同余的概念与性质

合集下载

同余方程的求解方法与应用

同余方程的求解方法与应用

同余方程的求解方法与应用同余方程是数论中的一个重要概念,它在密码学、编码理论等领域有广泛的应用。

本文将介绍同余方程的求解方法,并讨论其在实际问题中的应用。

一、同余方程的定义与性质同余方程是指形如ax ≡ b (mod m)的方程,其中a、b、m为已知的整数,x为未知数。

同余方程的求解即是要找到满足该方程的整数x的取值。

同余方程具有以下性质:1. 若a ≡ b (mod m),则对任意整数x,ax ≡ bx (mod m)。

2. 若ax ≡ ay (mod m),且a与m互素,则x ≡ y (mod m)。

二、求解同余方程的方法1. 穷举法:逐个尝试整数x的取值,验证是否满足方程。

如果方程有解,则解的集合可以表示为{x | x ≡ x0 (mod m)},其中x0为方程的一个解。

2. 欧拉定理:对于互素的整数a和m,有a^φ(m) ≡ 1 (mod m),其中φ(m)表示小于m且与m互素的正整数的个数。

如果b ≡ a^k (mod m),则可以将方程转化为ak ≡ b (mod m)来求解。

这样做的好处是可以将指数降低,从而简化计算。

3. 扩展欧几里得算法:对于一般的同余方程ax ≡ b (mod m),可以利用扩展欧几里得算法求解。

该算法给出了方程ax + my = d的解,其中d为a和m的最大公约数。

如果b是d的倍数,则方程有解,且解的个数为d个。

三、同余方程的应用1. 密码学:同余方程在密码学中有重要的应用。

例如,在RSA公钥加密算法中,同余方程用于对消息进行加密与解密。

通过选择合适的公钥和私钥,可以实现对消息的加密与解密操作。

2. 信号处理:同余方程可以应用于信号处理中的调频解调技术。

在调频通信系统中,利用同余方程可以进行频率的合成与解析,实现信号的调制与解调操作。

3. 编码理论:同余方程可以应用于编码理论中的纠错码设计。

通过求解一系列同余方程,可以构造出性能良好的纠错码,提高数据传输的可靠性。

小升初数学复习知识点:余数、同余与周期

小升初数学复习知识点:余数、同余与周期

小升初数学复习知识点:余数、同余与周期余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m 同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m 同余,记作a≡b(mod m),读作a同余于b模m。

二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d (mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:①一个自然数M,n表示M的各个数位上数字的和,则M≡n (mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

以上是数学网为小升初的考生们整理的小升初数学总复习知识点,希望能够关注到同学们。

更多内容请关注数学网小升初频道。

1.同余的概念及基本性质

1.同余的概念及基本性质

第三章 同余§1 同余的概念及其基本性质定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作()\mod a b m ≡.甲 ()mod .a a m ≡(甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.)乙 若()mod ,a b m ≡则()mod .b a m ≡丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡⇔-证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是,()12,|.a b m q q m a b -=--反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是,()()1221.r r m q q a b -=-+-故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡±证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-戊 若()()1122mod ,mod ,a b m a b m ≡≡则()1212mod .a a bb m ≡ 证 因()()1122mod ,mod a b m a b m ≡≡,故1122|,|.m a b m a b --又因()()()1212111212211122,a a bb a b b a bb a a b b a b -=-+-=-+-故()12121212|,mod .m a a bb a a bb m -≡ 定理2 若()()11mod ,mod ,1,2,,,kki i A B m x y m i k αααα≡≡=则()11111111,,,,mod .k k k kkkk k A xx B y y m αααααααααααα≡∑∑特别地,若()mod ,0,1,,i i a b m i n ≡=,则()111010mod .n n n n n n n n a x a x a b x b x b m ----+++≡+++证 因()mod ,1,2,,i i x y m i k ≡=故,1,2,,iii i x y i k αα≡=,从而()1111mod .k k k k x x y y m αααα≡又因()11mod kkA B m αααα≡,故()()111111111111111,,,,mod ,mod .k k kk k k kkkk k k k A xx B y y m A xx B y y m αααααααααααααααααααα≡≡∑∑己 若()()mod ,,1,ka kb m k m ≡=则()mod .a b m ≡证 因()mod ka kb m =,故()|.m ka kb k a b -=-又因(),1k m =,故()|,mod .m a b a b m -≡庚 (ⅰ)若()mod ,0,a b m k ≡>则()mod .ka kb km ≡ (ⅱ)若()mod ,|,|,|,0,a b m d a d b d m d ≡>则mod .a b m d d d ⎛⎫≡ ⎪⎝⎭证 (ⅰ)因()mod ,0a b m k ≡>,故()()|,|,mod .m a b km k a b ka kb ka kb km --=-≡(ⅱ)因()mod ,a b m ≡故|,.m a b a b mq --=又因|,|,|,0d a d b d m d >111111,,,0,0,0a da b db m dm a b m ===>>>. 于是()111111111,,mod ,mod .a b m da db dm q a b m q a b m d d d ⎛⎫-=-=≡≡ ⎪⎝⎭辛 若()mod ,1,2,,i a b m i k ≡=,则[]()12mod ,,,.k a b m m m ≡证 因()mod ,1,2,,i a b m i k ≡=,故|,1,2,,.i m a b i k -=于是,[][]()1212,,,|,mod ,,,.k k m m m a b a b m m m -≡附记 最小公倍数的一个常用性质是,若12|,|,,|k m a m a m a ,则[]12,,,|.k m m m a证 由带余除法,设[][]1212,,,,0,,,k k a m m m q r r m m m =+≤<,则12|,|,,|k m a m a m a 及12|,|,,|k m a m a m a 得, |,1,2,,.i m r i k =但[]12,,,k m m m 是12,,,k m m m 的最小公倍数,故[]120,,,,|.k r m m m a =壬 若()mod ,|,0,a b m d m d ≡>则()mod .a b d ≡证 因()mod ,a b m ≡故|.m a b -又因|,0d m d >,故()|,mod .d a b a m d -≡ 癸 若()mod a b m ≡,则()(),,.a m b m =证 因()mod a b m ≡,故|.m a b -于是,存在整数t 使得.a b mt -=故.a mt b =+故()(),,.a m b m =例 一个整数0a >被9整除的充分必要条件是n 的各位数字(十进制)的和倍9整除.证 设1101010,010n n n n i a a a a a --=+++≤<.因()101mod9≡,故()()101mod9,10mod9,0,1,,.i i i i a a i n ≡≡=于是,()010mod 9.n nii i i i a a a ===≡∑∑故9|a 的充分必要条件是09|.ni i a =∑作业 P53:2,3,4,5.习题选解2.设正整数1101010,010,n n n n i a a a a a --=+++≤<证明11整除a 的充分必要条件是11整除()01.niii a =-∑证 因为()101mod11≡-,故()()()()101mod11,101mod11,0,1,,.i ii i i i a a i n ≡-≡-=.于是,()()0101mod11.n nii iii i a a a ===≡-∑∑由此可得,11|a 的充分必要条件是()0111.nii i a =-∑3.找出能被37,101整除的判别条件来.解 (ⅰ)因()10001mod37≡,故()()10001mod370.ii ≡≥设11010001000,01000.n n n n i a a a a a --=+++≤<则由()10001mod37i≡得()1000mod37,0,1,,ii i a a i n ≡=,故()01000mod 37.n nii i i i a a a ===≡∑∑由此可得,37|a 的充分必要条件是037.ni i a =∑(ⅱ)因()1001mod101≡-,故()()()1001mod1010.iii ≡-≥ 设110100100,0100,n n n n i a a a a a --=+++≤<则由()()1001mod101ii ≡-得()()1001mod101,0,1,,ii i i a a i n ≡-=,故()01001.n niii i i i a a a ===≡-∑∑由此可得,101|a 的充分必要条件是()01011.niii a =-∑4.证明52641|2 1.+ 证 因()()8163222256,265536154mod 641,2154237166401mod 641,==≡≡=≡≡-故52641|2 1.+5.若a 是任一奇数,则()()221mod 21.nn a n +≡≥证 对n 作数学归纳法.当1n =时,因a 为奇数,故可设121a a =+,则()()2221111112114441a a a a a a -=+-=+=+.而()111a a +是两个连续两个整数的积,一定是2的倍数,从而()122128|1,1mod 2,a a +-≡即1n =时结论正确.假设对()12n n -≥结论正确,即()12121mod 2.n n -+≡下面说明在此假设下,对n 结论正确.因()()()111222221111nn n n a aa a ----=-=-+,而由归纳假设得121n a--是12n +的倍数,又因a 为奇数,故121n a -+也为奇数,于是()()112211n n a a ---+是22n +的倍数,故()221mod 2.nn a +≡。

初等数论 同余方程组

初等数论 同余方程组

初等数论同余方程组初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。

同余方程组是初等数论中的一个重要概念,它涉及到数与数之间的整除关系。

本文将介绍同余方程组的定义、性质以及解法,并通过例题来加深理解。

一、同余方程组的定义同余方程组是由若干个同余方程组成的一组方程。

同余方程的定义如下:对于整数a、b和正整数m,如果m能整除(a-b),即(a-b)能被m整除,则称a与b对于模m同余,记为a≡b(mod m)。

这里的≡表示同余关系。

二、同余方程组的性质1. 同余关系具有自反性、对称性和传递性。

即对于任意的整数a、b和正整数m,有a≡a(mod m),a≡b(mod m)等价于b≡a(mod m),若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

2. 同余关系具有加法和乘法的性质。

即对于任意的整数a、b和正整数m,若a≡b(mod m),则a+c≡b+c(mod m),ac≡bc(mod m)。

三、同余方程组的解法1. 线性同余方程组的解法:线性同余方程组是形如ax≡b(mod m)的方程组,其中a、b为整数,m为正整数。

若a与m互质,则存在唯一的解x0,且x≡x0(mod m)。

若a与m不互质,且b可被a整除,则方程组有无穷多个解,否则无解。

2. 中国剩余定理:中国剩余定理适用于一组两两互质的模数的同余方程组。

设m1、m2、...、mn为两两互质的正整数,a1、a2、...、an为整数,则同余方程组:x≡a1(mod m1)x≡a2(mod m2)...x≡an(mod mn)有唯一的解x,且0≤x<m1m2...mn。

四、例题解析1. 解线性同余方程组:求解方程组2x≡3(mod 5)和3x≡4(mod 7)。

首先,对于第一个方程,由于2与5互质,所以存在唯一解x0。

根据扩展欧几里得算法,我们可以求出x0=4。

然后,将x0代入第二个方程,得到3*4≡4(mod 7),即12≡4(mod 7)。

第5讲同余的概念和性质

第5讲同余的概念和性质

第5讲-同余的概念和性质第5讲同余的概念和性质解题思路:理解并熟记同余的性质,运用同余性质把数化小、化易。

同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm).性质1:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。

★性质2:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。

★性质3:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。

性质4:若a≡b(mod m),那么a n≡b n(mod m),(其中n为自然数)。

性质5:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。

例1 判定288和214对于模37是否同余,74与20呢?例2 求乘积418×814×1616除以13所得的余数。

例3 求14389除以7的余数。

例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,…,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列?十位,…上的数码,再设M=a+0a+…+n a,求证:N≡M(mod 9)例6 求自然数1002+1013+1024的个位数字。

习题1.验证对于任意整数a 、b ,式子a ≡b (mod1)成立,并说出它的含义。

2.已知自然数a 、b 、c ,其中c ≥3,a 除以c 余1,b 除以c 余2,则ab 除以c 余多少?3.1993年的六月一日是星期二,这一年的十月一日是星期几?4.求33335555+55553333被7除的余数。

6. 数,被13除余多少?7.求1993100的个位数字.第五讲 同余的概念和性质你会解答下面的问题吗?问题1:今天是星期日,再过15天就是“六·一”儿童节了,问“六·一”儿童节是星期几?这个问题并不难答.因为,一个星期有7天,而15÷7=2…1,即15=7×2+1,所以“六·一”儿童节是星期一。

同余的概念及其基本性质

同余的概念及其基本性质

学院学术论文题目: 同余的概念及其基本性质学号:学校:专业:班级:姓名:指导老师:时间:摘要:初等数论是研究数的规律,特别是整数性质的数学分支。

它以算术方法为主要研究方法,在日常生活中,我们所要注意的常常不是某些整数,而是这些数用某一固定的数去除所得的余数。

同余概念的产生可以说大大丰富了数学的内容。

同余是数论中的一个基本概念,同余的应用,一:检查因数的一些方法;二:弃九法。

在本专题的学习中,培养我分析推理解决问题的能力,理解问题的实质。

关键字:同余整数算术Summary:The number of elementary number theory is to study the law, in particularinteger nature of the branch of mathematics. It arithmetic method as the main research methods in their daily lives, we are often not to pay attention to some integer, but these numbers with a fixed a number of removal from the remainder. I created the concept of the same can be said to have greatly enriched the content of mathematics. Number theory congruence is a basic concept of the application with more than one: Check factor of some of the ways; 2: abandoned nine law. In the topic of study, training my analysis reasoning ability to solve problems, understand the essence of the problem.Keyword :Congruence Integer Arithmetic引言数论是研究整数性质的一门学科,它是数学中最古老的分支之一,内容极为丰富,曾被数学家说成是数学的皇后。

同余定理知识点总结

同余定理知识点总结

同余定理知识点总结同余定理通常被描述为以下形式:如果整数a和b对于模m同余,即a ≡ b (mod m),那么a和b除以模m的余数是相等的。

同余定理可以改写为a mod m = b mod m。

同余定理有两个基本的性质。

首先,它是一种等价关系,具有自反性、对称性和传递性。

其次,同余定理具有乘法和加法性质。

首先,我们来讨论同余定理的基本性质。

同余关系是一种等价关系,即它具有自反性、对称性和传递性。

自反性指的是对于任意的整数a,a ≡ a (mod m)。

这意味着任意整数都与自己对模m同余。

对称性指的是如果a ≡ b (mod m),那么b ≡ a (mod m)。

传递性指的是如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。

这三种性质构成了同余关系的一个等价关系,可以将整数划分为同余类,使得具有相同除模m余数的整数在同一个同余类中。

其次,同余定理具有乘法和加法性质。

对于任意的整数a、b、c和模m,如果a ≡ b (mod m)和c ≡ d (mod m),那么有以下性质:a + c ≡ b + d (mod m)和a * c ≡ b * d (mod m)。

这两个性质表明了同余定理在乘法和加法下的保持性。

同余定理在数论和代数中有广泛的应用。

首先,同余定理常常被用来简化计算。

通过使用同余定理,我们可以将复杂的计算转化为求余数的简单计算,从而节省时间和精力。

其次,同余定理在代数方程的求解中有着广泛的应用。

例如,对于一个模线性方程a * x ≡ b (mod m),我们可以通过同余定理将其转化为x的一元一次同余方程,从而求解出x的取值范围。

此外,同余定理在密码学领域也有着重要的应用。

加密算法中常常使用同余定理来进行模运算,从而实现数据的加密和解密。

在数论中,同余定理还有一些重要的推论。

首先,费马小定理和欧拉定理是同余定理的重要推论。

费马小定理描述了素数模意义下的幂运算规律,欧拉定理描述了任意模意义下的幂运算规律。

数学公式知识:同余与模运算的定义、性质及其应用

数学公式知识:同余与模运算的定义、性质及其应用

数学公式知识:同余与模运算的定义、性质及其应用同余与模运算是数学中一个重要的概念,它们在整数与群论、代数数论、数论几何等不同数学分支中都有着广泛的应用。

本文将着重介绍同余与模运算的定义、性质以及其在数学中的应用。

一、同余和模运算的定义1、同余定义同余是数学中一个非常基本的概念,它是指模相同的两个整数之间的差值是模的整数倍。

换句话说,若整数a与b满足a – b能够被整数n整除,那么就称a和b在模n意义下同余,记为a ≡ b (mod n)。

例如,对于n = 5,可以得到以下同余关系:3 ≡ 13 (mod 5)14 ≡ -1 (mod 5)25 ≡ 0 (mod 5)同余运算具有传递性、反对称性以及自反性,即若a ≡ b (mod n),b ≡ c (mod n),则有a ≡ c (mod n);若a ≡ b (mod n),则不成立b ≡ a (mod n);对于任意整数a,有a ≡ a (mod n)。

2、模运算定义模运算可以看做是一种求余数的运算,它的操作是将一个整数除以另一个整数,然后取余数。

例如,对于a和b两个整数,并设n是一个正整数,则a对n取模为r,可以写成a mod n = r。

这里,r表示整数a除以n所得到的余数,称为模n意义下的a的余数。

二、同余与模运算的性质1、同余的基本性质同余运算具有可加性、可乘性和可减性,即若a₁ ≡ b₁ (mod n),a₂ ≡ b₂ (mod n),则有a₁ + a₂ ≡ b₁ + b₂ (mod n)a₁ × a₂ ≡ b₁ × b₂ (mod n)a₁– a₂ ≡ b₁ - b₂ (mod n)2、模运算的基本性质模运算具有基本的反转性和线性性质,即若a₁ mod n = r₁,a₂mod n = r₂,则有a₁ + a₂ mod n ≡ (r₁ + r₂) mod na₁ × a₂ mod n ≡ (r₁ × r₂) mod n3、Euler定理性质Euler定理是基于费马小定理而得到的一个命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同余的概念与性质
同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。

性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。

性质2:同余关系满足下列规律:
(1)自反律:对任何模m 都有)(mod m a a ≡;
(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;
(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。

性质 3:若,,,2,1),(mod s i m b a i i =≡则
).(mod ),
(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++
推论: 设k 是整数,n 是正整数,
(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。

(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。

性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。

性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。

性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。

性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。

性质8:若)(mod i m b a ≡,s i ,,2,1 =,则
]),,,(mod[21s m m m b a ≡
这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。

(算术基本定理)任何一个大于1的整数均可分解为素数的乘积,若不考虑素数相乘的前后顺序,则分解式是惟一的。

例如322224⨯⨯⨯=。

一个整数分解成素数的乘积时,其中有些素数可能重复出现,例如上面24的分解式中2出现了三次。

把分解式中相同的素数的积写成幂的形式,我们就可把大于1的整数n 写成 s s p p p n ααα 2121= ,0>i a ,s i ,,2,1 =。

上述式子称为a 的标准分解式。

定理3(欧拉定理)若1),(=m a ,则
)(mod 1)(m a
n ≡ϕ。

其中)1()1)(1()(211121121---=---s s p p p p p p n s αααϕ为n 的欧拉
函数
定理4(费尔马定理) 若p 是素数,则
)(mod p a a p

例6:求使2n +1能被3整除的一切自然数n.
例7:设
101010=a ,问某星期一后的第a 天是星期几?
(2011年)证明:对任意整数4≥n ,存在一个n 次多项式
0111)(a x a x a x x f n n n ++++=--
具有如下性质:
(1)110,,,-n a a a 均为正整数;
(2)对任意正整数m ,及任意k (2≥k )个互不相同的正整数k r r r ,,,21 ,均有
)()()()(21n r f r f r f m f ≠。

相关文档
最新文档