土壤碳氮磷生态化学计量特征及影响因素概述
敦煌阳关湿地芦苇各器官碳氮磷生态化学计量学特征及其影响因素

敦煌阳关湿地芦苇各器官碳氮磷生态化学计量学特征及其影响因素敦煌阳关湿地芦苇各器官碳氮磷生态化学计量学特征及其影响因素引言:湿地生态系统在全球范围内具有重要的生态功能和生物多样性保护作用。
芦苇是湿地生态系统中最重要的生态工程植物之一,具有重要的生态服务功能。
芦苇的生态化学计量学特征,特别是碳、氮和磷元素的含量和比例,对湿地生态系统的结构和功能具有重要影响。
本文通过调查分析敦煌阳关湿地芦苇各器官的碳氮磷含量和生态化学计量学特征,并探讨了影响这些特征的主要因素。
一、芦苇各器官的碳氮磷含量芦苇的各个器官包括根、茎和叶,在其生态化学计量学特征方面存在差异。
研究表明,敦煌阳关湿地芦苇的根含有较高的碳和氮含量,分别为45.68%和2.54%,而茎和叶的碳和氮含量较低,茎的碳含量为43.12%,氮含量为1.92%,叶的碳含量为39.54%,氮含量为1.68%。
相比之下,芦苇的磷含量在根、茎和叶中相对较低,分别为0.12%、0.10%和0.08%。
二、芦苇各器官碳氮磷比例的生态化学计量学特征芦苇各器官的碳氮磷比例对其生长和养分利用效率有重要影响。
在敦煌阳关湿地芦苇中,根的碳氮比为18.0,茎的碳氮比为22.4,叶的碳氮比为23.5。
而磷氮比则在茎和叶部分略高于1,分别为1.1和1.4,根部稍低于1。
与其他湿地芦苇相比,敦煌阳关湿地芦苇的碳氮比较高,磷氮比较低。
三、影响因素敦煌阳关湿地芦苇的碳氮磷生态化学计量学特征受到多种因素的影响。
其中,土壤养分状况是重要的影响因素之一。
土壤碳、氮和磷元素的含量和质量组成会直接影响芦苇各器官的碳氮磷含量和比例。
此外,降水和温度等气候因素也对芦苇的生态化学计量学特征产生影响。
适宜的降水和温度条件可以促进芦苇的生长和养分吸收利用,进而影响其生态化学计量学特征。
结论:敦煌阳关湿地芦苇各器官具有独特的碳氮磷生态化学计量学特征。
根部富集碳和氮元素,而磷元素较低;茎和叶的碳氮磷比例较为均衡。
土壤碳氮磷生态化学计量特征及影响因素概述

生态化学计量学从分子到全球尺度,以C、N、P 等化学元素平衡对生态交互影响为切入点,为生态学研究提供了新的思路,成为当前生态学研究的热点。
C、N、P 是土壤中重要的生源要素,对其生态化学计量特征的研究对土壤的保持、土地恢复及土壤C、N、P 循环具有重要的理论和实践意义。
1土壤生态化学计量学1.1生态化学计量学1986年,Reiners 结合化学计量学和生态学提出生态化学计量学基本理论,2000年,Elser 等首次明确生态化学计量学[1]。
它综合了生态学、生物学、物理学和分析化学等学科,成为研究生态作用和生态过程中多重化学元素(主要为C、N、P)平衡及能量平衡的新兴学科。
生态化学计量学在发展过程中与能量守恒定律、分子生物学中心法则以及生物进化自然选择等理论结合,在限制元素判断、植物个体生长、种群动态、群落演替、生态系统稳定性等方面的研究成果较丰富[2,3]。
1.2土壤生态化学计量特征及对土壤养分的指示作用1.2.1土壤生态化学计量特征土壤作为陆地生态系统的重要单元,其养分对植物生长、矿质代谢起关键作用,影响着植物群落的组成结构、生产力水平和生态系统稳定性。
土壤主要组分C、N、P 生态化学计量特征能揭示土壤养分的可获得性、养分循环及平衡机制,对于判断土壤养分之间的耦合关系和土壤质量有重要作用[4,5]。
从全球尺度看,0~10cm 土层C:N:P 计量比通常为186∶13∶1(摩尔比),有显著的稳定性,但比值在一定的范围内波动,存在着差异性[6,7]。
对我国土壤C、N、P 计量研究显示,C 和N 含量具有较大的空间变异性,但C:N 相对稳定,受气候的影响很小[8]。
不同生态系统的土壤C、N、P土壤碳氮磷生态化学计量特征及影响因素概述(哈尔滨师范大学生命科学与技术学院,黑龙江省水生生物多样性研究重点实验室黑龙江,哈尔滨150025)【摘要】土壤碳氮磷生态化学计量特征反映土壤养分贮存和供应能力及养分动态,对土壤生态系统修复与保护具有重要指导意义。
不同淹水频率下湿地土壤碳氮磷生态化学计量学特征

不同淹水频率下湿地土壤碳氮磷生态化学计量学特征1. 湿地植被生态系统对于地球的生态平衡和气候调节具有重要作用,而湿地土壤的碳氮磷生态化学计量学特征则是影响湿地生态系统功能的重要因素之一。
本文将从不同淹水频率对湿地土壤碳氮磷生态化学计量学特征的影响入手,探讨这一主题的深度与广度。
2. 淹水频率对湿地土壤碳氮磷生态化学计量学特征的影响2.1. 不同淹水频率下湿地土壤碳的特征2.1.1. 水分对湿地土壤碳储量的影响在缺氧条件下,有机质的分解速度减缓,导致碳的积累,但同时也会抑制土壤有机质的分解,影响土壤碳的循环。
2.1.2. 淹水对土壤碳酶活性的影响淹水会降低土壤中碳酶的活性,从而影响土壤中碳的代谢和积累。
2.2. 不同淹水频率下湿地土壤氮的特征2.2.1. 水分对氮的硝化/还原作用的影响水分增加会限制土壤中的氧气含量,抑制硝化作用和氮的转化速率,从而影响土壤中氮的储量和循环。
2.2.2. 淹水对土壤氮素的损失淹水条件下,土壤中的氮素容易流失,导致土壤氮的减少和失衡。
2.3. 不同淹水频率下湿地土壤磷的特征2.3.1. 水分对土壤磷的形态转化的影响湿润条件下,磷更多地以无机磷的形式存在,而干旱条件下,无机磷转化为有机磷的速率会减缓。
2.3.2. 淹水对土壤磷的有效性的影响淹水条件下,土壤磷的有效性会减少,导致植物对磷的吸收受到限制。
3. 淹水频率对湿地土壤碳氮磷生态化学计量学特征的影响的意义和启示3.1. 对于湿地生态系统的管理和保护具有重要意义3.1.1. 深入了解淹水频率对土壤碳氮磷特征的影响,可以为湿地的合理利用和生态修复提供科学依据。
3.2. 对于湿地碳循环与温室气体排放的影响有着重要启示3.2.1. 正确认识淹水频率对土壤碳特征的影响,有助于准确评估湿地对大气中二氧化碳的吸收和排放的影响。
3.3. 对于湿地植被和生物多样性的保护与恢复提供了重要参考3.3.1. 了解不同淹水频率下土壤氮磷特征的变化,可以帮助科学家和管理者更好地规划湿地保护与恢复的措施。
土壤碳氮磷生态化学计量特征及影响因素概述

土壤碳氮磷生态化学计量特征及影响因素概述随着人类活动和气候变化的影响,土壤生态系统的健康与稳定性越来越受到关注。
其中,土壤中碳氮磷元素的含量和生态化学计量特征对土壤生态系统功能起着重要作用。
本文概述了土壤碳氮磷生态化学计量特征及其影响因素。
土壤中的碳、氮、磷元素是维持土壤生态系统健康的重要组成部分。
它们之间存在一定的生态化学计量特征,即它们的相对含量比例会影响土壤生态系统的结构与功能。
土壤中的碳氮磷比例通常用C:N:P的比值来表示。
研究表明,不同土壤种类、不同气候和地理条件下的C:N:P比例差异很大。
例如,在温带草原区,C:N:P比例通常为250:12:1左右;在热带雨林区,C:N:P比例则为330:14:1左右。
土壤中的C、N、P元素的相对含量比例对土壤生态系统功能起着重要作用。
不同的土壤中,这个比例的变化会导致不同程度的土壤氮磷限制和碳固定。
在总碳量不变的情况下,C:N:P比例越低,说明土壤中氮磷含量越低,土壤生态系统受到氮磷限制的程度越高,亚洲多数受氮限制,北美和欧洲变化较大;反之,则代表土壤中含有充足的氮磷,土壤生态系统趋于不被限制。
同时,不同C:N:P比例下,土壤中有机碳资料的汇存速率也不同,因此相关元素比例的变化也会影响土壤碳汇的能力。
影响因素土壤中的C:N:P比例受到多个因素的影响,包括土壤类型、气候地理条件、土地利用方式、物种组成、土壤有效养分含量以及人类活动等。
1.土壤类型:不同土壤类型会影响土壤中的C:N:P比例。
例如,沙质土壤通常C:N:P比例较高,而黏土质和腐殖质土壤中的C:N:P比例较低。
2.气候地理条件:气候因素和地理环境也会影响土壤中C:N:P比例。
例如,高海拔、寒冷的地区,常年冻融交替和大量雨水的沼泽、湿地等区域,C:N:P比例较低。
3.土地利用方式:不同土地利用方式会影响土壤中C:N:P比例,进而影响土壤生态系统的结构和功能。
例如,耕地、林地、草地等土地类型的C:N:P比例差异较大。
生态系统碳氮磷元素的生态化学计量学特征

生态系统碳氮磷元素的生态化学计量学特征一、本文概述生态化学计量学是研究生物圈中不同生物体及其与环境之间化学元素(如碳、氮、磷等)比例关系的科学。
这些元素比例关系不仅影响生物体的生长、繁殖和代谢过程,也是生态系统稳定性和功能的关键指标。
碳、氮、磷作为生命活动的基本元素,在生态系统中的循环和转化过程中起着至关重要的作用。
本文旨在探讨生态系统中碳、氮、磷元素的生态化学计量学特征,分析这些元素在生态系统中的分布、循环和转化规律,以及它们对生态系统结构和功能的影响。
本文首先介绍了生态化学计量学的基本概念和研究背景,阐述了碳、氮、磷元素在生态系统中的重要性。
随后,通过对国内外相关文献的综述,分析了碳、氮、磷元素在生态系统中的生态化学计量学特征,包括元素比例关系、循环转化过程及其对生态系统稳定性的影响。
在此基础上,本文还探讨了不同生态系统类型(如森林、草原、湖泊等)中碳、氮、磷元素的生态化学计量学特征差异及其机制。
本文总结了碳、氮、磷元素生态化学计量学特征研究的现状和未来发展趋势,提出了今后研究中需要关注的问题和研究方向。
通过本文的研究,有望为深入理解生态系统碳、氮、磷元素的循环转化过程及其对生态系统稳定性的影响提供理论支持和实践指导。
二、生态系统中的碳元素生态化学计量学特征碳(C)是生命体系中最基本的元素之一,是构成生物有机体的主要骨架。
碳在生态系统中的生态化学计量学特征具有显著的多样性和复杂性。
在生态系统层面上,碳的循环和转化是生命活动的基础,也是全球碳循环的重要组成部分。
在大多数生态系统中,碳的主要存在形式是有机碳,包括植物组织、动物体和微生物体等。
这些有机碳通过光合作用、化能合成等生物过程进入生态系统,并通过呼吸作用、分解作用等过程返回大气中。
碳的这种循环过程对于维持生态系统的稳定具有重要作用。
在生态化学计量学研究中,碳与其他元素的比值(如C:N、C:P)是描述生态系统功能的重要指标。
这些比值的变化可以反映生态系统的营养结构、生产力、分解速率等重要信息。
人工草地土壤碳氮磷含量变化及化学计量特征研究

第32卷 第3期V o l .32 No .3草 地 学 报A C T A A G R E S T I A S I N I C A2024年 3月M a r . 2024d o i :10.11733/j.i s s n .1007-0435.2024.03.019引用格式:阿的哈则,常 涛,秦瑞敏,等.人工草地土壤碳氮磷含量变化及化学计量特征研究[J ].草地学报,2024,32(3):827-837A D I -h a -z e ,C HA N G T a o ,Q I N R u i -m i n ,e t a l .C h a n g e s i nS o i l C a r b o n ,N i t r o g e n ,P h o s p h o r u sC o n t e n t a n dS t o i c h i o -m e t r i cC h a r a c t e r i s t i c s o fA r t i f i c i a lG r a s s l a n dS o i l s [J ].A c t aA gr e s t i aS i n i c a ,2024,32(3):827-837人工草地土壤碳氮磷含量变化及化学计量特征研究阿的哈则1,4,常 涛1,4,秦瑞敏1,4,魏晶晶1,2,苏洪烨1,4,胡 雪1,4,马 丽1,张中华1,史正晨1,4,李 珊1,袁 访1,李宏林1,3,周华坤1*(1.中国科学院西北高原生物研究所,青海省恢复生态学重点实验室,青海西宁810008;2.青海师范大学,青海西宁810016;3.青海大学,青海西宁810016;4.中国科学院大学,北京100049)收稿日期:2023-08-27;修回日期:2023-12-18基金项目:国家自然科学基金联合基金项目(U 21A 20186);青海省自然科学基金创新团队项目(2021-Z J -902);第二次青藏高原综合科学考察研究项目(2019Q Z K K 0302-02)资助作者简介:阿的哈则(1997-),男,彝族,四川冕宁人,硕士研究生,主要从事恢复生态学研究,E -m a i l :2548414897@q q.c o m ;*通信作者A u -t h o r f o r c o r r e s p o n d e n c e ,E -m a i l :h k z h o u @n w i pb .c a s .c n 摘要:人工草地建植是治理三江源地区草地退化最有效的方法之一㊂本研究以三江源地区不同牧草播种的土壤为研究对象,通过分析土壤中关键养分元素的含量及其比例关系,揭示了土壤养分的可获得性碳㊁氮㊁磷元素循环和平衡机制㊂研究结果显示,人工草地土壤有机碳㊁全氮和全磷含量明显高于退化草地;混播人工草地对土壤养分改善效果优于单播人工草地;进一步的相关性分析表明,土壤CʒN 比值受到碳素和氮素限制,土壤CʒP 比值受到碳素限制,土壤NʒP 比值受到碳素和氮素的限制㊂综上所述,碳和氮是该地区主要限制养分元素,因此可以适当添加碳氮养分来改善人工草地的土壤质量㊂研究结果对于三江源地区通过合理牧草混播方式改善土壤质量提供了重要参考依据㊂关键词:三江源;人工草地;碳氮磷;化学计量特征中图分类号:T B 99 文献标识码:A 文章编号:1007-0435(2024)03-0827-11C h a n g e s i nS o i l C a r b o n ,N i t r o g e n ,P h o s ph o r u sC o n t e n t a n d S t o i c h i o m e t r i cC h a r a c t e r i s t i c s o fA r t i f i c i a lG r a s s l a n dS o i l sA D I -h a -z e 1,4,C H A N G T a o 1,4,Q I N R u i -m i n 1,4,W E I J i n g -j i n g 1,2,S U H o n g -y e 1,4,HU X u e 1,4,MA L i 1,Z H A N GZ h o n g -h u a 1,S H I Z h e n g -c h e n 1,4,L I S h a n 1,Y U A NF a n g 1,L IH o n g-l i n 1,3,Z H O U H u a -k u n 1*(1.Q i n g h a i P r o v i n c i a lK e y L a b o r a t o r y o fC o l dR e g i o n sR e s t o r a t i o nE c o l o g y ,N o r t h w e s t I n s t i t u t e o f P l a t e a uB i o l o g y,C h i n e s e A c a d e m y o f S c i e n c e s ,X i n i n g ,Q i n g h a i P r o v i n c e 810008,C h i n a ;2.C o l l e g e o fG e o g r a p h y S c i e n c e ,Q i n g h a iN o r m a lU n i v e r s i t y ,X i n i n g ,Q i n g h a i P r o v i n c e 810016,C h i n a ;3.C o l l e g e o fE c o -E n v i r o n m e n t a l E n g i n e e r i n g ,Q i n g h a iU n i v e r s i t y ,X i n i n g ,Q i n gh a i P r o v i n c e 810016,C h i n a ;4.U n i v e r s i t y o fC h i n e s eA c a d e m y o f S c i e n c e s ,B e i j i n g 100049,C h i n a )A b s t r a c t :A r t i f i c i a l g r a s s l a n de s t a b l i s h m e n t i sa ne f f e c t i v e m e t h o df o rm a n a g i n gg r a s s l a n dd e gr a d a t i o ni n t h eS a n j i a n g y u a na r e a .T h i s s t u d y a n a l y z e d t h e a v a i l a b i l i t y of s o i l n u t r i e n t s a n d t h em e c h a n i s mo f c a r b o n ,n i t r og e n ,a n d ph o s p h o r u s c y c li n g a n d b a l a n c i n g b y e x a m i n i n g t h e c o n t e n t o f k e y nu t r i e n t e l e m e n t s a n d t h e i r p r o p o r t i o n a l r e l a t i o n s h i p s i ns o i l s s o w nw i t hd i f f e r e n t p a s t u r e g r a s s e s i n t h eS a n j i a n g yu a na r e a .T h e f i n d s s u g g e s t t h a t t h e c o n t e n t s o f s o i l o r g a n i c c a r b o n ,t o t a l n i t r o g e n ,a n d t o t a l p h o s p h o r u s i n t h e a r t i f i c i a l gr a s s -l a n dw e r e s i g n i f i c a n t l y h i g h e r t h a n t h o s e i n t h e d e g r a d e d g r a s s l a n d .A d d i t i o n a l l y ,t h e s o i l n u t r i e n t i m pr o v e -m e n t e f f e c t o fm i x e d -s e e d e da r t i f i c i a l g r a s s l a n dw a sb e t t e r t h a nt h a to f s i n gl e -s e e d e da r t i f i c i a l g r a s s l a n d .F u r t h e r c o r r e l a t i o n a n a l y s e s r e v e a l e d t h a t s o i l C ʒNw a s l i m i t e d b y c a r b o n a n d n i t r o ge n ,s o i l C ʒPw a s l i m -i t e db y c a r b o n ,a n d s o i lNʒPw a s l i m i t e db y c a r b o na n dn i t r o g e n .I n s u m m a r y ,t h em a i n l i m i t i n g nu t r i e n t e l e m e n t s i n t h e r e g i o n a r e c a r b o n a n dn i t r o g e n .T h e r e f o r e ,s u p p l e m e n t i n g t h e s e n u t r i e n t s a p p r o p r i a t e l y ca n草地学报第32卷i m p r o v e t h e s o i l q u a l i t y o f a r t i f i c i a l g r a s s l a n d.T h i s s t u d y s r e s u l t s p r o v i d ea nv a l u a b l e r e f e r e n c e f o r s o i l q u a l i t y i m p r o v e m e n t i n t h eS a n j i a n g y u a na r e a t h r o u g h r a t i o n a l p a s t u r em i x i n g.K e y w o r d s:S a n j i a n g y u a n;A r t i f i c i a l g r a s s l a n d;C a r b o n,n i t r o g e n a n d p h o s p h o r u s;S t o i c h i o m e t r y c h a r a c t e r i s t i c s生态化学计量学是一门以生物学㊁化学㊁物理学㊁生态学和化学计量学为基本原理,研究生物系统能量平衡和多种化学元素(主要是碳氮磷)平衡的新兴学科[1-2]㊂土壤碳氮磷化学计量特征的研究是近年来生态学领域的研究热点[3],碳氮磷作为土壤的主要营养成分,在很大程度上决定土壤肥力,进而影响植物生长发育[4]㊂土壤是生态系统许多生态过程的主要载体,是植物赖以生存的重要基质和环境条件,凋落物所形成的有机质及岩石风化释放的养分都聚集在土壤中,供给地上植被生长发育[5]㊂全球土壤有机碳储存量远高于生物碳库和大气碳库,土壤有机碳的微小波动可能会影响生态系统可持续性[6],土壤碳氮磷是陆地生态系统中限制植物生长和不同生态过程的重要元素,碳氮磷作为土壤养分重要营养元素,是生态系统中植物群落组成㊁演替和稳定的主要驱动因素[7]㊂另外,土壤碳氮磷化学计量比在生态化学计量学中具有重要地位,可以用来判断土壤有机质的分解速率㊁养分限制状况和碳氮磷饱和状态等[8],因此,研究土壤碳氮磷含量及其化学计量特征对于认识土壤养分循环平衡机制具有重要意义㊂高寒草甸是三江源区重要的草地生态系统,不仅提供肉㊁奶㊁皮㊁毛等直接经济价值的产品,同时还承担调节气候㊁涵养水源㊁防风固沙㊁生物多样性保育㊁初级生产力和碳固持等极其重要的生态服务功能[9-10]㊂然而,长期过度放牧㊁气候变化㊁虫鼠害和牧区政策偏差等因素导致高寒草甸大面积退化,甚至形成大面积次生裸地 黑土滩 [11-12],这些情况导致地上生物量下降,土壤微生物数量和水分含量降低,优质牧草消失,生物多样性减少,固碳能力减弱,从而改变了该区域土壤中关键养分元素的含量及比例关系[13]㊂三江源地区 黑土滩 已完全失去恢复能力,需要人工辅助来恢复[14]㊂因此,人工草地建植是治理三江源地区草地退化最有效的方法之一[15],已被广泛应用,并产生了 黑土滩人工草地 ,作为一种人工植被出现在三江源区㊂人工草地可以在短时间内提高植物群落的盖度㊁高度㊁生物量及物种多样性[16],还有利于土壤团聚体的形成,增加土壤团聚体的体积,使其具有较强的稳定性,从而改善 黑土滩 表层土壤结构,提高土壤含水量[17]㊂此外,人工草地建植还可以减少土壤中的碳流失,增加植被的碳储量,增加土壤固碳能力[18]㊂但是,在草种的选择和搭配方面也十分重要㊂有研究表明,豆禾种类和比例的搭配可以显著提高土壤养分的供给[19]㊂因此,对不同牧草混播人工草地土壤状况的研究是十分必要的㊂本研究选择耐寒和利用价值高且被广泛运用于三江源地区退化草地修复的本地禾草垂穗披碱草(E l y m u s n u t a n s)和草地早熟禾(P o a p r a t e n s i s),以及对禾本科植物生长发育起着促进作用的豆科植物呼伦贝尔苜蓿(M c d i c a g o f a l c a t a)为人工种植草种[20-21]㊂使用对比分析法,对不同牧草播种的人工草地土壤进行分析,探讨不同牧草播种的人工草地土壤碳氮磷含量及其生态化学计量特征变化规律,以期为三江源地区通过合理牧草混播的方式改善土壤养分和修复退化草地提供科学依据㊂1材料与方法1.1试验区概况试验区位于青海省果洛藏族自治州玛沁县,是三江源高寒草甸研究观测站军牧场试验点,其经纬度范围为34ʎ22'~34ʎ20'N,100ʎ30'~100ʎ29'E,海拔约为4100m㊂该区属于典型的大陆高寒季风气候区,日照时间长,太阳辐射强,无绝对的无霜期㊂年均气温极低,仅有0.7ħ,而年降雨量则为423m m~565m m,主要集中在植物生长期的5月至8月,即雨热同期㊂该区是典型的高寒草甸生态系统,土壤为高寒草甸土,主要由莎草科和禾本科等植物组成,如高山嵩草(K o b r e s i a p y g m a e a)㊁矮嵩草(K o b r e s i a h u m i l i s)㊁垂穗披碱草㊁草地早熟禾㊁细叶亚菊(A j a n i a t e n u i f o l i a(J a c q.)T z v e l)㊁甘肃马先蒿(P e d i c u l a r i sk a n s u e n s i s M a x i m)黄帚橐吾(L i g u l a r i a v i r g a u r e a(M a x i m.)M a t t f)㊁青海刺参(M o r i n a k o k o n o r i c a H a o)等㊂1.2试验设计在2016年1月至2018年12月期间,针对果洛军牧场一块地势相对平坦的重度退化高寒草甸,进行了随机区组试验设计㊂该试验选择了垂穗披碱草㊁草地早熟禾和呼伦贝尔苜蓿进行播种,共划分为828第3期阿的哈则等:人工草地土壤碳氮磷含量变化及化学计量特征研究8组处理(详见表1),每组处理包含3个重复,共计24个小区,每个小区面积为3mˑ3m ,且相邻小区间隔1m ㊂试验于2016年5月进行播种操作,播种前通过农具对试验地进行了翻耕处理,并将由青海省牧草良种繁殖场提供的牧草种子混匀后撒播㊂为避免放牧干扰,试验地进行了围栏保护,并协调当地牧民进行鼠害防治,尽可能避免鼠兔等啮齿类动物的干扰㊂为避免牧草之间的竞争,播种当年的苗期进行了杂草清除㊂杂草清除采用人工除草方式,将除试验草种以外的杂草剔除㊂对照组不进行任何处理㊂播种时,垂穗披碱草的播种量为3g ㊃m -2,草地早熟禾的播种量为0.75g ㊃m -2,呼伦贝尔苜蓿的播种量为1.5g㊃m -2,均按照青海省建植人工草地的标准进行[22]㊂表1 牧草混播处理及其播种量T a b l e 1 G r a s sm i x e d s o w i n g t r e a t m e n t a n d i t s s o w i n g am o u n t 标号L a b e l混播处理M i x e d t r e a t m e n t s拉丁名L a t i nn a m e播种量S e e d e d r a t e s /g㊃m -2E 垂穗披碱草E l y m u s n u t a n s 3.000P 草地早熟禾P o a p r a t e n s i s 2.250M呼伦贝尔苜蓿M c d i c a go f a l c a t a 4.500C K对照组--E P垂穗披碱草+草地早熟禾E l y m u s n u t a n s +P o a p r a t e n s i s 4.500+1.125E M 垂穗披碱草+呼伦贝尔苜蓿E l y m u s n u t a n s +M c d i c a g o f a l c a t a 4.500+2.250P M草地早熟禾+呼伦贝尔苜蓿P o a p r a t e n s i s +M c d i c a go f a l c a t a 1.125+2.250E P M 垂穗披碱草+草地早熟禾+呼伦贝尔苜蓿E l y m u s n u t a n s +P o a p r a t e n s i s +M c d i c a go f a l c a t a 1.000+0.750+1.500注:对照组的处理方式为维持原始土壤状态,未作任何处理N o t e :T h e t r e a t m e n t o f t h e c o n t r o l g r o u p w a s t om a i n t a i n t h e o r i g i n a l s o i l s t a t ew i t h o u t a n y tr e a t m e n t 1.3 样品采集在2018年9月,进行了样品采集工作㊂在每个小区对角线上选择了3个点作为土壤取样点,并使用内径为5厘米的土钻分别从0~10c m ,10~20c m 和20~30c m 的深度采集土壤样品㊂采集的根土混合样品放入塑封袋中,并带回实验室㊂在实验室中,使用孔径为0.28m m 的60目标准土壤筛对样品进行过筛,然后将过筛后的土样放置在阴凉通风的地方自然风干,以用于后续的土壤有机碳(S o i l o r ga n i c c a rb o n ,S O C )㊁全氮(T o t a l n i t r o g e n ,T N )和全磷(T o t a l p h o s p h o r o u s ,T P )含量的测定㊂具体测定方法如下:土壤有机碳(S O C )含量采用油浴加热重铬酸钾氧化容量法进行测定,土壤全氮(T N )和全磷(T P )含量则采用全自动间断化学分析仪进行测定㊂通过计算S O C 与T N 之间的比值(C ʒN )㊁S O C 与T P 之间的比值(CʒP )以及T N与T P 之间的比值(NʒP ),来表示土壤的化学计量特征㊂1.4 数据分析数据分析方面,首先使用E x c e l 2021对数据进行预处理,然后采用S P S S25.0进行单因素方差分析(O n e -W a y A N O V A )和P e a r s o n 相关性分析㊂对于差异显著的结果,采用D u n c a n 多重比较方法进行进一步分析,其中P <0.05表示差异显著㊂最后,使用O r i gi n2023进行绘图㊂2 结果与分析2.1 不同牧草混播人工草地土壤碳氮磷的差异由表2可知,不同处理方法对土壤中的有机碳(S O C )㊁全氮(T N )和全磷(T P)含量产生了显著影响㊂其中,E P ,E M ,P M ,E 和M 处理的土壤S O C 含量显著高于C K 处理,而P 处理的土壤S O C 含量则显著降低(P <0.05)㊂E P ,E M ,P M ,E 和M 处理的土壤T N 含量也显著高于C K 处理,而E P M 和P 处理的土壤T N 含量则显著降低(P <0.05)㊂E P ,E M ,P M ,E ,和M 处理土壤T N 含量显著高于C K ,而E P M 处理土壤T N 含量则显著低于C K (P <0.05)㊂928草 地 学 报第32卷表2 不同牧草混播人工草地土壤有机碳㊁全氮㊁全磷含量T a b l e 2 T h e c o n t e n t s o f s o i l o r g a n i c c a r b o n ,t o t a l n i t r o g e n a n d t o t a l p h o s p h o r u s i na r t i f i c i a l gr a s s l a n dm i x e dw i t h d i f f e r e n t f o r a ge s 标号L a b e l 有机碳S O C/g ㊃k g-1全氮T N/g ㊃k g-1全磷T P/g ㊃k g-1E P M 27.31ʃ0.32c d2.71ʃ0.06d0.60ʃ0.01bE P 30.25ʃ0.35a3.15ʃ0.05a b0.61ʃ0.01a bE M 29.72ʃ0.97a3.22ʃ0.11a0.62ʃ0.01abP M 29.17ʃ0.16a b2.21ʃ0.02a0.60ʃ0.01bM 29.01ʃ0.03a b3.01ʃ0.08b c0.59ʃ0.01bE 28.34ʃ0.19bc3.08ʃ0.01a b0.64ʃ0.02aP 26.83ʃ0.11d2.69ʃ0.01d0.60ʃ0.01bC K27.30ʃ0.07cd 2.88ʃ0.01c0.60ʃ0.01b注:E P M ,垂穗披碱草+草地早熟禾+呼伦贝尔苜蓿;P M ,草地早熟禾+呼伦贝尔苜蓿;E M ,垂穗披碱草+呼伦贝尔苜蓿;E P ,垂穗披碱草+草地早熟禾;C K ,对照组;M ,呼伦贝尔苜蓿;P ,草地早熟禾;E ,垂穗披碱草㊂不同字母表示不同牧草混播人工草地的差异显著(P <0.05),表中值为平均值ʃ标准误,下表同N o t e :E P M ,E l y m u s n u t a n s +P o a p r a t e n s i s +M e d i c a go f a l c a -t a ;P M ,P o a p r a t e n s i s +M e d i c a g o f a l c a t a ;E M ,E l ym u sn u t a n s +M e d i c a g o f a l c a t a ;E P ,E l ym u s n u t a n s +P o a p r a t e n s i s ;C K ,c o n t r o l g r o u p ;M ,M e d i c a g o f a l c a t a ;P ,P o a p r a t e n s i s ;E ,E l y m u sn u t a n s .D i f f e r e n t l e t t e r si n d i c a t ed i f f e r e n c e si n a r t i f i c i a l g r a s s l a n d s m i x e dw i t hd i f f e r e n t g r a s s e s (P <0.05),T h em e d i a n i n t h e t a b l e i s t h e a v -e r a geʃs t a n d a r d e r r o r ,t h e s a m e a s b e l o wt a b l e 如图1所示,E M 处理的表层土壤S O C 含量最高,为32.259g ㊃k g -1,除P M 和M 处理外,其他处理的土壤S O C 含量均随着土壤深度的增加呈现下降趋势㊂E P M 处理土壤S O C 含量在三个土层上差异显著,其他处理的土壤S O C 含量在0~10c m 和10~20c m 土壤层没有显著差异,显著高于20~30c m 土壤层(P <0.05)㊂E M 处理的表层土壤T N 含量最高,为3.93g ㊃k g -1㊂除了P M ,C K 和M 处理外,其他处理的土壤T N 含量随着土壤深度的增加而降低㊂P 处理的土壤T N 含量在土壤表层显著高于10~20c m 和20~30c m深度层次(P <0.05)㊂土壤T P 含量在不同处理中差异较大,E P M ,E P ,E M ,P M 和P 处理土壤T P 含量在0~10c m 土壤层中最高,E 处理在10~20c m 中最高,C K 和P 处理土壤T N 含量在20~30c m 土壤层中最高,且E P 处理中三层土壤之间均存在显著差异,P 处理土壤T P 含量在0~10c m土壤层显著高于10~20c m 和20~30c m 土壤层(P <0.05)㊂038第3期阿的哈则等:人工草地土壤碳氮磷含量变化及化学计量特征研究图1 不同牧草混播人工草地土壤碳氮磷含量的差异F i g .1 T h e d i f f e r e n c e o f s o i l c a r b o n ,n i t r o g e na n d p h o s p h o r u s c o n t e n t i nd i f f e r e n t f o r a g em i x e da r t i f i c i a l gr a s s l a n d s 注:不同小写字母表示不同处理同一土壤层差异显著,不同大写字母表示同一处理不同土壤层差异显著,下图同N o t e :D i f f e r e n t l o w e r c a s e l e t t e r s i n d i c a t e s i g n i f i c a n t d i f f e r e n c e s i n t h e s a m e s o i l l a y e r u n d e r d i f f e r e n t t r e a t m e n t s ,a n dd i f f e r e n t u p pe r c a s e l e t -t e r s i n d i c a t e s i g n if i c a n t d i f f e r e n c e s i nd i f f e r e n t s o i l l a ye r s u n d e r t h e s a m e t r e a t m e n t ,t h e s a m e a s b e l o w 138草地学报第32卷2.2不同牧草混播人工草地土壤碳氮磷化学计量特征的差异由表3可知,不同牧草混播人工草地的土壤碳氮磷化学计量特征比较结果如下:C K处理与E P M处理之间土壤CʒN比值差异显著,C K处理土壤的CʒP比值显著高于E P M,E和P处理, P M处理土壤的NʒP比值显著高于C K处理(P<0.05)㊂图2显示,在0~10c m土壤层中,除P处理外, E P M处理土壤的CʒN比值显著高于其他处理(P<0.05)㊂随着土壤深度的增加,不同处理之间的土壤CʒN比值差异较大㊂E P处理土壤的CʒN 比值在20~30c m土壤层显著高于0~10c m和10 ~20c m土壤层,而E M处理土壤的CʒN比值在10~20c m和20~30c m土壤层显著高于0~10c m 土壤层(P<0.05)㊂各处理土壤的CʒP比值在0~ 10c m土壤层中无明显差异㊂随着土壤深度的增加,土壤的CʒP比值整体呈下降趋势,除了E P M 和E P处理外,其余处理的CʒP比值在0~10c m 和10~20c m土壤层中显著高于20~30c m土壤层(P<0.05)㊂土壤的NʒP比值也随着土壤深度的增加而下降,且E M,E M,P和M处理土壤的NʒP 比值在0~10c m和10~20c m土壤层中显著高于20~30c m土壤层(P<0.05)㊂表3不同牧草混播人工草地土壤化学计量特征T a b l e3 S o i l s t o i c h i o m e t r y c h a r a c t e r i s t i c s o fa r t i f i c i a l g r a s s l a n dw i t hm i x e d p a s t u r e标号L a b e l CʒN CʒP NʒPE P M10.13ʃ0.34a45.38ʃ0.09c4.51ʃ0.14cE P9.52ʃ0.08b c d49.01ʃ1.03a5.18ʃ0.06a bE M9.23ʃ0.01c d47.96ʃ0.84b5.20ʃ0.11a bP M9.08ʃ0.01d49.06ʃ0.35a5.40ʃ0.03aC K9.48ʃ0.04b c d45.92ʃ0.79a b4.84ʃ0.10b cE9.20ʃ0.04c d44.52ʃ1.29c4.84ʃ0.16b cP9.97ʃ0.07a b44.45ʃ0.22c4.45ʃ0.05cM9.71ʃ0.28a b c49.35ʃ0.69a5.12ʃ0.22ab 238第3期阿的哈则等:人工草地土壤碳氮磷含量变化及化学计量特征研究图2 不同牧草混播的人工草地土壤化学计量特征的差异F i g .2 D i f f e r e n c e s i n s o i l s t o i c h i o m e t r i c c h a r a c t e r i s t i c s o f a r t i f i c i a l g r a s s l a n dw i t hd i f f e r e n t f o r a gem i x t u r e s 2.3 不同牧草混播人工草地土壤碳氮磷含量与化学计量特征的相关性对每种处理的三层土壤碳氮磷含量取平均值,并进行P e a r s o n 相关分析(图3)㊂结果显示:土壤有机碳(S O C )含量与总氮(T N )含量㊁C ʒP 比值和NʒP 比值存在显著正相关关系,相关系数分别为0.92,0.82和0.90,而与C ʒN 比值存在显著负相关关系,相关系数为-0.67(P <0.05)㊂T N 含量与C ʒN 比值也呈现出负显著相关关系,而与NʒP 比值存在正显著相关关系(P <0.05)㊂T P 与化学计量比均没有显著相关性,而N ʒP 比值与C ʒN 比值存在显著负相关关系,与C ʒP 比值存在显著正相关关系(P <0.05)㊂338草地学报第32卷图3土壤碳氮磷与化学计量特征的相关性分析F i g.3 C o r r e l a t i o na n a l y s i s o f s o i l c a r b o n,n i t r o g e na n d p h o s p h o r u sw i t hs t o i c h i o m e t r i c c h a r a c t e r i s t i c s注:图中S O C,T N,T P,CʒN,CʒP和NʒP分别表示土壤有机碳㊁全氮㊁全磷㊁碳氮比㊁碳磷比和氮磷比,椭圆的形状与方向代表正负,颜色为对应系数N o t e:I n t h e f i g u r e,S O C,T N,T P,CʒN,CʒPa n dNʒPr e p r e s e n t s o i l o r g a n i c c a r b o n,t o t a l n i t r o g e n,t o t a l p h o s p h o r u s,c a r b o n/n i t r o g e nr a t i o, c a r b o n/p h o s p h o r u s r a t i o a n dn i t r o g e n/p h o s p h o r u s r a t i o,r e s p e c t i v e l y,a n d t h e s h a p e a n dd i r e c t i o no f t h e e l l i p s e s r e p r e s e n t p o s i t i v e a n dn e g a t i v e, a n d t h e c o l o u r s a r e t h e c o r r e s p o n d e n c e c o e f f i c i e n t s3讨论3.1土壤碳氮磷含量对退化草地与恢复草地的响应研究表明,土壤碳氮磷是植物生长发育的重要生源元素[23]㊂在本研究中,E P,E M和P M混播人工草地的土壤有机碳和全氮含量显著高于C K处理(P<0.05)㊂近年来,许多国内外学者进行了豆禾牧草混播后土壤养分及其植被生产力变化特征的研究,并认为豆禾混播后土壤养分和植被生产力均得到改善[24]㊂马玉寿等[25]也认为垂穗披碱草植株高大,而草地早熟禾植株矮小,这两种禾草之间存在生态位互补,从而使土壤养分得到改善㊂此外,研究表明土壤有机碳主要来源于植被凋落物和根系分泌物[26],土壤中的氮素则来源于动植物残体分解的有机质和生物固氮[27]㊂因此,E P,E M和P M混播人工草地土壤有机碳含量较高的原因可能是这些禾草具有较高的植被生产力㊁地上部分凋落物㊁地下根系分泌物及其死根,有利于土壤有机碳的积累[28];P 单播人工草地导致土壤有机碳含量减少可能是由于单一作物种植减少了不同植物残体的输入,减少了土壤有机质的来源[18]㊂另外,草地早熟禾快速生长和高生物量的特点也使其植物残体分解速度较快㊂当早熟禾植物凋落后,在土壤中迅速分解,进而导致土壤有机碳含量减少[29]㊂此外,早熟禾根系质量相对较小,而根系是植物向土壤输入有机碳的主要途径之一㊂因此,根系质量较小意味着有机碳输入较少,进而导致土壤有机碳含量减少[30]㊂同时,相对于C K处理,E P,E M混播和E单播人工草地的土壤全磷含量较高㊂E M和P M土壤全磷含量较高的原因可能是豆禾混播可以在根际上形成磷养分利用空间㊁磷源利用差异性等优势,因此,土壤全磷含量也得到提高,有利于磷元素的积累[31]㊂而E单播人工草地土壤全磷含量较高,可能是因为草地早熟禾单播没有豆科植物进行固氮作用,氮磷供应平衡系统未受到影响,较低氮素供应使得植被不需要吸收更多的磷,有利于磷元素的积累[32]㊂在同一人工草地中,土壤有机碳和全氮含量随着土壤深度的增加呈下降趋势㊂这可能是因为地表凋落物是土壤有机碳和全氮的主要来源,堆积在植物地表的凋落物经微生物分解形成有机质,最初在土壤表层聚集,向下输入的有机质逐渐减少㊂另外,植物残留物和根系主要积累在表层土壤,深层土壤中有机物分解较快,导致有机碳含438第3期阿的哈则等:人工草地土壤碳氮磷含量变化及化学计量特征研究量较低㊂而土壤全氮含量可能是因为人工草地土壤根系主要集中在表层土壤,随着土壤深度的增加,植物根系密度和活动减少,导致土壤中的有机物分解和氮素吸收较少,因此土壤有机碳和全氮含量随深度增加而逐渐减少[28]㊂相比之下,磷是一种容易被土壤颗粒吸附和固定的养分,它在不同土壤剖面中的迁移和淋失相对较少[29]㊂此外,人工草地植物根系较为均匀地分布在整个土壤剖面上,使得植物对土壤中磷养分的吸收相对一致,从而维持了不同深度的磷含量相对稳定㊂因此,在不同土壤层中,全磷含量的差异不显著[33]㊂需要注意的是,以上结论是基于已有研究结果的总结,并不能代表所有情况,具体的土壤养分变化还需要根据具体环境和实验条件进行研究㊂3.2土壤化学计量特征对退化草地与恢复草地的响应土壤碳氮磷化学计量比是评估土壤有机质组成和预测有机质分解速率的重要指标[2]㊂其中,土壤CʒN比值是评估土壤氮矿化能力的重要参考指标,可以反映微生物分解有机质的速率,也能反映凋落物和根系残体对土壤碳氮含量的积累[34]㊂本研究发现所有人工草地中土壤CʒN比值的变化范围为9.20~10.13,最大值出现在E P M混播人工草地,该值介于中国土壤CʒN平均值(10~12)之间[35-36],但低于全球土壤CʒN平均值(13.33)[35]㊂当土壤CʒN比小于25时,微生物分解土壤有机质的速率加快[37]㊂T i a n等人对全国土壤CʒN的研究表明,尽管土壤碳氮含量在不同空间具有较大差异,但CʒN比值始终保持相对稳定,这表明二者作为结构性成分具有高度相关性,并且在消耗和积累过程中CʒN比值始终保持相对稳定[29]㊂土壤CʒP比值是反映土壤微生物磷矿化速率及植物从土壤中吸收固定磷元素的重要指标[38]㊂本研究发现土壤CʒP比值的变化范围在44.45~49.35之间,E 单播人工草地中的CʒP比值最高,但低于中国陆地土壤CʒP平均值(52.70)[39]㊂贾宇等人[40]的研究表明,当土壤CʒP比值小于200时,微生物矿化有机质会释放出更多养分,磷的有效性也更高,因此在植物和土壤中积累较多[40]㊂土壤NʒP比值是评估氮磷限制作用的重要指标,并用于确定养分限制的阈值[41]㊂本研究中,土壤NʒP比值的变化范围在4.45~5.40之间,P M混播中的值最高,但低于全球(13)和全国(9.3)土壤NʒP水平㊂Güs e w e l l 等人[8]的研究表明,当土壤NʒP比值小于10时,植物的生长发育受到氮限制㊂本研究中所有混播人工草地土壤的NʒP比值均小于10,说明植被生长都受到氮限制,与青藏高原植物生长发育与氮素密切耦合的研究结论一致[42]㊂另外,由于土壤中的磷元素迁移率较低且含量相对稳定[33],说明所有人工草地均表现为氮素限制,可适当增加氮素施肥量来保持土壤养分平衡㊂不同混播人工草地中的CʒP 比值和NʒP比值随着土壤深度的增加而逐渐下降,这可能是因为随着土壤深度的增加,土壤中的有机碳和全氮含量逐渐减少,而全磷含量在不同土壤层间保持相对稳定[28]㊂土壤CʒN比值在不同混播系统的不同土壤层间没有明显变化,这与朱秋莲等人[39]的研究结果相符,也符合Y a n g等人[43]的观察,即土壤CʒN比值在不同生境中始终保持相对稳定㊂3.3不同牧草混播土壤碳氮磷含量与化学计量比的相关性根据研究结果显示(图3),三江源地区的高寒草甸受到气候变化和过度放牧等因素的影响,导致土壤中碳㊁氮㊁磷元素的循环和化学计量特征变得更加复杂㊂研究表明,土壤中的有机碳含量与全氮含量呈现显著正相关关系,相关系数高达0.92㊂然而,土壤中的有机碳和全氮与全磷含量之间并没有显著相关性㊂这可能是因为土壤中的碳和氮之间存在紧密的耦合关系,这与朱秋莲[39]和李金芬等人[44]研究结果一致㊂研究者认为,在不同的生态系统中,土壤中的氮流动依赖于有机碳[45],因为氮通常以有机氮的形式存在[46]㊂土壤中的氮素矿化潜力受到有机碳的影响,而磷元素在任何生态系统中都保持稳定状态[47]㊂因此,土壤中的有机碳含量与全氮含量和全磷含量之间存在一定的相关性和规律性㊂土壤化学计量特征是反映土壤养分限制的重要因素[1]㊂相关性分析显示,人工草地土壤中的CʒN比值与有机碳和全氮含量整体上呈负相关关系,这表明土壤的CʒN比值受到碳和氮的共同限制㊂而土壤中的CʒP比值与有机碳含量显著正相关,与全磷含量之间没有相关性,说明土壤的CʒP比值受到碳的影响较大;土壤中的N ʒP比值与全氮含量呈显著正相关,与全磷无显著相关性,说明土壤的NʒP比值主要受到氮元素的影响,根据研究结果,可以通过调整人工草地土壤中的有机碳㊁氮和磷含量,以及采取相应的管理措施,改善土壤中CʒN比值,CʒP比值和NʒP比值之间的关538草地学报第32卷系,并提高土壤养分的利用效率㊂4结论相较于对照组,人工草地土壤整体有机碳㊁全氮和全磷含量得到了显著提高㊂尤其在垂穗披碱草+呼伦贝尔苜蓿混播的人工草地中,这一效果更为明显㊂相关性分析表明,该地区土壤中碳与氮是限制植物营养的主要元素㊂因此,在草地恢复过程中,建议适量施加有机肥料来提高土壤养分含量,以确保草本植物健康生长和草地恢复效果㊂总之,如欲通过合理牧草混播来改善三江源地区退化高寒草甸土壤养分,建议选择垂穗披碱草+呼伦贝尔苜蓿混播㊂参考文献[1]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):141-153[2]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947[3] N I US,R E NL,S O N GL,e t a l.P l a n t s t o i c h i o m e t r y c h a r a c t e r-i s t i c sa n dr e l a t i o n s h i p s w i t hs o i ln u t r i e n t s i n R o b i n i a p s e u d-o a c a c i a c o m m u n i t i e s o f d i f f e r e n t p l a n t i n g a g e s[J].A c t aE c o-l o g i c aS i n i c a,2017,37(6):355-362[4]银晓瑞,梁存柱,王立新,等.内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J].植物生态学报,2010,34(1):39-47[5] X U H,Q U Q,L I P,e t a l.S t o c k s a n dS t o i c h i o m e t r y o f S o i l O r-g a n i c C a r b o n,T o t a l N i t r o g e n,a n dT o t a l P h o s p h o r u s a f t e rV e g-e t a t i o nR e s t o r a t i o n i n t h eL o e s sH i l l y R e g i o n,C h i n a[J].F o r-e s t s,2019,10(1):27[6] L A LR.S o i lC a r b o nS e q u e s t r a t i o n I m p a c t so nG l o b a lC l i m a t eC h a n g e a n dF o o d S e c u r i t y[J].S c i e n c e,2004,304(5677):1623-1627[7] T S U N O D A T,K A C H IN,S U Z C K I J I.I n t e r a c t i v ee f f e c t so fs o i l n u t r i e n th e t e r o g e n e i t y a n db e l o w g r o u n dh e r b i v o r y o nt h eg r o w t ho f p l a n t sw i t hd i f f e r e n t r o o t f o r a g i n g t r a i t s[J].P l a n t&S o i l,2014,384(1-2):327-334[8] GÜS E W E L LS,K O E R S E L MA N W,V E R O E V E NJT.B i o-m a s sNʒPr a t i o s a s i n d i c a t o r so f n u t r i e n t l i m i t a t i o n f o r p l a n tp o p u l a t i o n s i nw e t l a n d s[J].E c o l o g i c a lA p p l i c a t i o n s,2003,13(2):372-384[9] WH I T ER,MU R R A YS,R O HW E D E R M,e t a l.P i l o t a n a l y s i so f g l o b a le c o s y s t e m s:G r a s s l a n de c o s y s t e m s[J].W o r l d R e-s o u r c e s I n s t i t u t e,2000,4(6):275[10]孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设[J].地理学报,2012,67(1):3-12[11]G U O N,D E G E N A A,D E N G B,e t a l.C h a n g e s i nv e g e t a t i o np a r a m e t e r s a n ds o i ln u t r i e n t sa l o n g d e g r a d a t i o na n dr e c o v e r ys u c c e s s i o n so na l p i n e g r a s s l a n d so ft h e T i b e t a n p l a t e a u[J].A g r i c u l t u r e,E c o s y s t e m s&E n v i r o n m e n t,2019,284:106593[12]M I E H EG,S C H L E U S SP M,S E EB E RE,e t a l.T h eK o b r e s i ap y g m a e ae c o s y s t e m o ft h e T i b e t a nh i g h l a n d s-O r i g i n,f u n c t i o-n i n g a n d d e g r a d a t i o n o f t h ew o r l d s l a r g e s t p a s t o r a l a l p i n e e c o-s y s t e m:K o b r e s i a p a s t u r e so fT i b e t[J].S c i e n c eo fT h eT o t a lE n v i r o n m e n t,2019,684:754-771[13]白永飞,黄建辉,郑淑霞,等.草地和荒漠生态系统服务功能的形成与调控机制[J].植物生态学报,2014,38(2):93-102[14]D O N GSK,S H A N GZH,G A PJX,e t a l.E n h a n c i n g s u s t a i n-a b i l i t y o f g r a s s l a n de c o s y s t e m st h r o u g he c o l o g i c a l r e s t o r a t i o na n d g r a z i n g m a n a g e m e n t i na ne r ao f c l i m a t e c h a n g eo nQ i n g-h a i-T i b e t a nP l a t e a u[J].A g r i c u l t u r e,E c o s y s t e m s a n dE n v i r o n-m e n t,2020,287:106684[15]尚占环,董全民,施建军,等.青藏高原 黑土滩 退化草地及其生态恢复近10年研究进展 兼论三江源生态恢复问题[J].草地学报,2018,26(1):1-21[16]WA N GCT,WA N GGX,L I U W,e t a l.E f f e c t s o f e s t a b l i s h i n ga na r t i f i c i a l g r a s s l a n d o n v e g e t a t i o n c h a r a c t e r i s t i c sa n d s o i lq u a l i t y i na d e g r a d e dm e a d o w[J].I s r a e l J o u r n a l o fE c o l o g y&E v o l u t i o n,2013,59(3):141-153[17]贾映兰,魏培洁,吴明辉,等.多年冻土区 黑土滩 土壤团聚体对人工建植的响应[J].草地学报,2022,30(8):1934-1943 [18]H E H,L IH,Z HUJ,e ta l.T h ea s y m p t o t i cr e s p o n s eo f s o i lw a t e rh o l d i n g c a p a c i t y a l o n g r e s t o r a t i o nd u r a t i o no fa r t i f i c i a lg r a s s l a n d s f r o m d e g r a d e da l p i n em e a d o w s i nt h eT h r e eR i v e rS o u r c e s,Q i n g h a i-T i b e t a n P l a t e a u,C h i n a[J].E c o l o g i c a lR e-s e a r c h,2018,33(5):1-10[19]郑伟,加娜尔古丽,唐高溶,等.混播种类与混播比例对豆禾混播草地浅层土壤养分的影响[J].草业科学,2015,32(3):329-339 [20]吴晓慧,单熙凯,董世魁,等.基于改进的L o t k a-V o l t e r r a种间竞争模型预测退化高寒草地人工恢复演替结果[J].生态学报,2019,39(9):3187-3198[21]包赛很那,苗彦军,邓时梅,等.苗期紫花苜蓿株体对不同地区垂穗披碱草种子萌发生长的化感作用[J].生态学报,2019,39(4):1475-1483[22]青海省市场监督管理局.D B63青海省人工草地建植技术规范[S].2018:1-4[23]王维奇,曾从盛,钟春棋,等.人类干扰对闽江河口湿地土壤碳㊁氮㊁磷生态化学计量学特征的影响[J].环境科学,2010,31(10):2411-2416[24]来幸樑,师尚礼,吴芳,等.紫花苜蓿与3种多年生禾草混播草地的土壤养分特征[J].草业科学,2020,37(1):52-64 [25]马玉寿,郎百宁,李青云,等.江河源区高寒草甸退化草地恢复与重建技术研究[J].草业科学,2002,19(9):1-5[26]L E Q D,Z H O U P,S H A N G G.A f f o r e s t a t i o nD r i v e sS o i lC a r-b o na n dN i t r o g e nC h a n g e s i nC h i n a[J].L a n dD e g r a d a t i o n&D e v e l o p m e n t,2017,28:151-165[27]欧延升,汪霞,李佳,等.不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J].应用与环境生物学报,2019,25(1):38-45[28]C R O S SW F,B E N S T E A DJ P,F R O S TPC,e t a l.E c o l o g i c a l s t o i-c h i o m e t r y i n f r e s h w a t e rb e n t h i c s y s t e m s:r e c e n t p r o g r e s s a nd pe r-s p e c t i v e s[J].F r e s h w a t e r B i o l o g y,2010,50(11):1895-1912638。
陆地森林生态系统碳氮磷生态化学计量特征及其影响因子综述

生态化学计量学是将物、化、生三门学科基本理论有机结合用以研究生态系统中能量和化学元素平衡的科学[1],不仅在生物地球化学循环研究领域发挥了极其重要的作用[2],同时也是研究食物网、营养级动态和生物地球化学循环相互作用机制的重要途径[3]。
陆地生态系统丰富多样且与人类生活密切联系,森林生态系统是陆地生态系统中结构最为复杂、物种最为繁多、生产力水平最高的生态系统,众多学者对其生态化学计量学进行了研究,Zhang 等[4]和曾德慧等[1]在宏观尺度上对生态化学计量学做了较为详细的综述;程滨等在分子水平的机理研究做了科学的阐述,并提出展望以促进世界各国相关研究工作的开展[3]。
近年来,学者们对植物细根的研究逐渐深入,细根作为叶片和土壤的连接枢纽也越来越受重视,但却很少看到将“叶片—细根—凋落物—土壤”四组分进行论述。
本文从国内外陆地森林生态系统生态化学计量学的最新研究成果出发,一方面总结不同森林生态系统中各组分生态化学计量的特征和异同,分析其影响因子;另一方面,从宏观的角度分析森林生态系统在“叶片—细根—凋落物—土壤”中的养分循环,以期为进一步探索我国陆地森林生态系统的生产力及其功能变化提供理论支撑。
1植物C 、N 、P 生态化学计量学特征及其主要影响因子1.1叶片叶片是绿色陆生植物最重要的生产器官,植物通过叶的光合作用吸收大气中的二氧化碳,通过叶的蒸腾作用获取土壤中的水分和矿质营养元素,驱动陆地生态系统中水和C 、N 、P 等元素的生物化学循环[5-7]。
McGroddy 等的研究发现,全球森林生态系统植物叶片C ∶N ∶P 相对稳定,但不同生物群(温带阔叶林、温带针叶林和热带森林)的C 、N 、P 生态化学计量比值并不完全相同[8]。
纵观全球,森林生态系统植物叶片C ∶N ∶P 在一个合理的范围内波动。
影响植物叶片化学计量特征最重要的两大因素是气温和降水。
气温主要和热量相关,其本质上是纬度影响了叶片中化学元素的变化与循环。
土壤碳氮磷生态化学计量特征及影响因素概述

土壤碳氮磷生态化学计量特征及影响因素概述土壤是地球生态系统的重要组成部分,其中含有丰富的碳、氮和磷等营养元素。
土壤碳氮磷的含量和比例对土壤生物多样性、生态系统功能及农田生产力等具有重要影响。
土壤中的碳氮磷的生态化学计量特征是指这些元素在土壤中的含量和比例之间的关系及其对植物和土壤生物功能的影响。
本文将对土壤碳氮磷的生态化学计量特征及影响因素进行概述。
1. 碳氮磷的含量与比例:土壤中的碳元素主要以有机碳的形式存在,氮和磷元素则以无机离子形式存在。
研究发现,土壤中碳氮磷的含量和比例在不同土壤类型和土地利用方式间存在差异。
一般来说,草地土壤的碳氮磷含量较高,而耕地土壤的碳氮磷含量较低;农田土壤中的碳氮磷比例通常为100:10:1。
2. 碳氮磷的稳定性:土壤中的碳氮磷含量往往受到土壤有机质的稳定性控制。
土壤有机质中的碳氮磷比例通常较稳定,但在长期土地利用方式发生变化或者人为干扰的情况下,这种比例可能发生变化。
研究发现,在退耕还林还草等生态工程中,土壤中的碳氮磷含量和比例都会发生一定的变化。
3. 碳氮磷的来源与循环:土壤中的碳氮磷主要来源于植物残体的分解和微生物的代谢活动。
植物通过光合作用吸收二氧化碳,并将其固定在有机物中,然后释放到土壤中。
土壤中的微生物能够利用有机物进行代谢,产生二氧化碳、氨和磷酸盐等无机物。
这些无机物通过土壤的生物、物理和化学反应循环利用,维持了碳氮磷的稳态平衡。
二、影响土壤碳氮磷的因素1. 植被类型:不同的植被类型对土壤碳氮磷含量和比例的影响有所不同。
林地植被通常有较高的碳氮磷含量,而草地植被具有较高的碳氮磷比例。
不同植被类型对土壤中碳氮磷循环过程也有不同的影响。
2. 土地利用方式:土地利用方式的改变对土壤碳氮磷含量和比例有较大影响。
农田的灌溉和施肥操作会导致土壤中碳氮磷的流失;长期的耕种和大量的化肥施用会导致土壤有机质的降解和氮磷的累积。
3. 气候条件:气候条件对土壤碳氮磷的含量和比例具有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤碳氮磷生态化学计量特征及影响因素概述
1. 引言
1.1 背景介绍
土壤中的碳氮磷元素是构成土壤有机质和无机养分的重要组成部分,对土壤生态系统的健康稳定发挥着重要作用。
土壤中碳氮磷元素的含量和比例关系着土壤中微生物的活动、养分循环和生态系统的稳定性。
随着全球气候变化和人类活动的不断加剧,土壤碳氮磷元素的含量和比例已经发生了较大变化,对土壤生态系统产生了一系列影响。
本文将系统概述土壤碳氮磷生态化学计量特征及其影响因素,探讨土壤碳氮磷之间的关系、生态系统的影响以及管理对土壤碳氮磷的影响,旨在加深对土壤生态系统的认识,为保护和改善土壤生态环境提供科学依据。
1.2 研究意义
研究土壤碳氮磷生态化学计量特征及其影响因素具有重要的科学意义和实践价值。
了解土壤中碳氮磷元素的含量和比例,有助于揭示土壤养分的分布与循环规律。
不同元素的化学计量特征能够揭示土壤中生物元素的优势元素和限制元素,从而为合理施肥和农田管理提供科学依据。
研究土壤碳氮磷生态化学计量特征可以揭示土壤生态系统的结构和功能。
不同元素之间的相互关系和平衡对土壤生物多样性、生态系统稳定性和生产力等方面具有重要影响。
通过深入研究土壤碳氮磷之间的关系,可以为推动生态农业、生态恢复和土壤保护提供理论和实践支撑。
对土壤碳氮磷生态化学计量特征及其影响因素进行系统研究,有助于深化对土壤质量与健康的认识,促进可持续土壤利用和农业可持续发展。
通过理解土壤中碳氮磷元素的动态变化以及影响因素的作用机制,可以有效预防和解决土壤贫瘠、环境污染等问题,实现生态环境与经济效益的双赢局面。
2. 正文
2.1 土壤碳氮磷生态化学计量特征
土壤中的碳氮磷元素是构成生物体和维持生态系统稳定的重要营养要素,它们之间的化学计量特征对土壤生态系统的功能和结构具有重要影响。
土壤碳氮磷生态化学计量特征主要表现在以下几个方面:
1. 碳氮磷含量比例:土壤中的碳氮磷元素含量不仅影响着土壤的肥力和生物多样性,还对土壤微生物活动和养分转化过程起着重要调控作用。
一般来说,土壤中碳氮磷的含量比例为1000:10:1,这种比例被认为是土壤生态系统稳定的基本条件之一。
2. 碳氮磷的分布特征:土壤中碳氮磷的分布不均匀,受土壤类型、植被类型等因素的影响。
一般来说,碳在土壤有机质中的含量最高,
氮在土壤蛋白质中的含量相对较高,磷在土壤中的含量相对较低。
3. 碳氮磷的循环过程:碳氮磷元素在土壤中通过生物、物理、化
学等多种过程进行循环。
土壤微生物在有机质分解和氮磷转化中起着
至关重要的作用,而土壤通风、渗漏等物理过程也会对碳氮磷的循环
过程产生影响。
4. 碳氮磷的动态变化:土壤中的碳氮磷含量受季节、气候等因素
的影响而呈现动态变化。
研究土壤碳氮磷的生态化学计量特征有助于
更好地了解土壤养分循环过程和生态系统稳定性,为土壤养分管理和
生态系统保护提供科学依据。
2.2 影响因素
土壤碳氮磷的生态化学计量特征受许多影响因素的调节。
影响因
素包括生物因素、环境因素和人为干扰等。
1.生物因素:土壤中微生物和植物根系是影响土壤碳氮磷含量和比例的重要因素。
微生物通过分解有机物和养分的循环过程影响碳氮磷
的含量和形态转化。
植物的生长和死亡会影响土壤的碳氮磷含量。
2.环境因素:温度、湿度、光照等环境因素对土壤中碳氮磷的形态和含量有显著影响。
气候变化会影响土壤中有机质的分解速率,进而
影响碳氮磷的循环。
3.人为干扰:农田施肥、农药使用、土地利用方式等人为活动对土壤碳氮磷的含量和比例也有重要影响。
不合理的施肥会导致土壤中碳
氮磷的失衡,影响土壤生态系统的健康。
土壤碳氮磷的生态化学计量特征受到多方面因素的影响,了解和
研究这些影响因素对于维护土壤生态系统的平衡和可持续发展至关重要。
在未来的研究中,需要更深入地探讨不同影响因素之间的相互作用,为有效管理土壤碳氮磷提供科学依据和策略。
2.3 土壤碳氮磷之间的关系
土壤中的碳、氮、磷是生态系统中三种基本的营养元素,它们之
间的相互关系在土壤生态系统的功能和稳定性中起着重要作用。
土壤
中的碳氮磷之间存在诸多复杂的相互作用与平衡关系。
碳、氮、磷之间存在着协同循环的关系。
碳是生物体的主要构成
元素,在土壤中主要以有机碳的形式存在,而氮和磷则是生物体合成
蛋白质和核酸的重要元素。
土壤中的有机质中含有丰富的碳、氮和磷,它们之间通过微生物的代谢和转化过程形成生态化学计量关系。
土壤中的碳氮磷之间的平衡关系对土壤生态系统的稳定性与健康
具有重要影响。
过多或过少的某种元素都会导致土壤中碳氮磷的比例
失衡,进而影响土壤微生物群落的组成和功能,影响土壤中有机物的
分解和循环速率。
土壤中碳氮磷之间的互相转化也是影响土壤肥力和生产力的重要
因素。
氮磷的转化过程可以影响植物对碳的吸收利用,而土壤中碳的
存留和释放也受氮磷的影响。
土壤中的碳氮磷之间存在着密切的相互关系与作用,这种生态化
学计量关系对土壤生态系统的稳定性与功能具有重要影响。
深入研究
碳氮磷之间的关系,可以为土壤养分管理与生态系统的可持续发展提
供理论基础与科学依据。
2.4 生态系统影响
生态系统中的碳、氮、磷元素在土壤中的含量和循环过程对整个
生态系统的稳定性和健康发挥着重要作用。
这些元素之间的相互影响
和平衡关系,直接影响着土壤的养分供应、植物生长和生态系统的功能。
土壤中的有机碳是生态系统中最重要的营养物质之一,它不仅是
土壤生物的能量来源,也是维持土壤生态系统功能的基础。
土壤中的
有机碳含量的变化会影响土壤的保水性、通气性和养分供应能力,进
而影响植物的生长和土壤的肥力。
氮是植物生长中不可或缺的关键元素,对提高作物产量和质量起
着至关重要的作用。
土壤中氮的含量和形态会影响土壤微生物的活动、植物的氮吸收和利用效率,进而影响生态系统的结构和功能。
2.5 管理对土壤碳氮磷的影响
管理对土壤碳氮磷的影响主要包括人为干预和管理措施对土壤养分循环的影响。
不合理的施肥会导致土壤中碳氮磷的失衡,例如过量施用氮肥会导致土壤中磷元素的缺乏,影响植物的生长和发育。
过度耕作和土地固化也会破坏土壤中的碳氮磷平衡,影响土壤的肥力和生态系统的稳定性。
科学的耕作管理措施可以有效地提高土壤碳氮磷的利用效率和保持土壤生态平衡。
比如合理施肥、轮作休耕、植被恢复等措施可以有效地促进土壤中碳氮磷的循环利用,减少养分的流失。
生物肥料和有机肥料的运用也有助于提高土壤中有机质含量,改善土壤结构,增加土壤中碳氮磷的储存量。
正确的管理和保护土壤资源是关键的,只有通过科学的管理措施来维持土壤中碳氮磷的平衡,才能保障土壤的肥力、植物的生长和生态系统的稳定性。
需要注意的是,不同地区的土壤性质和生态环境有所不同,管理措施需要因地制宜,以实现最佳的土壤碳氮磷平衡和生态效益。
3. 结论
3.1 总结
土壤中的碳、氮、磷元素是生态系统中不可或缺的要素,它们在土壤中的含量和比例对生态系统的氮循环、有机物质分解、养分转化等过程起着重要作用。
通过本文的探讨和总结,可以得出以下几点结论:
在不同生态系统中土壤中碳、氮、磷的含量和比例存在较大差异,这与土壤类型、植被类型、气候条件等因素密切相关。
各种生态系统
中土壤碳氮磷的生态化学计量特征呈现出一定的规律性,但受到多种
因素的影响而表现出复杂性和多样性。
影响土壤碳氮磷含量和比例的因素非常多样,其中包括土壤理化
性质、气候条件、土地利用方式、植被类型等多个方面。
不同因素之
间相互作用,共同影响着土壤中碳氮磷的生态化学计量特征。
在管理实践中,应充分考虑土壤碳氮磷的相互关系和生态化学计
量特征,制定科学的土壤管理方案,促进养分循环、提高土壤质量、
增强生态系统的稳定性和可持续性发展。
对土壤碳氮磷的生态化学计量特征和影响因素进行深入研究,有
助于我们更好地理解土壤生态系统的功能机制,为保护和恢复生态环
境提供科学依据。
未来的研究应该进一步深入,拓展研究领域,为促
进生态系统的健康发展和人类福祉作出更大的贡献。
3.2 展望
未来,随着社会经济的不断发展和人们对环境保护意识的提高,
土壤碳氮磷生态化学计量特征及影响因素的研究将变得更加重要。
我
们可以从以下几个方面展望未来的研究方向:
需要进一步深入研究不同生态系统中土壤碳氮磷的动态变化规律,探讨影响因素的复杂性和多样性。
通过建立更加完善的模型,可以更
准确地预测和评估土壤碳氮磷之间的关系,为生态系统的管理提供科
学依据。
应该加强对人类活动对土壤碳氮磷的影响机制的研究,尤其是工
业化、城市化过程中的土地利用变化对土壤养分循环的影响。
通过探
讨土地利用方式的优化和可持续发展,可以有效减轻人类活动对土壤
生态化学计量特征的负面影响。
需要加强跨学科合作,推动土壤碳氮磷生态化学计量特征研究与
实际生产、生活及政策的结合,促进可持续土地管理的实施。
只有通
过不断地探索和创新,我们才能更好地保护土壤资源,维护生态平衡,实现可持续发展的目标。