小学奥数论:整除和余数知识点总结及经典例题
除法的整除与余数知识点总结

除法的整除与余数知识点总结除法是数学中的一种基本运算,它涉及到整除和余数的概念。
在本文中,我将对除法的整除与余数进行知识点的总结,帮助读者更好地理解和应用这一概念。
一、整除的定义与性质整除是指一个数能够被另一个数整除,即没有余数。
对于两个整数a和b,若存在一个整数c,使得a = b * c,我们说a能够被b整除,记作b|a。
下面是整除的一些重要性质:1. 任何数都可以被1整除,即1|a,其中a为任意整数。
2. 任何整数a能够被自身整除,即a|a。
3. 若a能够被b整除,并且b能够被c整除,则a也能够被c整除,即若b|a且c|b,则c|a。
4. 若a能够被b整除,并且b不为0,则a/b是整数,即若b|a且b≠0,则a/b为整数。
这些性质在解题和证明中经常应用,对于理解整除概念起到重要作用。
二、余数的定义与应用余数是指在进行除法运算时,被除数除以除数后所剩下的未被整除的部分。
对于两个整数a和b,其中a为被除数,b为除数,我们用符号a%b表示a除以b的余数。
下面是余数的一些重要性质:1. 若a能够被b整除,则a%b等于0。
2. 余数不可为负数,即对于任意整数a,a%b的值在0到b-1之间。
3. 若a>b,则a%b的值小于b。
余数在解决问题时具有广泛的应用,例如:1. 判断一个数的奇偶性:若一个整数a%2的余数为0,则a为偶数,否则为奇数。
2. 进行模运算:模运算是指将一个数除以另一个数的余数,常用符号为a≡b(mod m)表示a和b对模m同余,也即a% m = b% m。
3. 判断能否整除:若余数为0,则被除数能够被除数整除。
通过了解余数的定义和应用,我们能够更好地理解和利用除法运算。
三、应用举例为了加深对整除与余数的理解,下面举两个具体的例子进行说明。
例1:判断一个数是否能够被5整除。
解析:我们只需要判断这个数的个位上的数字是否是0或5,如果是,则这个数能够被5整除。
例如,对于数字155,它的个位数字为5,所以能够被5整除。
小奥数论1-整除和余数知识点总结及经典例题培训资料

小奥数论1-整除和余数知识点总结及经典例题1.数论——数的整除和余数2.1基本概念和基本性质2.1.1定义整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
2.1.2表达式和读法b∣a,读着b能整除a;或a能被b整除;b a,不能整除;2.1.3基本性质①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的倍数;②加减性:如果a|b、a|c,那么a|(b c);③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除c;④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c,且ab互质,则ab的积能整除c;⑤a个连续自然数中必恰有一个数能被a整除。
2.2数的整除的判别法2.2.1末位判别法2.2.2数字和判别法(用以判别能否被3或9整除)各数位上数字的和是3或9的倍数,则能被3或9整除。
173652÷9:1+7+3+6+5+2的和除以3或9;简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x 再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。
2.2.3奇偶数位判别法(用以判别能否被11整除)从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;81729033÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。
余数的判断法与整数位的判断法一致。
2.2.4三位一截判别法(用以判别能否被7/11/13整除)2.2.4.1基本用法从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;如,86372548,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。
小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。
由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。
账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。
应是__________元。
(注:微波炉单价为整数元)。
36792
例4、五位数能被12整除,这个五位数是____________。
42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。
713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。
39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。
48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。
”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。
小奥数论整除和余数知识点总结及例题

1. 数论——数的整除和余数2.1基本概念和基本性质整数a 除以整数b (b≠0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
b ∣a ,读着b 能整除a;或a 能被b 整除;ba ,不能整除;① 传递性:如果a|b,b|c,那么a|c;即b 是a 的倍数,c 是b 的倍数,则c 肯定是a 的倍数;② 加减性:如果a|b 、a|c ,那么a|(b c);③ 因数性:如果ab|c ,那么a|c ,b|c;即如果ab 的积能整除c,则a 或b 皆能整除c; ④ 互质性,如果a|c ,b|c ,且(a,b )=1,那么ab|c,即如果a 能整除c,b 能整除c ,且ab 互质,则ab 的积能整除c;⑤ a 个连续自然数中必恰有一个数能被a 整除。
2.2数的整除的判别法各数位上数字的和是3或9的倍数,则能被3或9整除。
173652÷9:1+7+3+6+5+2的和除以3或9;简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x 再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。
从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。
余数的判断法与整数位的判断法一致。
2.2.4三位一截判别法(用以判别能否被7/11/13整除)从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。
①一般求空格数如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。
奥数数论题库17-余数问题_知识例题精讲

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
一、带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
知识点拨教学目标5-6余数问题例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
小学奥数专题之-数论专题典型结论汇总

小学奥数专题之-数论专题典型结论汇总整除一、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c 整除.即如果c︱a,c︱b,那么c︱(a±b).性质2如果数a能被数b整除,b又能被数c整除,那么a也能被c 整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3某4)∣12.性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;质数合数一、判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找一个大于且接近p的平方数K2,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那么p就为质数.例如:149很接近1441212,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.二、唯一分解定理a3aka1a2np1p2p3pk任何一个大于1的自然数n都可以写成质数的连乘积,即:其中为质数,a1a2ak为自然数,并且这种表示是唯一的.该式称为n的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2某3某5某7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337;100171113;1111141271;1000173137;199535719;1998233337;200733223;2022222251;10101371337.约数倍数一、求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711,25222327,所以(231,252)3721;21812②短除法:先找出所有共有的约数,然后相乘.例如:396,所以(12,18)236;32③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********;6003151285;315285130;28530915;301520;所以1515和600的最大公约数是15.二、最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.三、求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各b个分数的分子的最大公约数b;即为所求.a四、约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数五、求最小公倍数的方法①分解质因数的方法;例如:2313711,25222327,所以231,25222327112772;②短除法求最小公倍数;21812例如:396,所以18,12233236;32ab③[a,b].(a,b)六、最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.七、求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a;求出各个分数分母的最35[3,5]15b大公约数b;即为所求.例如:[,]412(4,12)4a注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:141,42,32,34八、倍数、公倍数、最小公倍数的关系(1)倍数是对一个数说的;(2)最小公倍数是公倍数的约数,公倍数是最小公倍数的倍数九、最大公约数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公约数,所得的商互质。
小学奥数 数论 余数问题 同余问题.题库版
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
四年级奥数专题之整除与余数
四年级奥数整除与余数【导言】我们学习的除法算式有两种情况,一种是被除数除以除数以后,余数为0,即数的整除性;另一种是被除数除以除数以后,余数不为0,即有余数的除法。
一个有余数的除法包括四个数:被除数÷除数=商……余数。
这个关系也可以表示为:被除数=除数×商+余数。
下面来总结一下整除和有余数除法的特征:1、整除:(1)能被2整除的特征:如果一个数的个位数字是偶数,那么这个数能被2整除。
(2)能被3整除的特征:如果一个数的各位数字之和能被3整除,那么这个数能被3整除。
(3)能被4(或25)整除的特征:如果一个数的末两位数能被4(或25)整除,那么这个数能被4(或25)整除。
(4)能被5整除的特征:如果一个数的个位数字是0或5,那么这个数能被5整除。
(5)能被8(或125)整除的特征:如果一个数的末三位数能被8(或125)整除,那么这个数能被8(或125)整除。
(6)能被9整除的特征:如果一个数的各位数字之和能被9整除,那么这个数能被9整除。
(7)能被11整除的特征:如果一个数奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、有余数的除法:(1)一个数除以4的余数,与它的末两位除以4的余数相同。
(2)一个数除以8的余数,与它的末三位除以8的余数相同。
(3)一个数除以9的余数,与它的各位数字之和除以9的余数相同。
(4)一个数除以11的余数,与它的奇数位上的数字之和与偶数位上的数字之和的差除以11的余数相同。
(如果奇位上的数字之和小于偶数位上的数字之和,可用偶数位数字之和减去奇数位数字之和,再除以11,所得的余数与11的差即为所求)。
【经典例题1】已知一个6位数14A52B能被5和9整除,求这个6位数。
【解题步骤】能被5整除的数的末位是0或5,能被9整除的末位是各位上的数字之和能被9整除,即1+4+A+5+2+B能被9整除。
当B=0时,A取6;当B=5时,A取1。
小奥数论整除和余数知识点总结及经典例题
1.数论——数的整除和余数基本概念和基本性质定义整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a。
表达式和读法b∣a,读着b能整除a;或a能被b整除;b a,不能整除;基本性质①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的倍数;②加减性:如果a|b、a|c,那么a|(b c);③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除c;④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c,且ab互质,则ab的积能整除c;⑤a个连续自然数中必恰有一个数能被a整除。
数的整除的判别法末位判别法数字和判别法(用以判别能否被3或9整除)各数位上数字的和是3或9的倍数,则能被3或9整除。
173652÷9:1+7+3+6+5+2的和除以3或9;简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。
奇偶数位判别法(用以判别能否被11整除)从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。
余数的判断法与整数位的判断法一致。
三位一截判别法(用以判别能否被7/11/13整除)基本用法从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;如,,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。
特殊用法①一般求空格数如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。
小升初数学-数论-奥数篇- 余数专题解析 必考知识点
a1. 2.例2. 20080808除以9的余数是多少?除以8和25的余数是多少?除以11的余数是多少?例2. 有一个整数,用它去除160 ,110 ,70 得到的三个余数之和是50,则这个整数是多少?1.用自然数n去除63 ,91 ,129,得到的三个余数之和是25,那么n 是多少?2.一个自然数用它分别去除63 ,90 ,130都有余数,三个余数的和是25.这三个余数中最小的一个是多少?3. 把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果,没有分出去,请问:剩下个数最多的水果剩下多少个?二余数定理1. 余数加法定理a与b的和除以c的余数,等于①23和16除以5②23和19除以5例1. 两个数被13除分别余7和10,那么这两个数的和被13除余()1. 4个运动员进行乒乓球比赛,他们的号码分别是101,126,173,193,规定每两人间比赛的盘数是他们号码的和除以3所得的余数。
请问:他们各比赛了多少盘?2. 余数乘法定理a与b的乘积除以c的余数,等于①23和16除以5②23和19除以5例1. 418×814×1616除以13所得的余数是多少?1. 15×38×412×541除以13所得的余数是多少?2. 31453×68765×987657的积,除以4的余数是多少?例2.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件,月底将这些零件按17个一包的规格打包,发现最后一包不够17个,请问:最后一包有多少个零件?1. 一年有365天,轮船制造厂每天可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个。
问?最后一包有多少个零件?3.同余定理若两个数a,b除以同一个数m得到的余数相同则a,b的差例1. 100和84除以同一个数,得到的余数相同,但是余数不为0,这个除数可能是多少?例1.用一个大于0的自然数,分别去除35 ,59和123,所得的余数相同,则这个数是多少?1.三个数23 ,51 ,72分别除以同一个大于1的数,得到同一个余数,这个余数是多少?2.一个大于1的自然数去除300 ,243 ,205 时,得到相同的余数,则这个自然数是()3.有一个大于1的整数,除45,59,101所得的余数相同,求这个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.数论——数的整除和余数2.1基本概念和基本性质2.1.1定义整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
2.1.2表达式和读法b∣a,读着b能整除a;或a能被b整除;b a,不能整除;2.1.3基本性质①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的倍数;②加减性:如果a|b、a|c,那么a|(b c);③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除c;④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c,且ab互质,则ab的积能整除c;⑤a个连续自然数中必恰有一个数能被a整除。
2.2数的整除的判别法2.2.1末位判别法2.2.2数字和判别法(用以判别能否被3或9整除)各数位上数字的和是3或9的倍数,则能被3或9整除。
173652÷9:1+7+3+6+5+2的和除以3或9;简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。
2.2.3奇偶数位判别法(用以判别能否被11整除)从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;81729033÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。
余数的判断法与整数位的判断法一致。
2.2.4三位一截判别法(用以判别能否被7/11/13整除)2.2.4.1基本用法从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;如,86372548,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。
2.2.4.2特殊用法①一般求空格数如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。
注意,如果这个数加或减7后为1到9间的自然数,则加或减7后的这个数也为正确答案。
395864□82365,答案为5463925□01234,答案为1和8②特殊求空格数根据整除的因数性,如果1个数能被1001整除,则这个数能被7、11、13、77、91、143整除,因为:7×11×13=1001;77×13=1001;99×11=1001;7×143=1001;根据abc abc =abc×1001;aaa aaa=aaa×1001;求能被7整除的空格数2.2.5有关9系列截判法(用以判别能否被9/99/999整除)除数是几位数就可以从右往左几位一截,将截取的段位数相加再截取,直至不能再截取,看相应的数能否被相应的除数9/99/999整除。
除数是11时,也可以用两位一截判别法,因为根据整数的因数性,能被99整除的数,肯定能被11整除。
例如:2.3余数的判别法2.3.1余数的定义和性质①整除是余数为0的情况。
a÷b=c…..0;此时,a= b×c;b= a÷c②有余数的情况:a÷b=c…..d(0﹤d﹤b);此时,a=b×c+d;b=(a-d)÷c; c=(a-d)÷b记着:a≡d(modb)2.3.2余数的判别法(与整除相同)【注意】:当被除数是比除数小的非零自然数,则被除数为余数;当被除数比余数大,则减去除数的倍数所得比除数小的数即为余数。
如:9876543223456768,除以2,5,4,25,8,125,3,9,11的余数为0,3,0,8,0,18 【例】将1,2,3,4,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?奇数位数字和:(0+9+8+…+1)×2+0+9+7+5+3+1=115偶数位数字和:3+2×10+1×10+8+6+4+2=53115-53=62;62÷11,余7;【例】求被13除余数是多少?解:注意13|111111,即每连续6 个1 是13 的倍数,且2012 除以6 余2,所以答案为11.【例】把自然数1到2011这2011个数依次写下来,得到一个很大的多位数:123456789101112….20102011,则这个数除以9余数是1.无敌乱切,按1/2/3/4到2011的等差数列求和,看除以9的余数;2.3.3同余定理2.3.2.1同余定义和充要条件定义: 用给定的正整数m分别除整数a、b,如果所得的余数相等,则称a、b关于模m同余或a同余于b模m,记作a≡b(mod m),如56≡0 (mod 8),式子称为同余式,m称为该同余式的模。
充要条件:整数a,b对模m同余的充要条件是a-b能被m整除(即m|a-b);或a≡b(mod m)的充要条件是a=mt+b(t为整数)。
2.3.2.2基本定理同余关系具有自身性、对称性与传递性,即1)自身性:a≡a (mod m);2)对称性:若a≡b (mod m), 则b≡a (mod m);3)传递性:若a≡b (mod m), b≡c (mod m),则a≡c (mod m).2.3.2.3重要定理:一个同余式的加减乘及幂的运算定理1若a≡b(mod m),n为自然数,则an≡bn (mod m);即a、b关于关于模m同余,则a、b的同倍数也关于模m同余;定理2若ca≡cb(mod m), (c,m)=d(最大公约数), 且a,b为整数,则a≡b(mod m/d).推论若ca=cb(mod m), (c,m)=1,且a,b为整数,则a≡b(mod m).定理3若a≡b (mod m),a≡b (mod n),则a≡b(mod [m,n]).推论若a≡b(mod mi), i=1,2,…,n,则a≡b (mod [m1,m2,..,mn]).【例】将1996加上一个整数,使和能被9和11整除,加的整数尽可能小,那么加的整数是多少?1996≡16(mod 99);99-16=83定理4若a≡b (mod m),则a n≡b n(modm),其中n是自然数。
2.3.2.5同余定理的重要推论:两个同模同余式的加减乘运算若a≡b(mod m), c≡d (mod m),则可以将这两个同余式左右两边分别相加、相减或相乘:1)a+c≡b+d (mod m);即和的余数等于余数的和2)a-c≡b-d (mod m);即差的余数等于余数的差;3)ac≡bd (mod m);即积的余数等于余数的积;【例】316×419×813除以13所得的余数2.3.4只知被除数和余数,求除数或求商2.3.4.1余数确定(注意余数比除数小)有余数的情况:a÷b=c…..d(0﹤d﹤b);b=(a-d) ÷c;或c=(a-d) ÷b如果,只知a和d,求b或c【例】1111 ÷某2位数=() (66)2.3.4.2余数不确定①余数不确定——余数的和【例1】63=m×()+a90=m×()+b130=m×()+c,余数和为25;(63+90+130)=m×()+(a+b+c)=m×()+25(63+90+130-25)=m×()258=m×()258的约数有8个:1/2582/1293/866/43因为余数要小于除数,判断9﹤m﹤63;所以m=43②余数不确定——余数相同【例2】300=m×(商)+a262=m×()+a205=m×()+a,根据同余定理:m∣(300-262)= m∣(38);m∣(262-205)= m∣(57);m∣(300-205)= m∣(95);满足两个即可,选数小的算,求同时满足能整除38和57,即求这两个数的公约数,分别有1和19,答案为19。
③余数不确定——余数的差【例3】97=m×(商)+a+329=m×()+a变为94=m×()+a,根据同余定理:m∣(94-29)= m∣(65);65的约数有1/65,5/13,除数大于余数,排除1和65,5和13都满足;④余数不确定——余数的倍数【例4】61=m×(商)+2a90=m×()+a变为180=m×()+2a,根据同余定理:m∣(180-61)= m∣(119);119的约数有1/119,7/17,除数大于余数,排除1和119,仅17满足;2.3.5幂和连乘积的余数——余数的周期性周期性的用法:可用以求某个数的若干次方的个位数:【例】32015的个位数:3的若干次方的个位数,依次枚举,找出循环规律,4个一个周期,2015除以4,余几为周期内第几个。
幂的余数的求法:先求底数的余数,再算底数的幂的余数的周期性,再根据指数相应的周期来确定最终的余数;【例】2015100除以7的余数:2015100≡6100≡1(mod7)6,36,196,1176…除以7的余数分别为6,1,6,1,2个为1周期,100÷2=50余0,故余数为1。
特殊情况:①【例】32014除以8的余数:32014≡91007≡1(mod8)9除8的余数为1,所以无论指数多少,余数皆为1。
【例】31625除以9的余数:【例】14389除以7的余数:【例】33335555+55553333除以7的余数:②作业5,2的3次方以上模8的余数皆为02.3.6中国剩余定理——物不知数(韩信点兵)2.3.6.1传统题目和传统解法【题目】今物知其数三三数剩二(数除三余数二意思),五五数剩三,七七数剩二,问物几何(韩信点兵算所谓剩余定理)【解法】三人同行七十稀;把除以3所得的余数用70乘五树梅花廿一枝;把除以5所得的余数用21乘;七子团圆正半月;把除以7所得的余数用15乘除百零五便得知;把上述三个积加起来,除以105的余数即为得数;2×70+3×21+2×15=233 233÷105=2…23;得数为23。
2.3.6.2物不知数:余数问题的通解:基本的枚举法①从除数大的开始枚举;②先找同时满足两个除数的最小符合数,再加这俩除数的最小公倍数,直到满足所有除数的最小的符合数;③再加所有除数的最小公倍数×n,直到符合题意;【例】3余2,5余3,7余2,求满足条件的数;【注意】①从除数大的着手;【例】5余4,97余1;1,98,195,得389;②找最小符合数时不要忽略商为0的情况;【例】某除48余23,除49余23;某最小的答案就是23;【例】例3:49余23,48余23;最小符合数为23,连续两个自然数的最小公倍数为其积;48×49能整除14,余数是0,23除14的余数,全是9。