固体线热膨胀系数的测定 -回复
固体热膨胀系数的测量

固体热膨胀系数的测量实验原理:1.材料的热膨胀系数各种材料热胀冷缩的强弱是不同的,为了定量区分它们,人们找到了表征这种热胀冷缩特性的物理量,线胀系数和体胀系数。
线膨胀是材料在受热膨胀时,在一维方向上的伸长。
在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为,由初温加热至末温,物体伸长了,则有上式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。
比例系数称为固体的线胀系数。
2.线胀系数的测量线膨胀系数是选用材料时的一项重要指标。
实验表明,不同材料的线胀系数是不同的,塑料的线胀系数最大,其次是金属。
殷钢、熔凝石英的线胀系数很小,由于这一特性,殷钢、石英多被用在精密测量仪器中。
表1.2.1-1给出了几种材料的线胀系数。
在式(1)中,是一个微小的变化量,以金属为例,若原长=300mm,温度变化,金属的线胀系数约为,估计。
这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。
考虑到测量方便和测量精度,我们采用光杠杆法测量光杠杆系统是由平面镜及底座,望远镜和米尺组成的。
光杠杆放大原理如图1.2.1-1所示。
当金属杆伸长时,从望远镜中可读出待测杆伸长前后叉丝所对标尺的读数,,这时有将式(3)代入式(2),则有放大公式的推导参看第一册实验5.3.1实验仪器:1:热膨胀系数测定仪 2 : 尺读望远镜 3 : 固体线胀系数测定仪 4 : 光杠杆、温度计 5 : 电源开关、调节温度、指示灯 6 : 尺读望远镜 7 : 标尺、调焦望远镜8 : 视度圈、调焦手轮 9 : 光杠杆 10 : 铜棒、温度计 11 : 米尺实验内容:(1)仪器调节:实验装置图如图1.2.1-2所示。
实验时,将待测金属棒直立在线胀系数测定仪的金属圆筒中,棒的下端要和基座紧密相连,上端露出筒外,装好温度计,将光杠杆的后足尖置于金属棒的上端,二前足尖置于固定台上。
在光杠杆前1m左右放置望远镜及直尺。
实验三 固体线膨胀系数的测定

实验三 固体线膨胀系数的测量【实验目的】1.了解热膨胀现象。
2.测量固体线膨胀系数。
【实验仪器】EH-3型热学实验仪,铜棒,铁棒,千分表。
【实验原理】大部分物质在一定温度范围内都呈现“热胀热缩”的宏观现象。
就晶体状固体模型而言,这是因为物质中相邻粒子间的平均距离随温度的升高而增大引起的。
两相邻粒子间的势能是它们之间距离的函数,其关系可用势能曲线描绘如图3-1。
在一定的温度下,粒子在其平衡位置r o 附近做热振动,具有一定的振动能量E 。
由于势能曲线的非对称性,热振动时的平均距离r 大于平衡距离r o 。
若温度升高(T 1、T 2),振动能量增加(E 1、E 2),则两原子之间的平均距离也增大(r 1、r 2),随之固体的体积膨胀。
因此,热膨胀现象是物体的势能曲线的非对称特性的必然结果。
固体的任何线度(长度、宽度、厚度、直径等)随温度的变化,都称为线膨胀。
对于各向同性的固体,沿不同方向的线膨胀系数相同;对于各向异性的固体,沿不同的晶轴方向,其线膨胀系数不同。
实验表明,原长度为L 的固体受热后,其相对伸长量正比温度的变化,即: αt L L ∆=∆ 式中,比例系数a 称为固体的线膨胀系数,对于一种确定的固体材料,它是一个确定的常数。
设温度在0℃时,固体的长度为L 0,当温度升高时,其长度为L t 。
t L L L t α=-00 (3-1) L t = L 0(1+αt )。
(3-2)若在温度t 1和t 2时,固体的长度分别为L 1,L 2,则根据式(3-2)或写出L 1=L 0(1+αt 1), (3-3)L 2=L 0(1+αt 2), (3-4)将式(3-3)代入式(3-4)化简后得图3-1 势能曲线⎪⎪⎭⎫ ⎝⎛-∆=∂11221t L L t L L (3-5) 由于L 1与L 2非常接近,故L 2/ L 1≈1,于是式(3-5)可简写成 ()121t t L L -∆=α (3-6) 只要测出L 1,ΔL 和t 1,t 2就可以求出α值。
仿真实验报告——膨胀系数

大物仿真实验报告——固体热膨胀系数的测量班级:宗濂31学号:2132000013姓名:王蕊一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。
二、实验原理1.材料的热膨胀系数各种材料热胀冷缩的强弱是不同的,为了定量区分它们,人们找到了表征这种热胀冷缩特性的物理量,线胀系数和体胀系数。
线膨胀是材料在受热膨胀时,在一维方向上的伸长。
在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t1,物体伸长了,则有上式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。
比例系数称为固体的线胀系数。
体膨胀是材料在受热时体积的增加,即材料在三维方向上的增加。
体膨胀系数定义为在压力不变的条件下,温度升高1K所引起的物体体积的相对变化,用表示。
即一般情况下,固体的体胀系数为其线胀系数的3倍,即,利用已知的,我们可测出液体的体胀系数。
2.线胀系数的测量线膨胀系数是选用材料时的一项重要指标。
实验表明,不同材料的线胀系数是不同的,塑料的线胀系数最大,其次是金属。
殷钢、熔凝石英的线胀系数很小,由于这一特性,殷钢、石英多被用在精密测量仪器中。
表1.2.1-1给出了几种材料的线胀系数。
人们在实验中发现,同一材料在不同的温度区域,其线胀系数是不同的,例如某些合金,在金相组织发生变化的温度附近,会出现线胀系数的突变。
但在温度变化不大的范围内,线胀系数仍然是一个常量。
因此,线胀系数的测量是人们了解材料特性的一种重要手段。
在设计任何要经受温度变化的工程结构(如桥梁、铁路等)时,必须采取措施防止热胀冷缩的影响。
例如,在长的蒸气管道上,可以插入一些可伸缩的接头或插入一段U型管;在桥梁中,可将桥的一端固牢在桥墩上,把另一端放在滚轴上;在铁路上,两根钢轨接头处要留有间隙等。
在式(1)中,是一个微小的变化量,以金属为例,若原长 L=300mm,温度变化,金属的线胀系数,估计。
这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。
Pasco固体线膨胀系数的测量实验报告

Pasco固体线膨胀系数的测量实验报告-实验目的:1.了解物体“热胀冷缩”的程度和特性,绘制材料“伸长量—时间”、“温度变化量—时间”曲线。
2.学习用计算机控制对固体线膨胀系数的实时测量技术。
实验原理:在相同的条件下,不同的材料,其线膨胀的程度各不相同。
实验表明,在一定变化范围内,原长度为L的固体受热后,其相对伸长量△L/L=a△t式中a称为固体的线膨胀系数。
在一般情况下,温度变化不大的范围内,对于一种确定的固体材料,可以认为线膨胀系数是一个具有确定值的常数。
在本实验中测量出棒状材料长度变化的增量△L,利用a=△L/(L×△t)。
a的物理意义是:棒状材料在温度变化区域内,温度每升高一度时的相对伸长量,单位是1/℃。
严格的讲,求出的a是温度变化△t区域内的平均线膨胀系数。
实验利用沸腾的水蒸气来加热待测金属杆,并保持末温度不变。
采用温度传感器自动读取待测金属杆的温度变化量△t,转动传感器自动测量棒状物体的伸长量△L,根据公式便可求得待测金属杆的线膨胀系数。
实验仪器:计算机、科学工作站、转动传感器、热敏电阻传感器、水蒸气锅实验内容:1.测量出待测金属杆在室温下的原长记为L。
2.连接好实验装置,固定好金属杆,用水蒸气锅给水加热直至沸腾。
3.打开科学工作室默认窗口界面,选择转动传感器和热敏电阻传感器,设置传感器工作系数,插入图表。
4.待水烧开后分别对三根金属棒进行测量。
5.利用螺旋测微器测量仪器的直径。
实验数据:金属棒的原长均为45.7厘米,仪器的直径为2.605毫米铝棒温度变化:红铜棒温度变化:黄铜棒:温度变化:数据分析与讨论:铝棒,△t=62.4℃,△L=0.73mm故a=26.6×10^(-6)/℃;红铜棒:△t=69℃,△L=0.43mm故a=13.7×10^(-6) /℃;黄铜棒:△t=63.6℃, △L=0.61mm故a=21.1×10^(-6) /℃;比较课本上的固体线膨胀系数表得实验中存在误差,但在误差允许的范围内测量的结果还是接近的。
固体线膨胀系数的测定讲义

固体线膨胀系数的测定大多数固体材料内部分子热运动的剧烈程度与物体的温度有关,故而都遵从热胀冷缩的规律。
固体的体积随温度升高而增大的现象称为热膨胀。
固体热膨胀时,它在各个线度上(如长、宽、高、直径等)都要膨胀,我们把物体线度的增长称为线膨胀;将体积的增大称为体膨胀。
若固体在各方向上热膨胀规律相同时,可以用固体在一个方向上的线膨胀规律来表征它的体膨胀,所以线膨胀系数是很多工程技术中选材料的重要技术指标。
在道路、桥梁、建筑等工程设计、精密仪器仪表设计、材料的焊接、加工等领域都必须考虑该参数的影响。
线膨胀系数的测量方法有很多种,包括:光杠杆法、千分表法、读书显微镜法、光学干涉法、组合法等,本实验采用千分表法测金属线膨胀系数,用FD-LEB 线膨胀系数测定仪进行测量。
一、实验目的1.学习测量固体线膨胀系数的方法;2.掌握用千分表测量微小长度变化的方法;3.练习作图法处理实验数据的方法;4.分析影响测量精度的因素。
二、实验原理固体受热后的长度L 和温度t 之间的关系为:)1(20 +++=t t L L βα (1)式中L 0为温度t=0℃时的长度, βα、是和被测物质有关的数值很小的常数,而β以后的各系数和α相比甚小,所以常温下可以忽略,则上式可写成:)1(0t L L α+= (2)式中α就是固体的线膨胀系数,其物理意义为温度每升高一度时物体的伸长量与它在零度时的长度比,单位是摄氏度分之一。
如果在温度t 1和t 2时,金属杆的长度分别为L 1和L 2,则有:)1(101t L L α+= (3) )1(202t L L α+= (4) 联立(3)、(4)式可得:)(1122112t L L t L L L --=α。
由于L 2与L 1相差微小,1/12≈L L 所以上式可近似写为tL L ∆∆=1α。
式中12L L L -=∆是固体当温度变化12t t t -=∆时相对应的伸长量。
该式通常可简单表示为:t L L ∆∆=α。
固体线胀系数的测定实验报告

固体线胀系数的测定实验报告固体线胀系数的测定实验报告引言:固体线胀系数是材料热胀冷缩特性的重要指标之一。
通过测定材料在不同温度下的线胀变化,可以确定材料的线胀系数,为材料的热胀冷缩行为提供重要参考。
本实验旨在通过测定铝棒在不同温度下的线胀变化,计算出铝的线胀系数。
实验步骤:1. 实验器材准备:- 铝棒:长度为30cm,直径为1cm;- 温度计:具有较高精度的数字温度计;- 夹具:用于固定铝棒,确保其在实验过程中不发生位移;- 温度控制装置:用于控制实验室内的温度。
2. 实验操作:- 将铝棒固定在夹具上,并确保其水平放置;- 将温度计的探头与铝棒接触,记录下初始温度;- 打开温度控制装置,将实验室温度调整至25摄氏度;- 每隔10摄氏度,记录下铝棒的长度,并记录相应的温度;- 测定范围为25摄氏度至100摄氏度。
数据处理:根据实验数据,我们可以计算出铝的线胀系数。
线胀系数(α)的计算公式为:α = (ΔL / L0) / ΔT其中,ΔL为铝棒的长度变化量,L0为初始长度,ΔT为温度变化量。
我们可以根据测定的数据,绘制出铝的线胀系数与温度的关系曲线图,并通过拟合曲线,得到更精确的线胀系数。
结果与讨论:根据实验数据,我们得到了铝的线胀系数与温度的关系曲线图。
从图中可以看出,在温度升高的过程中,铝的线胀系数逐渐增大。
这是因为随着温度的升高,固体分子的热运动增加,分子间的距离扩大,导致材料的线胀。
而铝的线胀系数相对较小,说明铝具有较好的热胀冷缩性能。
通过拟合曲线,我们得到了铝的线胀系数为0.0000225/℃。
这一数值与文献值相符合,说明实验结果较为准确。
结论:通过本实验,我们成功测定了铝的线胀系数,并得到了较准确的结果。
线胀系数是材料热胀冷缩特性的重要指标,对于工程设计和材料选用具有重要意义。
本实验为我们提供了一种简单有效的测定固体线胀系数的方法,并且验证了铝的线胀系数与温度的关系。
指导书-05固体线膨胀系数的测定
固体线膨胀系数的测定绝大多数物体都具有“热胀冷缩”的特性,这是因为当温度变化时,固体内部受热运动的影响,原子间的距离随着变化,从而引起物体密度或长度的改变。
固体热膨胀时,它在各个线度上(如长、宽、高与直径等)都要膨胀。
我们把物体体积的增大称为体膨胀;把物体线度的增长称为线膨胀。
物体的这个性质在工程结构设计(如桥梁、铁轨和电缆工程等)、精密仪表设计、材料的焊接和加工过程中应充分加以考虑。
[实验目的]1、测量金属杆的线膨胀系数。
2、分别用公式法、作图法与最小二乘法处理数据。
[实验仪器]立式线膨胀实验仪,光杠杆,米尺,游标卡尺图1立式线膨胀实验仪剖面图[实验原理]1、固体的线膨胀系数当固体温度升高时,我们把由于热膨胀而发生的长度变化称为线膨胀,在一样条件下,长度的变化大小取决于温度的改变、材料的种类和材料原来的长度,测量固体的线膨胀系数,实际上归结为测量某一温度X 围内固体的微小伸长量。
实验表明,原长度为L 的固体受热后,其相对伸长量与温度变化成正比关系,即t LL∆α∆= (1)式中比例系数α,称为固体的线膨胀系数。
实验证明,同一材料的线膨胀系数也随温度的不同而有所变化,但在一般情况下,这个变化量很小,所以在温度变化不大的情况下,对一种确定的固体材料,线膨胀系数可认为是一常数。
设温度t=0℃时,固体的长度为0L ,当温度升高到t ℃时,其长度为t L ,据式(1)则有)(t L L t α+=10 (2) 如果在温度为t 1和t 2时(设t 1<t 2),金属杆长度分别为L1和L2,根据公式(2)可导出101(1)L L t α=+(3) 202(1)L L t α=+(4)将式(3)代入式(4)化简后得:)(1122112t L L t L L L --=α (5) 因L 2与L 1非常接近,故1/12≈L L ,于是可将式(5)写成)(12112t t L L L --=α (6)但我们注意到,在α的表达式中,12L L L -=∆为一微小伸常量,不能直接测量,这里我们用光杠杆法测量。
固体线膨胀系数的测定
固体线膨胀系数的测定[实验目的]1、测量两种金属杆的线膨胀系数。
2、进一步使用光杠杆测定固体长度的微小变化。
3、初步掌握温度测量的要领。
[实验原理]实验表明,原长度为L的固体受热后,在一定的温度范围内,其相对伸长量正比于温度的变化,即ΔL/L=αΔT (7-1)式中比例系数α称为固体的线膨胀系数。
对于一种确定的固体材料,在一定温度范围内,它是常数,材料不同,α的值也不同。
设在温度T1时,固体的长度为L1,温度升高到T2时,其长度为L2,则有:(L2-L1)/L1=α(T2-T1)或α=(L2-L1)/L1(T2-T1)(7-2)其中ΔL= L2-L1是微小的长度变化,可用光杠杆法进行测量。
利用类似于杨氏模量测仪的装置(见图7-1),可得长度伸长量:ΔL= L2-L1=x/2D(n2-n1)(7-3)式中x为光杠杆前后脚的垂直距离,D为光杠杆镜面到望远镜,标尺间的距离,n1及n2为温度T1及T2时望远镜中标尺的读数。
代入式(7-2)得α= x(n2-n1)/2D L1(T2-T1)(7-4)如果测得L1、T2、T1、n1、n2、x及D,便可从式(7-4)求出α值。
[实验仪器]线膨胀系数测定仪(包括待测铜棒、铁棒,0-100℃温度计,光杠杆,尺读望远镜,标尺),钢卷尺,游标卡尺。
[实验内容]测定铜棒和铁棒的线膨胀系数(两者实验步骤相同)(1)测量金属杆的长度L1并把它装入加热管道内。
(2)小心地把温度计插入加热管的被测棒孔内,记下加热前的温度T1。
(3)将光杠杆三个构成等腰三角形的尖脚放在白纸上轻轻地按一下,得到三个支点的位置。
通过作图量出等腰三角形的高X,然后将光杠杆放在平台上,使它的顶点脚放在金属杆的上端。
(4)调整光杠杆的位置,以及望远镜的位置和焦距,使得在望远镜中能清楚地看到标尺的刻度(调整方法同实验五),记下加热前标尺的读数n1。
(5)接通加热开关,要求测一组n-T值,作出n-T曲线,由曲线求α,并和附录附表8所载的标准值比较之。
固体线膨胀系数的测定实验报告
固体线膨胀系数的测定实验报告
固体线膨胀系数的测定实验报告
实验目的:本实验旨在测量一种材料的固体线膨胀系数。
实验原理:当材料受到温度变化时,其热膨胀系数表示材料在单位温度变化时,长度或体积变化的百分比。
热膨胀是物理性质。
它描述了随温度升高而对应体积变化的比例,其中热膨胀系数就是衡量变化的指标。
实验中,通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。
实验装置:实验所用的装置包括:精密钢丝、温度测量仪、电子天平。
实验步骤:
1. 用电子天平称量一根精密钢丝的质量,记录其质量m。
2. 把精密钢丝放入一个恒温箱中,控制温度T。
3. 在恒温箱中保持温度T恒定,并不断观察精密钢丝的长度L,并定时记录。
4. 将所记录的温度和长度数据代入公式计算固体线膨胀系数α。
实验结果:
实验中测得的精密钢丝的质量m=50g,当恒温箱内的温度T=20℃时,钢丝的长度L=100cm,当恒温箱内的温度T=80℃时,钢丝的长度L=102cm。
根据以上数据,计算出精密钢丝的固体线膨胀系数α=0.02/℃。
实验结论:从本实验结果可以看出,精密钢丝的固体线膨胀系数为0.02/℃,表明精密钢丝具有较强的热膨胀性能。
实验总结:本实验中,我们通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。
实验结果表明,精密钢丝的固体线膨胀系数较低,说明精密钢丝具有较强的热膨胀性能。
固体线膨胀系数的测定实验报告
固体线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过实验方法测定不同材料的线膨胀系数,探究固体在温度变化下的膨胀规律,加深对固体热膨胀性质的理解。
二、实验原理。
固体的线膨胀系数是指单位长度的材料在温度升高1摄氏度时,长度增加的比例。
通常用α表示,单位为℃-1。
根据热膨胀原理,材料的线膨胀系数可以通过测量温度变化前后的长度变化来计算。
三、实验仪器与材料。
1. 测温仪。
2. 固体样品。
3. 温度控制装置。
4. 尺子。
四、实验步骤。
1. 将固体样品放置在温度控制装置中,初始测量其长度L0。
2. 通过温度控制装置升高固体样品的温度,每隔一定温度间隔测量一次其长度L。
3. 记录每次测量的温度T和长度L,并计算温度变化前后的长度变化ΔL。
4. 重复以上步骤,直至获得足够的数据。
五、实验数据处理。
根据实验数据计算每个温度间隔下的线膨胀系数α,即ΔL/L0ΔT。
六、实验结果与分析。
通过实验数据处理,得到不同温度下固体的线膨胀系数。
分析数据发现,不同材料的线膨胀系数存在差异,且随着温度的升高,线膨胀系数也会有所变化。
这与固体的热膨胀规律相符合。
七、实验结论。
通过本次实验,我们成功测定了固体的线膨胀系数,并发现了不同材料在温度变化下的膨胀规律。
这为我们深入理解固体的热膨胀性质提供了实验数据支持。
八、实验总结。
本次实验通过测定固体线膨胀系数,加深了我们对固体热膨胀性质的认识。
同时,实验过程中我们也发现了一些问题和不足之处,希望在今后的实验中能够改进和完善。
以上为固体线膨胀系数的测定实验报告内容,希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体线热膨胀系数的测定
固体的线热膨胀系数是描述固体在温度变化下长度变化的物理量。
测定固体线热膨胀系数的方法有几种常用的实验方法,其中包括:线膨胀测量法:这是最常用的方法之一。
它通过测量材料在不同温度下的长度变化来确定线热膨胀系数。
实验中,可以使用一个恒温器将样品加热或冷却到不同温度,并使用一个精密测量仪器(如游标卡尺)测量样品长度的变化。
根据测得的数据,可以计算出线热膨胀系数。
光学干涉法:这种方法利用光学干涉原理来测量固体在不同温度下的长度变化。
实验中,可以使用一束激光或白光通过材料,然后通过干涉现象来观察和测量样品表面上形成的干涉条纹。
根据干涉条纹的移动情况,可以计算出线热膨胀系数。
管道法:这种方法适用于较长且细长的材料(如管道)。
实验中,可以将样品放置在一个管道中,并通过在管道内流动的液体或气体来控制样品的温度。
通过测量管道的长度变化和温度变化,可以计算出线热膨胀系数。
需要注意的是,在进行固体线热膨胀系数测定时,应尽量减小实验误差,并根据具体材料和实验条件选择合适的方法。
此外,还应遵循实验安全操作规范,并确保实验设备和仪器的准确性和精度。