几种高等数学中的构造函数法1汇总

合集下载

构造函数的八种方法

构造函数的八种方法

构造函数的八种方法
1、响应式构造函数:响应式构造函数是指针对某种特定的对象实例而定义的构造函数,它能够根据参数的不同,生成不同的对象实例。

2、工厂模式构造函数:工厂模式构造函数是一种构造函数的实现方式,它使用一种工厂函数来简化创建对象的操作,使代码更加简洁,更容易维护。

3、函数构造函数:函数构造函数是指使用函数来构造对象实例的方式,它能够通过传入参数,创建出特定类型的对象实例。

4、构建对象构造函数:构建对象构造函数是指使用一个对象来构造另一个对象的方式,它可以动态地构造一个指定类型的实例,也可以复用已有的对象实例。

5、构造函数派生:构造函数派生是指从一个基础类型派生出另一个更加具体的子类型的方式,它可以使用基类的构造函数在子类中定义对象实例。

6、运行时参数构造函数:运行时参数构造函数是指在运行时传入参数,动态构造出一个指定类型的实例。

7、仿函数构造函数:仿函数构造函数是指使用仿函数的方式来构造对象实例,它可以更加简洁地实现一些比较复杂的对象构造操作。

8、多态构造函数:多态构造函数是指通过指定一个类型参数,在运行时执行特定的构造函数,从而实现多种类型的对象的。

高中数学6种构造函数法

高中数学6种构造函数法

高中数学6种构造函数法1、几何体构造法:几何体构造法是高中数学中常见的构造函数,即根据给定的条件,从原点出发,通过叠加若干条定义运算,利用实际工具画出题目要求构造的图形或者要求构造的几何体。

例如:根据给定的定义三角形ABC,在其外接圆上构造一个直角,使得构造出的四边形的一条边和三角形的一条边等长。

2、用线段构造法:用线段构造法是高中数学中常见的构造函数,是根据给定的条件,几何体和直线的位置,及题目要求的其他条件,按照一定的步骤和规律来画出要构造的几何体或其他东西。

例如:依据给定的线段AB,在其上端点A处构造一个半径等于原线段AB一半长度的圆,使得线段AB的端点A和圆的交点坐标相同;并在构造出的圆上构造一个到线段AB 端点B距离等于原线段AB一半长度的直线段。

3、从原点构造法:从原点构造法是高中数学中常见的构造函数,是指从某一原点出发,根据给定的情况,经过若干步的构造,建立若干定义关系,确定一个几何体的形状和大小,并与给定的几何体完全相同或满足给定条件的几何体。

例如:在原点构造一个半径等于原点O到给定点A的距离的圆,从这个圆上构造与 OA 相等的直线段,在这个直线段依次画上给定的点B、C。

4、标准图形构造法:标准图形构造法是在高中数学中学习的构造函数,即根据给定的它定义的图形和要求画出的图形之间的规律,采用实际的工具画出要求的图形。

例如:构造出与正方形相等的长方形(15cm×20cm),方法为:在一根边长15cm的尺子上划分出4等分点,然后再在另一根尺子上划分出5等分点,将它们相互链接,即可构造出长方形。

5、参数方程构造法:参数方程构造法是高中数学中学习的构造函数,即根据给定的参数条件所决定的几何体的特征,可利用参数方程的技巧,根据参数条件用参数方程来求出构造出几何体的函数,并且利用函数求出相应的构造过程,或者利用参数方程既定的几何图形,求出给定点的位置。

例如:求出构造出半径为 2 的半圆的函数,可以用参数方程 x = 2cos t,其中x 为构造出的半圆的横坐标,t 为角度参数。

几种高等数学中的构造函数法1汇总

几种高等数学中的构造函数法1汇总

几种高等数学中的构造函数法1汇总在高等数学中,构造函数法是一种常用的证明方法,它通过构造一个特定的函数来满足一些条件,从而证明定理或问题。

构造函数法在解决一些特定问题时非常有效,并且可以应用于各个数学分支,例如微积分、线性代数等。

以下是几种常见的构造函数法的应用及其原理:1.构造逼近函数法:构造逼近函数法是利用一组函数来逼近所求函数的方法。

它在证明极限存在、连续性、可导性等问题时很常用。

例如,在证明函数的极限存在时,可以通过构造一个逼近函数序列来逼近所求函数的极限。

在证明函数的连续性时,可以构造逼近函数序列使其在一定条件下逐点收敛于所求函数。

在证明函数可导性时,可以通过构造一组逼近函数,利用它们的导数性质来推导出所求函数的导函数。

2.构造反函数法:构造反函数法是通过构造函数的反函数来证明其中一种性质。

例如,在证明奇偶函数特性时,可以构造一个函数的反函数,并根据函数的特性来判断所求函数的奇偶性。

在证明函数的双射性时,可以通过构造函数的反函数来证明。

3.构造矩阵法:构造矩阵法是在线性代数中常用的一种证明方法。

它通过构造一个特定的矩阵,利用矩阵的性质来证明一些结论。

例如,在证明矩阵的逆存在时,可以构造一个矩阵来满足逆矩阵的定义,并证明其逆矩阵存在。

4.构造序列法:构造序列法是利用一组序列来证明一些定理或性质。

例如,在证明函数的一致连续性时,可以构造一组满足一致收敛条件的序列来逼近所求函数,从而证明其一致连续性。

在证明函数的可积性时,可以构造一组逼近函数序列,并利用其可积性质来推导出所求函数的可积性。

5.构造映射法:构造映射法是在集合论和离散数学中常用的一种证明方法。

它通过构造一个特定的映射关系来证明一些性质。

例如,在证明两个集合的等势时,可以构造一个双射映射来证明它们的元素个数相等。

在证明一些图的性质时,可以构造一个映射关系来对应图的元素和其相邻元素之间的关系。

以上是几种常见的构造函数法的应用及原理。

利用求导法则构造函数

利用求导法则构造函数

利用求导法则构造函数求导法则是微积分中非常重要的工具,它可以帮助我们简化对函数的求导过程。

下面我将介绍一些常用的求导法则,并给出一些例子来说明如何利用这些法则来构造函数。

1.常数法则:对于常数c,它的导数等于0。

例如,对于函数f(x)=5x+3,我们可以直接应用常数法则,得到f'(x)=52.幂法则:对于函数f(x)=x^n,其中n是常数,它的导数等于n*x^(n-1)。

例如,对于函数f(x)=x^3,根据幂法则,我们可以得到f'(x)=3*x^23.和差法则:对于函数f(x)=g(x)+h(x),其中g(x)和h(x)是可导的函数,它的导数等于g'(x)+h'(x)。

例如,对于函数f(x)=x^2+3x,我们可以应用和差法则,得到f'(x)=2x+34.积法则:对于函数f(x)=g(x)*h(x),其中g(x)和h(x)是可导的函数,它的导数等于g'(x)*h(x)+g(x)*h'(x)。

例如,对于函数f(x)=x^2*(2x+1),我们可以利用积法则计算导数。

首先计算g'(x)=2x和h'(x)=2,然后带入公式,得到f'(x)=2x*(2x+1)+x^2*2=6x^2+2x。

5.商法则:对于函数f(x)=g(x)/h(x),其中g(x)和h(x)是可导函数,且h(x)不为零,它的导数等于(g'(x)*h(x)-g(x)*h'(x))/h(x)^2例如,对于函数f(x)=(x^2+1)/x,我们可以利用商法则计算导数。

首先计算g'(x)=2x,h'(x)=1,然后带入公式,得到f'(x)=(2x*x-(x^2+1)*1)/x^2=1/x。

6.复合函数法则:对于由两个函数组成的复合函数f(g(x)),它的导数等于g'(x)*f'(g(x))。

例如,对于函数f(x)=(2x)^3,我们可以将它看作f(g(x)),其中g(x)=2x。

高中数学:构造函数方法

高中数学:构造函数方法

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f 或;(2))(-)()()0(0)(-)(x g x f x F x g x f 或;(3)kx x f x F k x f )()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f 或;(2))0)(()(g )()()0(0)()(-)(g )(x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f 或;(4))0(x)()()0(0)(-)(x x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n或;(6))0(x)()()0(0)(n -)(x nxx f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x或;(8))0(e)()()0(0)(-)(xxx f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx或;(10))0(e)()()0(0)(k -)(kxxx f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f 或; (12))0(sin sinx )()()0(0tan )(-)(xx f x F xx f x f 或;(13))0(cos cos )()()0(0)(tanx )(xxx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f 或;(15)()+lna ()0(0)()()xf x f x F x a f x 或;(16)()()lna ()0(0)()xf x f x f x F x a或;考点一。

构造函数的八种方法

构造函数的八种方法

构造函数的八种方法构造函数是一种特殊类型的函数,用于创建和初始化对象。

在C++中,有八种方法可以定义和使用构造函数。

1. 默认构造函数:默认构造函数是在没有任何参数的情况下被调用的构造函数。

如果程序员没有定义自己的构造函数,则会自动创建一个默认构造函数。

默认构造函数的作用是创建一个对象并对其进行初始化。

比如,如果我们定义了一个名为Student的类,并且没有定义任何构造函数,编译器会隐式地创建一个默认构造函数。

cppclass Student {public:默认构造函数Student() {初始化代码}};2. 有参构造函数:有参构造函数是包含一个或多个参数的构造函数。

它用于根据传入的参数创建对象并对其进行初始化。

比如,我们可以定义一个包含name和age参数的有参构造函数来初始化Student对象。

cppclass Student {public:有参构造函数Student(string name, int age) {this->name = name;this->age = age;}};3. 拷贝构造函数:拷贝构造函数是用于创建一个新对象,该对象与已存在的对象具有相同的值。

拷贝构造函数的参数是同类型的对象的引用。

比如,我们可以定义一个拷贝构造函数来实现对象之间的复制。

cppclass Student {public:拷贝构造函数Student(const Student& other) {拷贝已存在对象的属性到新对象this->name = ;this->age = other.age;}};4. 委托构造函数:委托构造函数是一种构造函数,它调用同一个类中的其他构造函数来完成对象的初始化。

比如,我们可以定义一个包含默认参数的委托构造函数来调用另一个有参构造函数。

cppclass Student {public:委托构造函数Student() : Student("Unknown", 0) {委托给有参构造函数}有参构造函数Student(string name, int age) {this->name = name;this->age = age;}};5. 虚拟构造函数:虚拟构造函数是一个虚函数,用于在派生类和基类之间进行多态性的调用。

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。

下面就列举八种常用的构造函数法证明不等式的方法。

1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。

2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。

3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。

4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

以上就是八种常用的构造函数法证明不等式的方法。

在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。

此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号几种高等数学中的构造函数法摘要构造函数法在高等数学中是一种重要的思想方法,它体现了数学发现、类比、化归、猜想、实验和归纳等思想,对于开阔思路,培养分析问题、解决问题和创新的能力是有益的.本文结合实例简单的介绍这一方法及其应用.关键词构造;分析;数形结合法;作差法;观察法中图分类号 O172The constructor of higher mathematicsChengyan Instructor Wang Renhu(N. O. 06, Class 1 of 2009. Specialty of Mathematics and Applied Mathematics, Department ofMathematics, Hexi University, Zhangye, Gansu, 734000, China)Abstract The constructor method in higher mathematics is an important way of thinking,Study found, analogy, and guess, experiment and induction, etc,To widen, training analysis problem, problem-solving ability and the innovation is beneficial.This paper briefly introduced the method and its application.Key words tectonic;analysis;Several form combination;For poor method;observation 1 分析法分析法即从结论出发,从后向前一步一步的进行分析,通过对条件和结论的分析,构造出辅助函数,架起一座连接条件和结论的桥梁,最后获得证明.例1.1[1] 拉格朗日中值定理如果函数f(x)在闭区间上连续,在开区间内可导,那么在内至少有一点使等式成立.分析由于罗尔定理是这一定理的特例,于是定理的证明归结为利用罗尔定理.这里关键是要引进一个满足罗尔定理条件的新的函数F(x).欲证需证f(ξ)-'f(b)-f(a)b-af(b)-f(a)⎡=0,而等式左边可转化为⎢f(x)-b-a⎣⋅x⎤,于是,可取函数x⎥⎦x=ξ'F(x)=f(x)-f(b)-f(a)b-a,容易验证F(x)满足罗尔定理的条件,顺此思路,即可证本定理.例1.2[3] 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,又f(x)不是线性函数,且f(b)>f(a).试证ξ∈(a,b),使得f'(ξ)>f(b)-f(a)b-a.f(b)-f(a)b-a(x-a)分析过点(a,f(a))与(b,f(b))的线性函数为y=f(a)+是线性函数,则F(x)≡f(x)-f(a)-f(b)-f(a)b-a,因f(x)不(x-a)≠0,只要证明F'(ξ)=f'(ξ)-f(b)-f(a)b-a>0即可.f(b)-f(a)b-a(x-a)证明设辅助函数F(x)=f(x)-f(a)-,则F(x)在[a,b]上连续,在(a,b)内可导,F(a)=F(b).由于F(x)≠0,存在x0∈(a,b),使F(x0)≠0.当F(x0)>0时,由Lagrange中值定理,∃ξ∈(a,x0)使F'(ξ)=即f'(ξ)>F(b)-F(a)b-aF(x0)-F(a)x0-a>0,.F(b)-F(x0)b-x0>0,即f(ξ)>'当F(x0)<0时,同理, ∃ξ∈(x0,b),使F'(ξ)=F(b)-F(a)b-a.例1.3[5] 计算n阶行列式a+x1D=a+x1a+x1na+x2a+x2a+x2na+xna+xna+xnn.分析该题直接利用行列式“两项和性质”显然无法实现,如果后一列乘(-1)加到前一列,虽然每一列有公因式可提,但行列式中的元素却变得更复杂,无法进行计算.但从行列式D中可以捕捉到“范德蒙行列式的影子”,所以,应想办法构造一个行列式,既让它等于D,又能转化为范德蒙行列式.于是,有下列解法.解构造行列式,即先将原n阶行列式D加边成一个n+1阶行列式,100 0n21a+x1a+x1a+x1n2221a+x2a+x2a+x2n221a+xna+xn, a+xn2n2然后将此n+1阶行列式第一行乘-ai(i=1,2,…,n)加到第i+1行,再将所得行列式按第一列拆成两个n+1阶行列式相减,并根据范德蒙行列式可得,1-a1x1x1x11x1x1x1221x2x2x21x2x2x2221xn21xnxn xnn2D=-a2-a20nnn1a21x1x1x121x2x2x221xnxn xnn2=0xn--a xnnnnannn=2x1x2 xn∏(x1≤i≤j≤ni-xj)-∏(xi-a)⋅i=1n∏(x1≤i≤j≤ni-xj)n⎡⎤=∏(xi-xj)⎢2x1x2 xn-∏(xi-a)⎥.1≤i≤j≤ni=1⎣⎦2 数形结合法建立在数形结合基础上的几何图像常能引导人们去获得解决问题的方法,通过对几何图像的观察,构造出符合条件的辅助函数,使问题得以解决.例2.1[2] 设f(x)在[a,+∞)内连续、可导,且当x>a时f'(x)>k>0(k为常数),如果f(a)⎤⎡f(a)<0,则方程f(x)=0在⎢a,a-k⎥⎣⎦内有且仅有一个根,如图2.线段AB的斜率刚好为k,y=f(x)在AB的上方,因此很容易找到辅助函数(曲线与直线之差)证明 (1)存在性.作辅助函数F(x)=f(x)-[k(x-a)+f(a)],则F(a)=0,f(a)⎤f(a)⎤⎡⎡, F⎢a-=fa-⎥⎢⎥kk⎣⎦⎣⎦因为F'(x)=f'(x)-k>0,所以F(x)单调增加,故f(a)⎤f(a)⎤⎡⎡F⎢a-=fa->F(a)=0, ⎥⎢⎥k⎦k⎦⎣⎣因此,由f(a)<0,f⎢a-⎣根.(2)唯一性. ⎡f(a)⎤>0k⎥⎦及连续函数的性质,f(x)在⎢a,a-⎣⎡f(a)⎤k⎥⎦内至少有一个由f'(x)>0,f(x)单调增加,所以f(x)在⎢a,a-⎣⎡f(x)⎤k⎥⎦内至少有一个根,问题得证.例2.2[4] 某人身高1.5米,站立在离河岸3米处往水中看去恰好看到对岸河边一根电线杆在水中的倒影,已知水面低于河岸0.5米,河宽15米,求电线杆的高度.解我们如下构造图形,河宽为FD,离河岸CB处身高为AB的人从A点往河中看,正好看到电线杆GH在水中整个倒影FM.F,E,D点在水面所处的直线上, H,C,B在河岸所处的直线上. 其中AB=1.5m,BC=3m,FE+ED=15m,HF=CD=0.5m,求GH.易证∆ABC∽∆CDE,∆ABC∽∆GEF.因此 EDCD=BCAB⇒ED=1m,GH+HFEF=ABBC⇒GH=6.5m,即电线杆的高为6.5m.例2.3[4] 设x,y,z都在(0,1)内,求证:x(1-y)+y(l-z)+z(1-x)<1.分析证明代数不等式,直接从条件人手难达目的,注意结论并考虑条件可知:x,y,z,1-y,1-z,1-x均为正数,且似两线段积之和,给每个正数赋予线性形象,从线性联想三角形面积公式S=12absinc构造一边长为1的正三角形ABC.在AB,BC,CD上各取一点P,Q,E使得AP=x,BQ=z,CD=y,则BP=1-x,CQ=1-z,AE=1-y,由图易知S∆ABC=S∆APE+S∆BPQ+S∆CQE不等式成立.3 作差法通过作差的方法构造辅助函数对于形如f(x)>g(x)(或f(x)<g(x))的函数不等式,常构造辅助函数F(x)=f(x)-g(x)(或F(x)=g(x)-f(x))用单调性证之,其步骤为:1.构造函数F(x)=f(x)-g(x);2.证F'(x)>0(或<0)得出单调性;3.求出f(x)在区间端点之一处的函数值或极限值;4.最后根据函数单调性及区间端点的函数值得出所证的不等式. 例3.1[2] 证明当x>0时,x>ln(1+x).证明令F(x)=x-ln(1+x), x≥0,当x>0时F'(x)=1-11+x=x1+x>0,所以F(x)在(0,∞)上单调递增.又x>ln(1+x).F(0)=0,故当x>0时,F(x)>F(0)=0,即x-ln(1+x)>0,所以例3.2[2] 设f(x)在[a,b]上连续且单调增加,求证⎰baxf(x)dx≥a+b2⎰baf(x)dx分析将要证明的不等式中的b换成x,构造变上限定积分F(x)=⎰xatf(t)dt-a+x2⎰xaf(t)dt,然后证明F(b)≥0.证明令F(x)=F(x)=xf(x)-'⎰xatf(t)dt-a+x2a+x2⎰xaf(t)dt,则F(a)≥0,且对任意的x∈[a,b],有1212⎰xaf(t)dt-f(x)=x-a2f(x)-⎰xaf(t)dt=12⎰[f(x)-axf(t)]dt≥0因此,f(x)在[a,b]上单调递增,又a≤t≤x,所以f(x)≥f(t). 可见F(x)单调递增,从而F(b)≥F(x)=0,即得⎰xf(x)dx≥aba+b2⎰baf(x)dx.例3.3[3] 设f(x)在[a,b]上连续且a<b<c<d,证明在(a,b)内至少存在一点ξ使得pf(c)+qf(d)=(p+q)f(ξ)(p,q)为正常数.证明作辅助函数F(x)=(p+q)f(x)-pf(c)-qf(d),因为F(x)在[c,d]⊂[a,b]上连续,又F(c)=q[f(c)-f(d)],F(d)=p[f(d)-f(c)], 且p,q为正常数,所以F(c)⋅F(d)=-pq[f(c)-f(d)]≤0.2(1)当f(c)=f(d)时,F(c)=F(d)=0,则当ξ取c或d时,F(ξ)=0. 即pf(c)+qf(d)=(p+q)f(ξ).(2)当f(c)≠f(d)时,F(c)⋅F(d)<0,由零点定理,至少存在一点ξ∈(c,d)⊂(a,b),使F(ξ)=0,即pf(c)+qf(d)=(p+q)f(ξ)此方法在证明函数单调性、证明不等式等等证明题中经常用到.4 观察法将欲证结果适当等价变形;替换;找原函数;作辅助函数.关键是适当"等价变形". 例4.1[2] 设f(x)在[a,b](0<a<b)上连续在(a,b)内可导,且f'(x)>0(a<x<b), af(b)-bf(a)=0,证明在(a,b)内至少存在一点ξ,使'f(ξ)f(ξ)'=ξ.分析 (1)变形f(ξ)f(ξ)''=ξ,ξf(ξ)-f(ξ)=0,'ξf(ξ)-f(ξ)ξ2=0,(2)替换 xf(x)-f(x)x2=0,⎡f(x)⎤ (3)找原函数⎢=0, ⎥⎣x⎦'(4)作辅助函数 F(x)=证明作辅助函数F(x)=F(a)=f(a)a,F(b)=f(b)bf(x)x. ,因为F(x)在[a,b]上连续,在(a,b)内可导,又f(x)x,且af(b)-bf(a)=0,所以F(a)=F(b),F(x)满足罗尔定理,可得存在ξ∈(a,b),使F'(ξ)=0.因此F(ξ)='ξf(ξ)-f(ξ)'ξ2=0,即ξf(ξ)-f(ξ)=0,所以'f(ξ)f(ξ)'=ξ.例4.2[3] 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证对任意的λ∈R,必存在ξ∈(0,1),使得f'(ξ)-λ(f(ξ)-ξ)=1.分析由f'(ξ)-λ(f(ξ)-ξ)=1得到f'(x)-λf(x)=1-λx,由一阶非齐次微分方程的通解公式得λdx⎡-λdx⎰dx+c⎤=eλxxe-λx+c=ceλx+x, ()f(x)=e⎰1-λxe⎰⎢⎥⎣⎦[]即(f(x)-x)e-λx=c,于是便得到要找的辅助函数F(x)=(f(x)-x)e-λx.证明设F(x)=(f(x)-x)e-λx,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,所以满足罗尔定理,即对任意的λ∈R,必存在ξ∈(0,1),使得F(ξ)=f(ξ)-1-λ(f(ξ)-ξ)e'[']-λξ=0,即f'(ξ)-λ(f(ξ)-ξ)=1.总之,通过构造辅助函数,我们可以利用知道的结论和定理来解决目前的题目,需要注意的是原题和辅助题目应是等价的,构造辅助函数的方法是多种多样的,具体问题应具体分析,只要我们仔细分析各类数学问题与函数的直接或间接联系,大胆联想、猜测、推理,就可以构造出合适的函数,恰当地使用构造函数法在高等数学解题中往往能起到事半功倍的功效.参考文献[1]袁继红.浅析构造思想在高等数学中的应用[J].数学的实践与认识, 1997, 27 (4): 367~371.[2]黄光谷,余尚智.高等数学方法导论[M].第2版.武汉:武汉测绘科技大学出版社,1996. 86~93.[3]杜先能,孙国正.高等数学[M],合肥:安徽大学出版社,2003.[4]西北工业大学高等数学教研室编.高等数学专题指导[M].上海:同济大学出版社,1999.[5]李兆强.“辅助函数法”在数学分析中的应用[J].漯河职业技术学院学报,2009.。

相关文档
最新文档