初中平行四边形、菱形、矩形、正方形的判定及性质
平行四边形的性质和判定 菱形梯形等腰梯形矩形正方形性质和判定

平行四边形的性质和判定菱形梯形等腰梯形矩形正方形性质和判定平行四边形的性质和判定定义:两组对边分别平行的四边形叫做平行四边形.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分 .判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形 .注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:对角线互相垂直平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角.判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;菱形周界为边长的四倍:顺次连接菱形各边中点为矩形正方形是特殊的菱形梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。
一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等等腰梯形的两条对角线相等等腰梯形判定:1两腰相等的梯形是等腰梯形;2同一底上的两个角相等的梯形是等腰梯形;3对角线相等的梯形是等腰梯形.梯形的体积计算公式:V=〔S1+S2+开根号(S1*S2)〕/3*H注:V:体积;S1:上表面积;S2:下表面积;H:高。
初中几何图形的定义、性质、判定

等腰三角形定义1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰性质2 等腰三角形的两个底角相等(简称“等边对等角”)3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴判定5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)等边三角形定义1 三边都相等的三角形是等边三角形。
性质2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质3 等边三角形的每个内角都等于60º4 等边三角形是锐角三角形5 等边三角形是轴对称图形,它有3条对称轴判定6 有一个角是60º的等腰三角形是等边三角形7 有两个角是60º的三角形是等边三角形直角三角形定义1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。
性质2 在直角三角形中,两个锐角互余。
3 直角三角形斜边上的中线等于斜边的一半4 直角三角形两直角边的平方和等于斜边的平方。
(勾股定理)5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)平行四边形定义1 在同一平面内,两组对边分别平行的四边形叫做平行四边形性质2 平行四边形是中心对称图形,对角线的交点是它的对称中心3 平行四边形的对边相等、对角相等、对角线互相平分判定4 一组对边平行且相等的四边形是平行四边形5 两条对角线互相平分的四边形是平行四边形6 两组对边分别相等的四边形是平行四边形7 两组对角分别相等的四边形是平行四边形8 一组对边平行,一组对角相等的四边形是平行四边形矩形定义1 有一个角是直角的平行四边形叫做矩形,通常叫长方形性质2 矩形是特殊的平行四边形,它具有平行四边形的一切性质3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 矩形的对角线相等,四个角都是直角判定5 对角线相等的平行四边形是矩形6 有一个角是直角的平行四边形是矩形7 有3个角是直角的四边形是矩形菱形定义1 一组邻边相等的平行四边形叫做菱形性质2 菱形是特殊的平行四边形,它具有平行四边形的一切性质3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 菱形的四条边相等5 菱形的对角线互相垂直并且每一条对角线平分一组对角6 S菱形=½×对角线的积判定7 四边都相等的四边形是菱形8 对角线互相垂直的平行四边形是菱形9 有一组邻边相等的平行四边形是菱形10 有一条对角线平分一组对角的平行四边形是菱形正方形定义1 有一组邻边相等并且有一个角是直角的平行四边形是正方形性质2 正方形具有矩形和菱形的性质3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点判定4 有一组邻边相等的矩形是正方形5 有一个角是直角的菱形是正方形梯形1 一组对边平行而另一组对边不平行的四边形是梯形2 梯形的中位线平行于两底,并且等于两底和得一半3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高等腰梯形定义1 两腰相等的梯形是等腰梯形性质2 等腰梯形是轴对称图形3 两条对角线相等4 等腰梯形的同一底上的两角相等判定5 同一底上的两个角相等的梯形是等腰梯形直角梯形1 有一个角是直角的梯形叫做直角梯形三角形全等1 有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
1.3平行四边形,矩形,菱形,正方形的性质和判定

第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。
记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。
∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。
例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。
求证:∠ADF=∠CBE。
例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。
例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。
例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。
八年级数学5月期中重点知识整理(1)

八年级下学期期中复习知识整理1.平行四边形、矩形、菱形、正方形的概念:2.平行四边形、矩形、菱形、正方形的性质:3.平行四边形、矩形、菱形、正方形的判定方法:(1)判定平行四边形的方法:①两组对边的四边形是平行四边形;②两组相等的四边形是平行四边形;③对角线的四边形是平行四边形;④一组对边的四边形是平行四边形。
(2)判定矩形的方法:①有一个角是的平行四边形是矩形;②对角线的平行四边形是矩形;③有三个角的四边形是矩形;④对角线且的四边形是矩形。
(3)判定菱形的方法:①有一组邻边的是菱形;②对角线的平行四边形是菱形;③四边都相等的是菱形;④对角线的四边形是菱形。
(4)判定正方形的方法:①有一组邻边相等且有一个角是直角的是正方形;②对角线的平行四边形是正方形;③有一组邻边相等的是正方形;④对角线互相垂直的是正方形;⑤有一个角是直角的是正方形;⑥对角线相等的是正方形;⑦对角线互相垂直平分且相等的是正方形。
题目练习1、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转∠α,要使这个∠α最小时,旋转后的图形也能与原图形完全重合,则这个图形是( )A.B.C.D.2、下列各图形分别绕某个点旋转120︒后不能与自身重合的是( )A.B.C.D.3、下列图形既是轴对称图形又是中心对称图形的是( )A.B.C.D.4、下列图案中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.5、下面的图形中,既是中心对称又是轴对称的图形是( )A.B.C.D.6、如图,把∆ABC 绕顶点C 按顺时针方向旋转得到△ A'B'C ,当A'B'⊥AC .∠A = 47︒,∠A'CB =128︒时,∠B'CA 的度数为( )A.44︒B.43︒C.42︒D.40︒7、如图,∆ABC 中,∠CAB = 70︒,在同一平面内,将∆ABC 绕点A 旋转到∆AED 的位置,使得DC / / AB ,则∠BAE 等于( )A.30︒B.40︒C.50︒D.60︒8、如图,已知平面直角坐标系中,∆ABC 的顶点坐标分别A(1, 3) ,B(2,1) ,C(4, 2) .(1)将∆ABC 以原点O 为旋转中心旋转180︒得到△ A1B1C1 ,画出△ A1B1C1 ;(2)平移∆ABC ,使点A 的对应点A2 坐标为(5, -5) ,画出平移后的△ A2 B2C2 ;(3)若将△ A1B1C1 绕某一点旋转可得到△ A2 B2C2 ,请直接写出这个点的坐标.9、如图所示,将∆ABC 置于平面直角坐标系中, A (-1, 4) , B (-3, 2) , C (-2,1)(1) 画出∆ABC 向下平移 5 个单位得到的△ A 1 B 1C 1 .并写出点 A 1 的坐标;(2) 画出∆ABC 绕点O 顺时针旋转90︒ 得到的△ A 2 B 2C 2 ,并写出点 A 2 的坐标;(3) 画出以点O 为对称中心,与∆ABC 成中心对称的△ A 2 B 3C 3 ,并写出点 A 3 的坐标;10、如图,方格纸中的每个小方格都是边长为 1 个单位长度的正方形,每个小正方形的顶点叫格点, ∆ABC 的顶点均在格点上.(1) 先将∆ABC 向上平移 4 个单位后得到的△ A 1 B 1C 1 ,再将△ A 1 B 1C 1 绕点C 1 按顺时针方向旋转90︒ 后所得到的△ A 2 B 2C 1 ,在图中画出△ A 1 B 1C 1 和△ A 2 B 2C 1 .(2) △ A 2 B 2C 1 能由∆ABC 绕着点O 旋转得到,请在网格上标出点O .11、如图,平行四边形 A B C D 中,∠D A B 的平分线 A E 交 C D 于 E ,DC =5,BC =3,则 E C 的长是()A .1B .1.5C .2D .312、如图,在平行四边形A B C D中,∠B A D的平分线交C D于点G,A D=A E.若A D=5,D E=6,则A G的长是()A.6 B.8 C.10 D.1213、如图,平行四边形A B C D的对角线相交于点O,且A D>A B,过点O作O E⊥A C交A D于点E,连接C E.若平行四边形A B C D的周长为20,则△C D E的周长是()A.10 B.11 C.12 D.1318、如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠P F E的度数是()A.9°B.18°C.27°D.36°19、如图,△A B C的周长为 17,点D,E在边B C上,∠A B C的平分线垂直于A E,垂足为点N,∠A C B的平分线垂直于A D,垂足为点M,若BC=6,则M N的长度为()A.B.2 C.D.320、如图,已知菱形ABCD 的周长为24,对角线AC 、BD 交于点O ,且AC +BD =16 ,则该菱形的面积等于( )A.6 B.8 C.14 D.2821、如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,若∠BCD = 50︒,则∠OED 的度数是( )A.35︒B.30︒C.25︒D.20︒22、如图,四边形ABCD 是菱形,AC = 6 ,BD = 8 ,AH ⊥BC 于H ,则AH 等于( )A.125B.4 C.245D.523、如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE ,若∠ADB = 40︒,则∠E 的度数是( )A.20︒B.25︒C.30︒D.35︒24、如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF / / B C ,分别交AB ,CD 于E ,F ,连接PB ,PD ,若AE = 3 ,PF = 9 ,则图中阴影部分的面积为( )A.12 B.24 C.27 D.5425、如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF = 25︒,则∠AED = ( )A.60︒B.65︒C.70︒D.75︒分式方程知识点一:分式的有关概念及性质1.分式的定义:设A、B 表示两个整式.如果B 中含有,则式子就叫做.注意分母B 的值不能为,否则分式没有意义.2.最简分式:分子与分母没有的分式叫做最简分式.3.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值,这个性质叫做分式的基本性质,用式子表示是:(M 为不等于零的整式).知识点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:;2.零指数.3.负整数指数约分: 把一个分式的分子和分母的约去,这种变形称为分式的约分.5.通分根据分式的基本性质,分母的分式可以化为分母的分式,这一过程称为分式的通分.6. 分式的加减法法则(1) 同分母的分式相加减,分母 ,把分子相加减;(2) 异分母的分式相加减,先,化为同分母的分式,然后再按同分母分式的加减法则进行计算.7. 分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分 式相除,把除式的分子和分母颠倒位置后再与被除式相乘.8. 分式的混合运算顺序先算乘方,再算乘除,最后算加减,有括号先算括号里面的知识点三、分式方程1. 分式方程的概念分母中含有未知数的方程叫做分式方程.2. 分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程. 注: 解分式方程必须检验,验根时把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
特殊四边形性质及判定总结

边
角
平行四边形 矩形 菱形 正方形
平行且相等
平行且相等
平行 且四边相等
平行 且四边相等
对角相等 邻角互补
四个角 都是直角 对角相等 邻角互补
四个角 都是直角
对角线Βιβλιοθήκη 对称性互相平分中心对称图形
互相平分且相等 互相垂直平分,且每一条
中心对称图形 轴对称图形 中心对称图形
对角线平分每一组对角
(1)有一组邻边相等,并且有一个角是直角的平行四边形是正方形(定义判定)
(2)有一个角是直角的菱形是正方形 (3)对角线相等的菱形是正方形 (4)有一组邻边相等的矩形是正方形 (5)对角线互相垂直的矩形是正方形
轴对称图形
互相垂直平分且相等,每一 中心对称图形
条对角线平分每一组对角
轴对称图形
几种特殊四边形的定义:
(1)平行四边形的定义 两组对边分别平行的四边形,叫做平行四边形 (2)菱形的定义 有一组邻边相等的平行四边形,叫做菱形 (3)矩形的定义 有一个角是直角的平行四边形,叫做矩形 (4)正方形的定义 有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形
其他常用定理:
(1)直角三角形斜边中线等于斜边的一半 (2)直角三角形中,30°角对应的直角边是斜边的一半 (3)三角形的中位线平行于第三边且等于第三边的一半
几种特殊四边形的判定:
1、平行四边形的判定 (1)两组对边分别平行的四边形是平行四边形(定义判定) (2)两组对边分别相等的四边形是平行四边形. (3)一组对边平行且相等的四边形是平行四边形. (4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形 2、菱形的判定 (1)有一组邻边相等的平行四边形是菱形(定义判定) (2)对角线互相垂直的平行四边形是菱形 (3)四条边相等的四边形是菱形 3、矩形的判定 (1)有一个角是直角的平行四边形是矩形(定义判定) (2)有三个角是直角的四边形是矩形 (3)对角线相等的平行四边形是矩形 4、正方形的判定
1.3平行四边形,矩形,菱形,正方形的性质和判定7

教学目标
1.复习矩形的定义,会证明矩形的判定定理; 2.会判定一个图形是矩形;
回忆
矩形的定义是什么? 有一个角是____的_______叫做矩形; 根据矩形的定义,要证明一个图形是矩形,必须 具备两个条件:1.是_____;2.有一个角是____; 书写格式;
矩形还有哪些判定方法?
1.对角线_____的________形是矩形; 2.有____个角是___角的_____形是矩形;
如何证明???
思路整理
如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
典型例题
例一;
练一练
练习一; 练习二(课本P23);
提高一下
例二;
小结
有一个角是____的_______叫做矩形; 对角线_____的________形是矩形; 有____个角是___角的_____形是矩形; 如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
数学平行四边形、菱形、矩形、正方形的定理、性质、判定

1. 定义: 两组对边分别平行的四边形叫做平行四边形。
2.性质:⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)矩形的性质和判定定义:有一个角是直角的平行四边形叫做矩形.性质:①矩形的四个角都是直角;②矩形的对角线相等 .注意:矩形具有平行四边形的一切性质 .判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形 .菱形的性质和判定定义:有一组邻边相等的平行四边形叫做菱形.性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .注意:菱形也具有平行四边形的一切性质 .判定:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(4).有一条对角线平分一组对角的平行四边形是菱形正方形的性质和判定定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.性质:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径①四条边都相等的平行四边形是正方形②有一组临边相等的矩形是正方形③有一个角是直角的菱形是正方形梯形及特殊梯形的定义梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)等腰梯形:两腰相等的梯形叫做等腰梯形. 直角梯形:一腰垂直于底的梯形叫做直角梯形.等腰梯形的性质1、等腰梯形两腰相等、两底平行;2、等腰梯形在同一底上的两个角相等;3、等腰梯形的对角线相等;4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴. 等腰梯形的判定1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.平行四边形性质定理1 平行四边形的对角相等平行四边形性质定理2 平行四边形的对边相等且平行平行四边形性质定理3 平行四边形的对角线互相平分平行四边形判定定理1 两组对角分别相等的四边形是平行四边形平行四边形判定定理2 两组对边分别相等的四边形是平行四边形平行四边形判定定理3 对角线互相平分的四边形是平行四边形平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有一个角是直角的平行四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形正方形性质定理1正方形的四个角都是直角,四条边都相等正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形菱形判定定理3是对称轴图形的平行四边形是菱形。
1.3平行四边形,矩形,菱形,正方形的性质和判定2

名称),所以具备这类图形的所有性质,而且必定 有一个角是_____;
再回忆一下
除了由定义得到的性质,矩形还有哪些性质? 性质定理一:矩形的四个角都是________;
性质定理二:矩形的对角线__________;
如何证明????
典型例题
例一; 例二;
等边三角形的判定
定义:三边都_____三角形叫做等边三角形; 三个角都______的三角形是等边三角形; 有两个角是_____的三角形是等边三角形;
有一个角是600的______三角形是等边三角形
例三;
回头再看看
两组对边分别_____四边形叫做矩形;根据矩形
的定义可知,矩形一定是______(图形名称),所 以具备这类图形的所有性质,而且必定有一个角 是_____; 性质定理一:矩形的四个角都是________; 性质定理二:矩形的对角线__________; 等边三角形的判定;
1.3平行四边形形,矩形,菱 形,正方形的性质和判定2。
教学目标
1.复习矩形的定义;分清矩形与矩形的关系;
2.会证明矩形的性质,会利用性质解决有关的数
学问题;
动动脑,回忆一下
矩形的定义是什么? 有一个角是_____的平行四边形叫做矩形;
根据矩形的定义可知,矩形一定是______(图形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形的判定:
1. 两组对边分别平行的四边形是平行四边形;
2. 两组对边分别相等的四边形是平行四边形;
3. 两组对角分别相等的四边形是平行四边形;
4. 对角线互相平分的四边形是平行四边形;
5. 一组对边平行且相等的四边形是平行四边形;
6.一组对边平行一组对角相等的四边形是平行四边形。
二、平行四边形的性质:
1. 平行四边形对边平行且相等;
2. 平行四边形两条对角线互相平分;
3. 平行四边形的对角相等,邻角互补;
4. 平行四边形是中心对称图形,对称中心是两条对角线的交点;
5. 过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形;
6. 平行四边形对角线把平行四边形面积分成四个全等三角形;
7. 平行四边形的面积等于底乘高或对角线积的一半。
三、菱形的判定:
1. 一组邻边相等的平行四边形是菱形;
2. 四条边都相等的四边形是菱形;
3. 对角线互相垂直的平行四边形是菱形;
4. 对角线互相垂直平分的四边形是菱形。
四、菱形的性质:
1. 菱形具备平行四边形的一切性质;
2. 对角线互相垂直且平分;
3. 四条边都相等;
4. 每条对角线平分一组对角;
5. 菱形是轴对称图形,对称轴是两条对角线。
五、矩形的判定:
1. 有一个角是直角的平行四边形是矩形;
2. 有三个角是直角的四边形是矩形;
3. 四个角相等的四边形是矩形
4. 对角线相等的平行四边形是矩形;
5. 一组对角互补的平行四边形是矩形;
6. 对角线互相平分且有一个内角是直角的四边形是矩形。
六、矩形的性质:
1. 矩形具备平行四边形的一切性质;
2. 矩形对角线相等;
3. 矩形的四个内角都是90°;
4. 矩形既是轴对称图形,也是中心对称图形。
七、正方形的判定:
1. 有一个角是直角的菱形是正方形;
2. 对角线相等的菱形是正方形;
3. 有一组邻边相等的矩形是正方形;
4. 对角线互相垂直的矩形是正方形;
5. 四边相等,有一个角是直角的平行四边形是正方形;
6. 一组邻边相等,有一个角是直角的平行四边形是正方形。
八、正方形的性质:
1.正方形具有平行四边形、菱形、矩形的一切性质。