1)通过生活中的实例,引导学生发现并提出鸽巢问题。
(2)利用图形、表格等直观教具,帮助学生理解鸽巢问题的解决方法。
1.3 情感态度与价值观(1)培养学生积极探索、合作交流的学习态度。
(2)培养学生面对实际问题,勇于挑战、解决问题的信心。
第二章:教学内容2.1 教材分析本节课以鸽巢问题为载体,让学生在解决实际问题的过程中,体会和理解鸽巢问题的本质,掌握解决鸽巢问题的方法。
2.2 学情分析学生在学习过程中已具备了一定的数学基础知识,具备一定的逻辑思维能力,但解决实际问题的能力有待提高。
2.3 教学目标让学生掌握鸽巢问题的解题方法,能够运用鸽巢问题解决实际问题。
第三章:教学重点与难点3.1 教学重点(1)理解鸽巢问题的概念。
(2)掌握解决鸽巢问题的方法。
3.2 教学难点如何引导学生发现生活中的鸽巢问题,并运用数学知识解决。
第四章:教学过程4.1 导入新课通过一个生活中的实例,引导学生发现并提出鸽巢问题,激发学生的学习兴趣。
4.2 探究新知(2)利用图形、表格等直观教具,帮助学生理解鸽巢问题的解决方法。
4.3 巩固练习设计一些练习题,让学生运用新学的知识解决实际问题,巩固所学内容。
4.4 课堂小结第五章:课后作业设计一些课后作业,让学生进一步巩固所学知识,提高解决实际问题的能力。
教学反思:在课后对教学效果进行反思,看是否达到了预期的教学目标,学生是否掌握了鸽巢问题的解题方法,为下一步的教学做好准备。
第六章:教学评价6.1 评价目标(1)了解学生对鸽巢问题知识的掌握程度。
(2)考察学生运用鸽巢问题解决实际问题的能力。
6.2 评价方法(1)课堂问答:通过提问,了解学生对鸽巢问题的理解程度。
(2)课后作业:通过学生的作业,检查学生对鸽巢问题的掌握情况。
《鸽巢问题》教案——六年级数学下学期

《鸽巢问题》教案——六年级数学下学期一. 教材分析《鸽巢问题》是六年级数学下学期的一堂课,主要让学生了解和掌握鸽巢原理。
教材通过生活中的实例,引导学生思考和探究,从而理解并掌握鸽巢原理的应用。
本节课的内容对于学生来说较为抽象,需要通过实例和实际操作来理解和掌握。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有所了解。
但是,对于鸽巢问题这样的抽象问题,还需要通过具体的实例和操作来理解和掌握。
学生对于生活中的实际问题比较感兴趣,可以通过实例来吸引他们的注意力,激发他们的学习兴趣。
三. 教学目标1.让学生了解并理解鸽巢问题的概念和原理。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作交流的能力,提高他们的逻辑思维能力。
四. 教学重难点1.重点:理解并掌握鸽巢问题的原理和应用。
2.难点:如何将生活中的实际问题转化为数学问题,并运用鸽巢原理进行解决。
五. 教学方法1.实例教学:通过生活中的实例,引导学生理解和掌握鸽巢原理。
2.小组合作:让学生在小组内进行讨论和交流,共同解决问题。
3.问题驱动:教师提出问题,引导学生进行思考和探究。
六. 教学准备1.准备相关的实例和问题,用于引导学生思考和探究。
2.准备鸽巢问题的相关资料,用于学生自主学习和拓展。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)教师通过一个生活中的实例,如猜拳游戏,引出鸽巢问题。
让学生思考和讨论,如何在一定条件下,确定胜负。
引导学生认识到问题的复杂性,从而引入鸽巢原理。
2.呈现(10分钟)教师通过PPT或黑板,呈现鸽巢问题的定义和原理。
让学生理解和掌握鸽巢问题的基本概念和运用方法。
3.操练(10分钟)教师提出一些实际问题,让学生运用鸽巢原理进行解决。
学生在小组内进行讨论和交流,共同解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师通过一些练习题,让学生巩固所学知识。
鸽巢问题(教案)-六年级下册数学人教版

鸽巢问题(教案)六年级下册数学人教版教学内容:本节课将介绍鸽巢问题,这是一个典型的数学问题,旨在帮助学生理解抽屉原理。
抽屉原理是组合数学中的一个重要原理,也是解决许多实际问题的有力工具。
具体来说,我们将探讨如何将一定数量的鸽子放入有限数量的鸽巢中,并探讨鸽巢的数量与鸽子的数量之间的关系。
教学目标:1. 理解并掌握抽屉原理的基本概念和应用。
2. 能够运用抽屉原理解决实际问题,如鸽巢问题。
3. 培养学生的逻辑思维能力和抽象思维能力。
教学难点:1. 抽屉原理的理解和运用。
2. 鸽巢问题的抽象模型建立和解决。
教具学具准备:1. 教师准备一些图片或实物,用于展示鸽巢问题和抽屉原理。
2. 学生准备纸和笔,用于记录和计算。
教学过程:1. 引入:教师通过展示一些图片或实物,引入鸽巢问题的概念,激发学生的兴趣。
2. 讲解:教师讲解抽屉原理的基本概念,并通过一些简单的例子进行解释。
3. 演示:教师通过演示一些具体的鸽巢问题,展示如何运用抽屉原理进行解决。
4. 练习:学生根据教师提供的练习题,进行独立思考和解答。
5. 讨论与分享:学生分组讨论,分享自己的解题思路和答案,互相学习和交流。
板书设计:1. 鸽巢问题2. 抽屉原理的基本概念3. 鸽巢问题的解决方法4. 练习题和答案作业设计:1. 学生完成一些类似的鸽巢问题,巩固和应用所学的知识。
2. 学生思考并解答一些扩展性的问题,提高思维的深度和广度。
课后反思:本节课通过引入鸽巢问题,帮助学生理解和掌握抽屉原理的基本概念和应用。
通过教师的讲解和演示,学生能够建立抽象的模型,并运用抽屉原理进行解决。
在练习和讨论环节,学生能够积极参与,互相学习和交流,提高了他们的逻辑思维能力和抽象思维能力。
总体来说,本节课达到了预期的教学目标,但也存在一些需要改进的地方,如加强对学生的个别辅导和指导,提高他们的解题能力和自信心。
重点关注的细节:教学难点教学难点是教学中学生难以理解或掌握的知识点或技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册《鸽巢问
题》教案
“鸽巢问题”教案
教学内容:教材第68-70页例1、例2,及“做一做”。
学习目标:
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
学习重点:引导学生把具体问题转化成“鸽巢问题”。
学习难点:找出“鸽巢问题”解决的窍门进行反复推理。
教具准备:多媒体课件。
学习过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。
其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。
-----出示课题《鸽巢问题》
“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
下面我们就来研究这一原理。
二、合作交流,探究新知
1、教学例1(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有
1个笔筒里至少有2支铅笔。
为什么呢?
问题:“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔
筒里的铅笔数大于或等于2支。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
(3)探究证明。
个人调整意见
方法一:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数,有4中情况,每种分法中最多的数最小是2,也就是说每一种情况分得的3个数中,至少有1个数大于或等于2的数。
方法二:用“假设法”证明。
4÷3=1(支)......1(支),剩下1支,放进其中1个笔筒中,使其中1个笔筒都变成2支,因此把4支笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少放进2支笔。
通过以上几种方法证明都可以发现:把4只铅笔放进3 个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3
个笼子,总有1个笼子里至少有2只鸽子。
用“抽屉问题”的语言描述就是把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。
(5)归纳总结:
放的铅笔数比笔筒的数量多1,就总有1个笔筒里至少放进2支铅笔。
抽屉原理一:只要放的物体比抽屉的数量多1,总有一个抽屉里至少放入2个物体。
同学们现在可以理解为什么“抢椅子”游戏中总有一把椅子上至少有2人了吧?
考一考:5个人坐4把椅子,总有一把椅子上至少坐2人。
为什么?
5÷4=1(人)……1(人)
1+1=2(人)
2、教学例2(课件出示例题2情境图)
思考问题:
(一)把7本书放进3个抽屉,不管怎么放,有
1个抽屉里至少有3本书。
为什么呢?
(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。
(1)探究证明。
方法一:用数的分解法证明。
把7分解成3个数的和。
把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
抽屉原理二:如果物体数除以抽屉数有余数,用所得的商加1,就会发现:“总有一个抽屉里至少有商加1个物体”。
三、巩固新知,拓展应用
1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?
2、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
为什么?
3、完成教材第71页练习十三的1-2题。
(学生独立思考解答问题,集体交流、纠正。
)
四、课堂总结
通过今天的学习你有什么收获?
五、作业布置
课本第71页练习十三,第2题、第3题。
板书设计:
鸽巢问题
方法一:用“分解法”证明。
(把4分解成3个数)
方法二:用“假设法”证明。
4÷3=1(支)......1(支)
1+1=2(支)
教学反思:
我的印象里《抽屉原理》是非常难懂的。
为了上好这一内容,我搜集学习了很多资料,抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
“抢椅子”的游戏为后面用假设法证明埋下了伏笔。
用笔和笔筒进行研究,学生操作起来方便,演示起来直观。
再有就是受前面“抢椅子”游戏的影响,大部分学生用假设法验证;也有部分学生尝试用分解法一种情况一种情况的分。
由分解法和假设法,引导学生理解“总有一个”和“至少”的含义。
研究稍复杂问题时,对学生提出新的要求:不用分解法,想一种更简便的方法来验证。
引导学生
结合“抢椅子”的游戏,用假设法来验证。
假设法的实质是用极端法做最坏的打算,也就是考虑最不利的情况。
在理解了假设法验证后,后面的推理和总结规律也就相对来说容易了些。
练习设计由直接运用原理的鸽巢问题到解决实际生活中的生日问题,让学生逐步体会到“抽屉原理”的应用价值,进而激发学生的研究兴趣。
但是对于学生的情况考虑较少,当学生发言较少没能完整说出原理时,我没能及时进行调整,由此也暴露出我对课堂的调控,对学生积极性的调动的能力有待进一步的提高。