高二数学选修统计案例与框图单元测试题及答案文科
(常考题)北师大版高中数学高中数学选修2-3第三章《统计案例》测试卷(包含答案解析)(2)

一、选择题1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2成绩性别不及格及格总计视力性别好差总计男61420男41620女102232女122032总计163652总计163652表3表4智商性别偏高正常总计阅读量性别丰富不丰富总计男81220男14620女82432女23032总计163652总计163652A.成绩B.视力C.智商D.阅读量2.下列命题是假命题...的是()A.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出18人;B.用独立性检验(列联表法)来考察两个分类变量是否有关系时,算出的随机变量的值越大,说明“与有关系”成立的可能性越大;C.已知向量,,则是的必要条件;D.若,则点的轨迹为抛物线.3.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若X与Y有关系的可信程度为90%,则c=()A.4 B.5C.6 D.74.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A .4B .3C .2D .15.如图所示,茎叶图记录了甲、乙两组各4名学生完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组学生的平均成绩相同,乙组某个数据的个位数字模糊,记为x .则下列命题正确的是( )A .甲组学生的成绩比乙组稳定B .乙组学生的成绩比甲组稳定C .两组学生的成绩有相同的稳定性D .无法判断甲、乙两组学生的成绩的稳定性6.为了考查两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2,已知两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( ) A .l 1和l 2有交点(s ,t )B .l 1与l 2相交,但交点不一定是(s ,t )C .l 1与l 2必定平行D .l 1与l 2必定重合7.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( ) P (K 2≥k ) … 0.250.150.100.025 0.010 0.005 …k…1.323 2.072 2.706 5.024 6.635 7.879 …A .90%B .95%C .97.5%D .99.5%8.有下列数据: x123y35.9912.01下列四个函数中,模拟效果最好的为( ) A .B .C .D .9.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .321010.为了增强环保意识,某校从男生中随机抽取60人,从女生中随机抽取50人,参加环保知识测试,统计数据如下表所示: (参考数据:()21122122121212n n n n n n n n n χ++++-=)则认为环保知识测试成绩是否优秀与性别有关的把握为 A .90%B .95%C .99%D .99.9%11.下列命题中:①线性回归方程y bx a =+必过点(),x y ;②在回归方程35y x =-中,当变量增加一个单位时,y 平均增加5个单位; ③在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好;④在回归直线0.58ˆyx =-中,变量2x =时,变量y 的值一定是-7. 其中假命题的个数是 ( ) A .1B .2C .3D .412.已知回归方程0.8585.7y x ∧=-,则该方程在样本()165,57 处的残差为( ) A .111.55B .54.5C .3.45D .2.45二、填空题13.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:女 男 总计 喜爱 40 20 60 不喜爱 20 30 50 总计6050110试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”. 参考附表: P (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.828(参考公式:K 2=()()()()()2n ad bc a b c d a c b d -++++,其中n=a+b+c+d)14.设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为______. 15.已知方程是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm ,的单位是kg ,那么针对某个体(160,53)的残差是________.16.某单位为了了解用电量y (度)与气温x (度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表由表中数据,得回归直线方程ˆˆˆy bx a =+,若ˆ2b=-,则ˆa =________. 17.已知方程是根据女大学生的身高预报她的体重的回归方程,其中的单位是,的单位是,那么针对某个体的残差是______.18.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.19.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________. 20.以下说法正确的是_____________ . ①类比推理属于演绎推理.②设有一个回归方程ˆ23yx =- ,当变量每增加1个单位,y 平均增加3个单位. ③样本相关系数r 满足以下性质:1r ≤,并且r 越接近1,线性相关程度越强;r 越接近0,线性相关程度越弱.④对复数12,z z 和自然数n 有()1212nn n z z z z ⋅=⋅.三、解答题21.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X ,试求X 的分布列与数学期望. 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考数据:22.近年来,“家长辅导孩子作业”已成为家长朋友圈里的一个热门话题.某研究机构随机调查了该区有孩子正在就读小学的140名家长,以研究辅导孩子作业与家长性别的关系,得到下面的数据表:(1)请将下列列联表填写完整,并判断能否在犯错误的概率不超过0.05的前提下,认为是否辅导孩子作业与家长性别有关?是否辅导家长性别辅导不辅导合计男50女40合计70(2)若从被调查的50名爸爸中任选2名爸爸,并用A表示事件“至少1名爸爸辅导”,用B表示事件“2名爸爸都辅导”,求()|P B A.参考公式:22(),()()()()n ad bcKa b c d a c b d-=++++其中n a b c d=+++.参考数据:()P K k︒≥0.150.100.050.025k 2.072 2.706 3.841 5.02423.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:射门距离不超过30米射门距离超过30米总计射门成功261440射门失败41620总计303060(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 20()P K k ≥0.100 0.050 0.010 0.0010k 2.706 3.841 6.635 10.828(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.24.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下列联表,并判断能否在犯错误率不超过0.05的前提下认为“体育迷”与性别有关?非体育迷 体育迷 合计男 女 合计(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()2P K k ≥0.05 0.0125.某企业是否支持进军新的区域市场,在全体员工中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有99%的把握认为“新员工和老员工是否支持进军新的区域市场有差异”;(2)已知在被调查的新员工中有6名来自市场部,其中2名支持进军新的区域市场,现在从这6人中随机抽取3人,设其中支持进军新的区域市场人数为随机变量X,求X的分布列和数学期望.附:()22()()()()n ac bdKa b a c b d c d-=++++26.某企业组织应聘该企业的100名应届毕业生参加专业能力测试(满分100分),这100名毕业生的成绩的频率分布直方图如图所示.(Ⅰ)该企业拟以成绩的中位数作为分数线来确定进入面试阶段的毕业生名单,根据频率分布直方图求进入该企业面试的分数线;(Ⅱ)若被测试的毕业生中有40名女生,进入面试的有15名女生,35名男生,填写下面列联表,并根据列联表判断是否有95%的把握认为成绩与性别有关.成绩<分数线成绩≥分数线总计男生女生总计附:()()()()()22n ad bcKa b c d a c b d-=++++ ()2P K k0.0500.0100.001 k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】计算得到22322214χχχχ>>>,得到答案. 【详解】计算得到:222152(6221410)5281636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯; 222252(4201612)521121636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯ ; 222352(824128)52961636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯ ; 222452(143062)524081636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯;故22322214χχχχ>>>. 故选:D . 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】根据分层抽样的概念易得,解出方程即可判断为真;用独立性检验(列联表法)的判定方法即可得出B 为真;根据充分条件和必要条件的定义以及向量的数量积的应用,进行判断即可得到C 为真;可将原式化为,表示动点到定点和到动直线距离相等的点的轨迹,但是定点在定直线上,故可判断D. 【详解】设一般职员应抽出人,根据分层抽样的概念易得,解得,即一般职员应抽出18人,故A 为真; 用独立性检验(列联表法)来考察两个分类变量是否有关系时,算出的随机变量的值越大,说明“与有关系”成立的可能性越大,可知B 为真;若,则,即不成立,若,则,即成立,故是的必要条件,即C 为真;方程即:,化简得,即表示动点到定点的距离和到直线的距离相等的点的集合,且在直线上,故其不满足抛物线的定义,即D 为假,故选D.【点睛】本题主要考查了分层抽样的概念,独立性检验在实际中的应用,充分条件、必要条件的判定,抛物线的定义等,属于中档题.3.B解析:B 【解析】 【分析】根据22⨯列联表,以及独立检验随机变量的临界值参考表,计算2K 对应的值,验证24,5,6,7,c K =是否恰好满足即可【详解】列22⨯列联表可知:()22661030521 3.024 2.70615513135K ⨯⨯-⨯=≈>⨯⨯⨯,所以5c =时,X 与Y 有关系的可信程度为90%,而其余的值4,6,7c c c ===皆不满足,故选B . 【点睛】独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)4.B解析:B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4). 【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B. 【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.A解析:A 【解析】()x 甲=14×(9+9+11+11)=10,x 乙=14×(8+9+10+x +12)=10,解得x =1.又2s 甲=14×[(9-10)2+(9-10)2+(11-10)2+(11-10)2]=1,2s 乙=14×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=52,∴2s 甲<2s 乙,∴甲组学生的成绩比乙组稳定. 故答案为A.6.A解析:A 【解析】回归直线方程过样本中心点,过A 选项正确.7.C解析:C 【详解】∵2 6.023 5.024K =>∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算出2K 的值;(3)查表比较2K 与临界值的大小关系,作统计判断.8.A解析:A 【解析】当x =1,2,3时,分别代入求y 值,离y 最近的值模拟效果最好,可知A 模拟效果最好.故选A.考点:非线性回归方程的选择.9.B解析:B 【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.10.C解析:C 【解析】 由题意得:()221104030202060505060χ⨯-⨯=≈⨯⨯⨯7.8>6.635,所以认为环保知识测试成绩是否优秀与性别有关的把握为99%. 本题选择C 选项.11.C解析:C 【解析】对于①,线性回归方程 ˆˆˆybx a =+必过点)x y (,,满足回归直线的性质,所以①正确;对于②,在回归方程ˆ35y x =-中,当变量x 增加一个单位时,y 平均减少5个单位,不是增加5个单位;所以②不正确;对于③,在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好,该判断恰好相反;所以③不正确;对于④,在回归直线0.58ˆy x =-中,变量2x =时,变量y 的值一定是-7.不是一定为7,而是可能是7,也可能在7附近,所以④不正确;故选C.12.D解析:D 【解析】57(0.85165ˆ85.7) 2.45Y Yσ=-=-⨯-= 二、填空题13.99【解析】分析列联表中数据可得所以有的把握认为喜爱该节目与否和性别有关故答案为解析:99% 【解析】分析列联表中数据,可得()2110403020207.822 6.63560506050k ⨯⨯-⨯=≈>⨯⨯⨯,所以有099的把握认为“喜爱该节目与否和性别有关”,故答案为0099.14.4【解析】设样本数据的平均数为则yi =2xi -1的平均数为2-1则y1y2…y2017的方差为(2x1-1-2+1)2+(2x2-1-2+1)2+…+(2x2017-1-2+1)2=4×(x1-)2解析:4 【解析】设样本数据的平均数为,则y i =2x i -1的平均数为2-1,则y 1,y 2,…,y 2 017的方差为[(2x 1-1-2+1)2+(2x 2-1-2+1)2+…+(2x 2 017-1-2+1)2]=4× [(x 1-)2+(x 2-)2+…+(x 2 017-)2]=4×4=1615.【解析】将x =160代入得所以残差考点:线性回归方程残差 解析:【解析】 将x =160代入,得,所以残差考点:线性回归方程,残差.16.【解析】试题分析:由题意得即样本中心点代入回归直线方程得考点:回归直线方程的应用 解析:60【解析】试题分析:由题意得181********x ++-==,24343864404y +++==,即样本中心点15(,40)2,代入回归直线方程,得15402602ˆˆaa =-⨯+⇒=. 考点:回归直线方程的应用.17.【解析】试题分析:由回归直线方程可知当时所以针对个体的残差是考点:线性回归方程 解析:0.29-【解析】试题分析:由回归直线方程可知当160x =时,53.29y =,所以针对个体的残差是5353.290.29-=-.考点:线性回归方程.18.②③【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③【详解】①为系统抽样①不正确;④分类变量与它们的随机变量的观测值为当越小与有关系的把握程度越解析:②③ 【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③. 【详解】①为系统抽样, ①不正确;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越小,④不正确;根据相关系数的性质可知②正确;由回归方程的性质可知③正确.故答案为②③. 【点睛】本题通过对多个命题真假的判断,综合考查系统抽样、相关系数、回归方程、独立性检验,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.19.6【解析】n 为18+12+6=36的正约数因为18:12:6=3:2:1所以n 为6的倍数因此因为当样本容量为时若采用系统抽样法则需要剔除1个个体所以n+1为35的正约数因此解析:6 【解析】n 为18+12+6=36的正约数,因为18:12:6=3:2:1,所以n 为6的倍数,因此6,12,18,24,30,36n =因为当样本容量为1n +时,若采用系统抽样法,则需要剔除1个个体,所以n+1为35的正约数,因此6n =20.③④【解析】分析:①根据类比推理与演绎推理的定义即可判断;②根据回归方程的表达式即可判断;③利用线性相关指数的意义即可判断;④根据复数的乘法运算律即可判断详解:对于①类比推理是合情推理的重要形式则不解析:③④ 【解析】分析:①根据类比推理与演绎推理的定义即可判断;②根据回归方程的表达式,即可判断;③利用线性相关指数r 的意义即可判断;④根据复数的乘法运算律即可判断. 详解:对于①,类比推理是合情推理的重要形式,则不属于演绎推理,故①错误;对于②,根据回归方程为ˆ23yx =-,可得当变量每增加1个单位,y 平均减少3个单位,故②错误;对于③,在回归分析中,r 具有以下性质:1r ≤,并且r 越接近1,线性相关程度越强;r 越接近0,线性相关程度越弱,故③正确;对于④,根据复数的乘法运算律,对复数12,z z 和自然数n 有()1212nn nz z z z ⋅=⋅,故④正确.故答案为③④.点睛:本题考查了命题的真假判断与应用,考查相关关系及复数的运算,是一个考查的知识点比较多的题目,解题本题的关键是理解概念及掌握运算公式,如在回归分析中,r 具有的性质,复数遵循的运算律等.三、解答题21.(1)没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)分布列见解析,()2E X =.【分析】(1)根据表格中数据和题中信息可完善22⨯列联表,计算出2χ的观测值,结合临界值表可得出结论;(2)由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望值. 【详解】(1)22⨯列联表如下表所示:()22505102015258.33310.828203025253χ⨯⨯-⨯==≈<⨯⨯⨯,所以,没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)9人中学习成绩优秀的人有209630⨯=人,学习成绩一般的有109330⨯=人,X 可能的取值有0、1、2、3,()3911084P X C ===,()1263393114C C P X C ===,()21633915228C C P X C ===,()363953?21C P X C ===.所以,随机变量X 的分布列为X 0 1 2 3P184314 1528 521()31551232142821E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)列联表见解析,不能在犯错误的概率不超过0.05的前提下,认为辅导孩子作业与家长性别有关;(2)2969. 【分析】(1)根据题中条件,将表补齐,利用公式求得2K 的值,与临界值比较即可得结果;(2)根据题意,求得对应的基本事件数,结合条件概率公式求得结果. 【详解】(1)列联表填写如下图所示:是否辅导家长性别辅导不辅导 合计男 30 20 50 女 40 50 90 合计70701402140(30502040)140 3.11 3.8417070905045K ⨯⨯-⨯==≈<⨯⨯⨯,所以不能在犯错误的概率不超过0.05的前提下,认为辅导孩子作业与家长性别有关; (2)至少一名爸爸辅导的可能情况有225020()C C -种; 两名爸爸辅导的情况有230C 种;所以()230225020()29()69|C P AB P B A P A C C ===-. 【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有列联表,独立性检验,条件概率公式,属于简单题目.23.(1)有99%的把握认为该球员射门成功与射门距离是否超过30米有关;(2)3π.【分析】(1)利用22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++求得2K 的值,再与临界表对照下结论.(2)由2+3()cos sin 4f θθθθθ=+⋅-,求导得到1()sin sin cos (cos )22f θθθθθθθθ=-++=-'-, 利用导数得到函数单调性,求得最大值点即可. 【详解】(1)由题知:22602616144)=10.8 6.63540203030k ⨯-⨯=>⨯⨯⨯(所以有99%的把握认为该球员射门成功与射门距离是否超过30米有关(2)由题知:1()sin sin cos (cos )22f θθθθθθθθ=-++=-'- 因为()0f θ'=,得3πθ=所以当(0,)3πθ∈时,()0f θ'>;当(,)32ππθ∈时,()0f θ'<所以()f θ在(0,)3π上单调递增;在(,)32ππ上单调递减所以()()3f f πθ≤,即球员射门成功率最高时射门角3πθ=【点睛】本题主要考查独立性检验和导数与函数的最值,还考查了运算求解的能力,属于中档题. 24.(1)表格见解析,不能在犯错率不超过0.05的前提下认为“体育迷”与性别有关;(2)710.【分析】(1)根据频率直方图计算出抽取的100人中,“体育迷”的人数,由此可完善22⨯列联表,计算出2K的观测值,结合临界值表可得出结论;(2)由题意得知,“超级体育迷”的人数为5,其中2女性观众分别记为A、B,3名男性观众分别记为a、b、c,列举出所有的基本事件,并确定事件“从“超级体育迷”中任意选取2人,至少有1名女性观众”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”的人数为()100100.020.00525⨯⨯+=人,从而联表如下:将联表中的数据代入公式计算得()2100301045151003.0307525455533K⨯⨯-⨯==≈⨯⨯⨯,因为3.030 3.841<,所以不能在犯错率不超过0.05的前提下认为“体育迷”与性别有关;(2)由频率分布直方图可知,“超级体育迷”为5人,其中2女性观众分别记为A、B,3名男性观众分别记为a、b、c,从“超级体育迷”中任意选取2人,所有的基本事件有:(),A B、(),A a、(),A b、(),A c、(),B a、(),B b、(),B c、(),a b、(),a c、(),b c,共10个,其中,事件“从“超级体育迷”中任意选取2人,至少有1名女性观众”所包含的基本事件有:(),A B、(),A a、(),A b、(),A c、(),B a、(),B b、(),B c,共7个,因此,所求事件的概率为710 P=.【点睛】本题考查利用独立性检验的基本思想解决实际问题,同时也考查了利用古典概型的概率公式求事件的概率,考查列举法的应用,考查计算能力,属于中等题.25.(1)有99%的把握认为新员工和老员工是否支持进军新的区域市场有差异;(2)分布列见解析,期望为1.【分析】(1)根据22⨯列联表中的数据,代入公式计算,求得2K的值,结合附表,即可得到结论;(2)得出随机变量X的所有可能取值为0,1,2,求得相应的概率,得出随机变量的分布列,结合期望的公式,即可求解.【详解】(1)由题意,根据22⨯列联表中的数据,代入公式计算,可得22100(50202010)80012.6987030604063K⨯⨯-⨯==≈⨯⨯⨯,由于12.698 6.635>,所以有99%的把握认为新员工和老员工是否支持进军新的区域市场有差异.(2)由题意得:随机变量X的所有可能取值为0,1,2,可得0324361(0)5C CP XC===,1224363(1)5C CP XC===,2124361(2)5C CP XC===,则随机变量X的分布列为故所求随机变量X的数学期望()0121555E X=⨯+⨯+⨯=.【点睛】本题主要考查了独立性检验的应用,以及离散型随机变量的分布列及数学期望的求解,其中解答中认真审题,得出随机变量的取值和相应的概率,以及结合公式准确计算是解答的关键,着重考查推理与运算能力.26.(Ⅰ)73.75;(Ⅱ)列联表见解析,有95%的把握认为成绩与性别有关.【分析】(Ⅰ)设成绩的中位数为x,中位数左侧和右侧构成的小矩形的面积分别为0.5,列方程求解即可;(Ⅱ)根据题目所给的数据填写2×2列联表;由公式计算2K的值,查表比较即可得到结论.【详解】(Ⅰ)从左至右第一、二个矩形的面积均为0.1,第三个矩形的面积为0.15,第四个矩形的面积为0.4,设成绩的中位数为x,则700.10.10.150.40.510x-+++⨯=,解得73.75x=,即进入该企业面试的分数线为73.75.(Ⅱ)()21002515253525 4.167 3.841604050506K ⨯⨯-⨯==≈>⨯⨯⨯,故有95%的把握认为成绩与性别有关.【点睛】本题考查独立性检验的应用问题,考查频率分布直方图估计样本的中位数,考查计算能力,属于基础题.。
(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
人教版高中数学(选修2-3)第三章统计案例单元测试题

A.52 54
B.54 52
C.94 146
D.146 94
答案 A
解析 由 a+21= 73,得 a= 52, a+ 2=b,得 b=54. 故选 A.
∧
7.设有一个回归方程为 y= 3- 5x,则变量 x 增加一个单位时 ( )
A.y 平均增加 3 个单位
B.y 平均减少 5 个单位
C.y 平均增加 5 个单位
B.v= log 1 t 2
D.v= 2t - 2
答案 C
解析 先画出散点图,利用散点图直观认ຫໍສະໝຸດ 变量间的关系,可选出较合适的模型为
C,或
将数据代入所给选项进行验证.
5.对于一组具有线性相关关系的数据 ( x1, y1) , ( x2, y2) ,…, ( xn, yn) ,其回归方程中
的截距为 (
)
C.(0 , y )
D.( x , y )
答案 D
解析 回归直线方程一定过样本点的中心 ( x , y ) .故选 D.
11.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是
A.总偏差平方和 C.回归平方和
B.残差平方和 D .相关指数 R2
答案 B
()
∧∧
n∧
2
解析 yi - y= ei , e i 为残差平方和.故选 B.
答案 A
解析 求出样本中心 ( x , y ) 代入选项检验知选 A.
4.今有一组实验数据如下:
t 1.99 3.0
4.0 5.1 6.12
v 1.5
4.04 7.5 12 18.01
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是
()
(好题)高中数学选修1-2第一章《统计案例》检测(答案解析)(3)

一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5323.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A .25 B .310 C .15D .1106.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13 D .297.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >=B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 8.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20009.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好10.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .3511.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .4012.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A.130 B.190C.240 D.250二、填空题13.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.已知x、y之间的一组数据如下:=+所表示的直线必经过点________.则线性回归方程ˆy a bx16.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________17.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知=)=,lg30.4771lg20.301018.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=_____.19.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.20.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求:(i)三个球中有两个红球一个黑球的概率;(ii)第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查结果如下面22⨯列联表.22⨯与性别有关”?(2)现在从这100名学生中按性别采取分层抽样的方法抽取5名学生,如果再从中随机选取2人进行有关“嫦娥五号”情况的宣讲,求选取的2名学生中恰有1名女生的概率.若将频率视为概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ 23.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()22n ad bc K a b c d a c b d -=++++25.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()20P K k ≥ 0.050 0.010 0.001 0k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++26.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为x ,若每次抽取的结果是相互独立的,求x 的分布列,期望和方差. 附表:22()()()()()n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率, 首先求两次数字乘积为偶数的概率, 然后两次为非零偶数的概率,再按照条件概率的公式求解. 【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是22169⎛⎫= ⎪⎝⎭, 所以两次数字乘积为偶数的概率P =228169⎛⎫-= ⎪⎝⎭ ; 若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。
人教版数学高二A版选修2-3单元检测第三章统计案例(附答案)

数学人教版A2-3第三章 统计案例单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1( ).A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型2.工人月工资y (元)随劳动生产率x (千元)变化的回归方程为ˆy=50+80x .下列判断错误的是( ).A .劳动生产率为1 000元时,工资约为130元B .劳动生产率提高1 000元时,工资提高130元C .劳动生产率提高1 000元时,工资提高80元D .当月工资约为210元时,劳动生产率为2 000元3.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为ˆy=0.66x +1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( ).A .83%B .72%C .67%D .66%4.若两个变量的残差平方和是325,21()nii x y =-∑=923,则随机误差对预报变量的贡献率约为( ). A .64.8% B .60% C .35.2% D .40% 5.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适; ②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好; ③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( ). A .①② B .②③ C .①③ D .①②③6.(创新题)独立检验中,假设H 0:变量X 与变量Y 没有关系,则在H 0成立的情况下,P (K 2≥6.635)=0.010表示的意义是( ). A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99.9%C .变量X 与变量Y 没有关系的概率为99%D .变量X 与变量Y 有关系的概率为99%7( ).A.K2=9.564 B.K2=3.564 C.K2<2.706 D.K2>3.841 8.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是().A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关二、填空题(每小题6分,共18分)9.(创新题)已知回归直线ˆy=bx+a斜率的估计值是52,且样本点的中心为(4,5).则当x=-2时,ˆy的值为______.10.若一组观测值(x1,y1),(x2,y2),…,(x n,y n)之间满足y i=bx i+a+e i(i=1,2,…,n),若e i恒为0,则R2为________.11.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的试根据上述数据计算K2=______,比较这两种手术对病人又发作心脏病的影响有没有差别______.三、解答题(共34分)12.(10分)某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,求该老师用线性回归分析的方法预测他孙子的身高为多少.13.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)表2:注射药物B后皮肤疱疹面积的频数分布表完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与14.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差;(2)你能残差分析这个模型能较好地刻画零件数和加工时间的关系吗?参考答案1答案:A解析:画出散点图可观察得点都在一条直线上,故A正确.2答案:B解析:当x=1(千元)时,ˆy=130元,A正确;当ˆy=210元时,x=2105080-=2千元,D正确;当x增加一个单位时,ˆy增加80,C正确.3答案:A解析:因为当ˆy=7.675时,x=7.675 1.5620.66-≈9.262,所以7.6759.262≈0.829≈83%.4答案:C解析:由题意可知随机误差对预报变量的贡献率约为325923=0.352.5答案:C解析:相关指数R2越大,说明模型拟合效果越好,故②错误.6答案:D解析:由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.7答案:D解析:由K2=2()()()()()n ad bca b c d a c b d-++++,得K2的观测值k=285(4012528)68174540⨯⨯⨯⨯⨯⨯-≈4.722>3.841.8答案:D解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.9答案:-10解析:由已知b=52且4b+a=5,∴a=-5,5ˆ2y x=-5.∴x=-2时,y=-10.10答案:1解析:e i恒为0,说明随机误差总为0,于是y i=ˆy,故R2=1.11答案:1.78不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析:提出假设H0:两种手术对病人又发作心脏病的影响没有差别.根据列联表中的数据,可以求得K2的观测值k=2392(3916729157)68324196196⨯⨯⨯⨯⨯⨯-≈1.78.当H 0成立时,K 2≈1.78,而K 2<2.072的概率为0.85.所以,不能否定假设H 0.也就是不能作出这两种手术对病人又发作心脏病的影响有差别的结论.12解:由题意父亲身高x cm 与儿子身高y cm 对应关系如下表:则1731701763x ++==173,1701761823y ++==176, 31()()iii x x y y =--∑=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)×(182-176)=18,321()ii x x =-∑=(173-173)2+(170-173)2+(176-173)2=18.∴18ˆ18b==1. ∴ˆˆay bx =-=176-173=3. ∴线性回归直线方程ˆˆˆybx a =+=x +3. ∴可估计孙子身高为182+3=185(cm).由列联表中的数据,得K 2的观测值为k =2200(70653530)10010010595⨯⨯⨯⨯⨯⨯-≈24.561>10.828.因此,有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.14解:(1)根据表中数据作出散点图,如图所示.间对零件数的线性回归方程为ˆy=0.668x+54.93.(2)以零件数为横坐标,残差为纵坐标作出残差图如图所示.由图可知,残差点分布较均匀,即用上述回归模型拟合数据效果很好.但需注意,由残差图也可以看出,第4个样本点和第5个样本点的残差比较大,需要确认在采集这两个样本点的过程中是否有人为的错误.。
高二数学选修1-2第一章统计案例综合检测题(北师大版有答案)

高二数学选修1-2第一章统计案例综合检测题(北师大版有答案)综合检测(一)第一章统计案例(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图1所示,在这5组数据中,去掉哪组数据后,剩下的4组数据的线性相关系数最大()图1A.A(1,3)B.B(2,4)C.C(4,5)D.D(3,10)【解析】从散点图容易观察,去掉D(3,10)后,其余点大致在一条直线附近.【答案】D2.对于相关系数r,叙述正确的是()A.|r|∈(0,+∞),|r|越大,相关程度越大,反之相关程度越小B.r∈(-∞,+∞),r越大,相关程度越大,反之,相关程度越小C.|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D.以上说法都不对【解析】由相关系数的概念及计算公式可知|r|≤1.【答案】C3.当χ2>2.706时,有多大的把握认为“x与y有关系”()A.99%B.95%C.90%D.以上都不对【解析】若χ2>2.706,则有90%的把握认为“x与y有关系”.【答案】C4.已知呈线性相关关系的变量x,y之间的关系如下表所示,则回归直线一定过点()x0.10.20.30.5y2.112.854.0810.15A.(0.1,2.11)B.(0.2,2.85)C.(0.3,4.08)D.(0.275,4.7975)【解析】回归直线不一定过样本点,但由于a=y-bx,即y=a+bx,所以回归直线一定过点(x,y),即点(0.275,4.7975).【答案】D5.一位母亲记录了儿子3~9岁的身高(数据略),由此建立的身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145.83cmB.身高在145.83cm以上C.身高在145.83cm左右D.身高在145.83cm以下【解析】回归模型只能进行预测,应选C.【答案】C6.(2013•南昌检测)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A.y=-10x+200B.y=10x+200C.y=-10x-200D.y=10x-200【解析】因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.【答案】A7.对两个变量y与x进行回归分析,分别选择不同的模型,它们的相关系数r如下,其中拟合效果最好的模型是()A.模型1的相关系数r为0.98B.模型2的相关系数r为0.80C.模型3的相关系数r为0.50D.模型4的相关系数r为0.25【解析】根据相关系数的定义和计算公式可知|r|≤1,且|r|越接近于1,相关程度越大,拟合效果越好,|r|越接近于0,相关程度越小,拟合效果越弱.【答案】A8.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+B的概率为()A.13B.12C.23D.56【解析】P(A)=16+16=13,P(B)=23则P(A+B)=P(A)+P(B)=P(A)+1-P(B)=13+1-23=23.【答案】C9.一个口袋内装有大小相同的8个白球和4个黑球,从中不放回地任取出两个球,在第一次取出是黑球的前提下,第二次取出黑球的概率为()A.311B.12C.13D.712【解析】把第一次取出的是黑球记作事件A,第二次取出的是黑球记作事件B,则P(A)=412=13,P(AB)=4×312×11=111,P(B|A)==11113=311.【答案】A10.在一次投球比赛中,男、女生投球结果人数统计如下表:结果性别中不中男6535女4238则χ2的值为()A.3.97B.6.89C.2.88D.1.25【解析】由列联表知χ2=-++++=-0×80×107×73≈2.88.【答案】C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在横线上)11.若由一个2×2列联表中的数据计算得χ2≈4.073,那么有________的把握认为两个变量间有关系.【解析】由χ2≈4.073>3.841,故有95%的把握认为两个变量间有关系.【答案】95%12.为预测某种产品的回收率y,需要研究它和原料有效成份含量x之间的相关关系,现取了8组数据.计算知:i=18xi=52,i=18yi=288,i=18x2i=798,i=18xiyi=1849,则y对x的回归方程是________.【解析】b=i=18xiyi-8xyi=18x2i-8x2=1849-8×528×2888798-=-0.05,a=y-bx=36+0.05×132=36.325,∴回归方程为y=36.325-0.05x.【答案】y=36.325-0.05x13.某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应收集的数据是________.【解析】本题研究的两个变量是性别与职称.因此收集的数据应分别是男、女正、副教授人数.【答案】男正教授人数、男副教授人数、女正教授人数、女副教授人数14.某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.【解析】设解释变量和预报变量分别为x,y,它们对应的取值如表所示:x173170176y170176182于是x=173,y=176,b=-+-+3×602+-+32=1,a=176-173×1=3,得y=x+3,x=182时,y=185.【答案】185。
(常考题)北师大版高中数学高中数学选修2-3第三章《统计案例》检测题(有答案解析)
一、选择题1.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是()A.①回归分析,②取平均值B.①独立性检验,②回归分析C.①回归分析,②独立性检验D.①独立性检验,②取平均值2.某中学采取分层抽样的方法从高二学生中按照性别抽出20名学生,其选报文科、理科的情况如下表所示,参考公式和数据:22()()()()()n ad bcKa cb d a bc d-=++++,其中n a b c d=+++.则以下判断正确的是A.至少有97.5%的把握认为学生选报文理科与性别有关B.至多有97.5%的把握认为学生选报文理科与性别有关C.至少有95%的把握认为学生选报文理科与性别有关D.至多有95%的把握认为学生选报文理科与性别有关3.某班主任对全班50名学生进行了作业量的调查,数据如表:若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过()附:()()()()()22n ad bcKa b c d a c b d-=++++A.0.01 B.0.025 C.0.10 D.0.054.为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是( )A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合5.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是()P(K2≥k)…0.250.150.100.0250.0100.005…k…1.3232.0722.7065.0246.6357.879…A.90% B.95% C.97.5% D.99.5%6.以下四个命题中:①在回归分析中,可用相关指数R2的值判断拟合的效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1; ③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为( ) A .1 B .2 C .3 D .47.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关8.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数与方差 B .回归分析 C .独立性检验 D .概率 9.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1 C .2D .310.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .321011.由某个22⨯列联表数据计算得随机变量2K 的观测值k 6.879=,则下列说法正确的是 ( )0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.7081.3232.0722.7063.8415.0246.6357.87910.828A .两个分类变量之间有很强的相关关系B .有99%的把握认为两个分类变量没有关系C .在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系D .在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系 12.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: )C(件)由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46B .40C .38D .58二、填空题13.针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的13,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23.若有95%的把握认为是否喜欢韩剧和性别有关,求男生至少有______人.14.以下结论正确..的序号有_________ (1)根据22⨯列联表中的数据计算得出2K ≥6.635, 而P (2K ≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系.(2)在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.(3)在线性回归分析中,相关系数为r ,r 越接近于1,相关程度越大;r 越小,相关程度越小.(4)在回归直线0.585y x =-中,变量200x =时,变量y 的值一定是15.15.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x 中=﹣2,据此预测当气温为5℃时,用电量的度数约为_____.17.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③某项测量结果ξ服从正态分布()21,σN ,()50.81ξP ≤=,则()30.19ξP ≤-=;④对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.以上命题中其中真命题的个数为___________.18.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________.19.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 的距离是19; ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表: 年龄段(岁) ()0,20[)20,40[)40,60[)60100,网购人数 2632348 男性人数1510 105(1)若把年龄在[2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?网购迷 非网购迷 总计男性 女性 总计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥0.10 0.05 0.01 0.001两人年龄都小于20岁的概率.22.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X,试求X的分布列与数学期望.参考公式:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.参考数据:23.第十八届中国国际农产品交易会于11月27日在重庆国际博览中心开幕,我市全面推广“遂宁红薯”及“遂宁鲜”农产品区域公用品牌,并组织了100家企业、1000个产品进行展示展销,扩大优质特色农产品市场的占有率和影响力,提升遂宁特色农产品的社会认知度和美誉度,让来自世界各地的与会者和消费者更深入了解遂宁,某记者对本次农交会进行了跟踪报道和实际调查,对某特产的最满意度()%x和对应的销售额y(万元)进行了调查得到以下数据:关系数r的绝对值在0.95以上(含0.95)是线性相关性较强;否则,线性相关性较弱.请你对线性相关性强弱作出判断,并给出理由;(2)如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的那一天不作为计算数据),并求在剔除“末位淘汰”的那一天后的销量额y 关于最满意度x 的线性回归方程(系数精确到0.1). 参考数据:24x =,81y =,52215146ii xx =-=∑, 52215176i i y y =-=∑,515151i ii x y xy =-=∑13.27≈≈.附:对于一组数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅.其回归直线方程 ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆ·ni ii n ii x y nx y bxnx ==-=-∑∑,ˆa y bx=-,线性相关系数·ni ix y nx y r -=∑24.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,25.为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望()E X.附:22()()()()()n ad bcKa b c d a c b d-=++++26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.C解析:C【解析】由题易得22⨯列联表如下:则2K的观测值为()220235104.432 3.841128713k⨯⨯-⨯=≈>⨯⨯⨯,所以至少有95%的把握认为学生选报文理科与性别有关,故选:C.【解题必备】(1)独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是否有关系的判断.独立性检验的结论只能是有多大的把握认为两个分类变量有关系,而不能是两个分类变量一定有关系或没有关系.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体.即独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释. (3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α, 然后查下表确定临界值0k ; ②利用公式()()()()()22n ad bc K a c b d a b c d -=++++,计算随机变量2K 的观测值k ;③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.说明:通常认为 2.706k ≤时,样本数据就没有充分的证据显示“X 与Y 有关系”.3.B解析:B 【解析】分析:根据表格中所给数据,代入公式()()()()()22n ad bc K a b c d a c b d -=++++,求出观测值,把所求的观测值同临界值进行比较,从而可得结果. 详解:根据表中数据得到()2250181589 5.059 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,所以,若推断“学生的性别与认为作业量大有关”, 则这种推断犯错误的概率不超过0.025,故选B.点睛:本题主要考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,计算过程一定要细心,避免出现计算错误,属于基础题.4.A解析:A 【解析】回归直线方程过样本中心点,过A 选项正确.5.C解析:C 【详解】∵2 6.023 5.024K=>∴可断言市民收入增减与旅游欲望有关的把握为97.5%.故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bcKa b c d a c b d-=++++,计算出2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.6.B解析:B【解析】由题意得,若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为4,所以③不正确;对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y 有关系”的把握程度越小,所以④不正确.其中①、②是正确的,故选B.7.C解析:C【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.8.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C.考点:独立性检验的意义.9.B解析:B【解析】一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x的系数具备直线斜率的功能,对于回归方程y35x=-,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y= b x+a必过点(),x y,③正确;因为213.079 6.635K=>,故有0099以上的把握认为这两个变量间有关系,④正确,即错误的个数为1,故选B. 10.B解析:B【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.11.C解析:C 【解析】由22⨯列联表数据计算得随机变量2K 的观测值是 6.879 6.635k =>,通过对照表中数据得,在犯错误的概率不超过1.0%的前提下,认为这两个变量间有关系,故选C.12.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.二、填空题13.【分析】设男生人数为依题意填写列联表计算观测值列出不等式求出的取值范围再根据题意求出男生的人数【详解】设男生人数为由题意可得列联表如下: 喜欢韩剧 不喜欢韩剧 总计 男生 女生 总 解析:18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列出不等式求出x 的取值范围,再根据题意求出男生的人数. 【详解】设男生人数为x ,由题意可得列联表如下:则 3.841k>,即2452()3636969 3.84171711931818x x x x xxkx x xx⋅-⋅==>⋅⋅⋅,解得12.697x>.因为各部分人数均为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有18人.故答案为:18.【点睛】本题考查独立性检验的应用,解题关键是列出列联表,然后进行计算,属于常考题. 14.(1)(3)【解析】分析:根据独立性检验残差图相关系数回归分析的定义及性质逐一分析四个答案的真假即可详解:对于(1)根据2×2列联表中的数据计算得出≥6635而P(≥6635)≈001则有99的把握解析:(1)(3).【解析】分析:根据独立性检验、残差图、相关系数、回归分析的定义及性质,逐一分析四个答案的真假即可.详解:对于(1),根据2×2列联表中的数据计算得出2K≥6.635, 而P(2K≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系,故(1)正确.对于(2),根据残差图的意义可得,当带状区域的宽度较小时,说明选用的模型比价合适,而当带状区域的宽度较大时,说明选用的模型不合适,故(2)不正确.对于(3),在线性回归分析中,相关系数为r,|r|越接近于1,则相关程度越大;|r|越接近于0,则相关程度越小.故(3)正确.对于(4),在回归直线y=0.5x−85中,当x=200时,y=15,但实际观测值可能不是15,故(4)不正确.综上可得(1)(3)正确.点睛:本题考查回归分析和独立性检验的基本知识,属于基础类题目,解题的关键是熟记相关的的概念和性质.15.5【解析】因为随机变量K2的观测值k>3841所以在犯错误的概率不超过005的前提下认为主修统计专业与性别有关系故这种判断出现错误的可能性为5考点:独立性检验思想解析:5% 【解析】因为随机变量K 2的观测值k >3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%. 考点:独立性检验思想.16.40【解析】试题分析:根据所给的表格做出本组数据的样本中心点根据样本中心点在线性回归直线上利用待定系数法做出a 的值现在方程是一个确定的方程根据所给的x 的值代入线性回归方程预报要销售的件数解:由表格得解析:40 【解析】试题分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a 的值,现在方程是一个确定的方程,根据所给的x 的值,代入线性回归方程,预报要销售的件数.解:由表格得=(14+12+8+6)÷4=10,=(22+26+34+38)÷4=30 即样本中心点的坐标为:(10,40), 又∵样本中心点(10,40)在回归方程 上且b=﹣2∴30=10×(﹣2)+a , 解得:a=50, ∴当x=5时,y=﹣2×(5)+50=40. 故答案为40.考点:回归分析的初步应用.17.【解析】试题分析:对于①从匀速传递的新产品生产流水线上质检员每20分钟抽取一件新产品进行某项指标检测这样的抽样是系统抽样而不是分层抽样故①错;对于②两个随机变量的相关性知识可知②正确;对于③变量所以 解析:2【解析】试题分析:对于①,从匀速传递的新产品生产流水线上,质检员每20分钟抽取一件新产品进行某项指标检测,这样的抽样是系统抽样,而不是分层抽样,故①错;对于②,两个随机变量的相关性知识可知②正确;对于③变量2(1,)N ξσ~,所以()()30.191510.810.19ξξP ≤-==-P ≤=-=,故③正确;对于④,随机变量2K 观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④错,所以真命题有2个. 考点:1. 回归分析的基本思想及其应用初步;2.统计与概率.18.163【解析】由根据回归直线经过样本中心即得由得故答案为解析:163 【解析】由4953565864565y ++++==,根据回归直线经过样本中心(),x y ,即560.7973.56x =⨯-,得164x =,由1551611671741645a x ++++==,得163a =,故答案为163.19.①③④【解析】①是独立性检验的应用①对②中由于所以显然是半个圆②错③中由极坐标中两点距离公式=③对④中所有边长相等的凸多边形都是正多边形为大前提是错误的因为只需要正多边形挤压变形使之仍为凸多边形即可解析:①③④ 【解析】①是独立性检验的应用,①对.②中由于[]0,θπ∈,所以01y ≤≤,显然是半个圆,②错.③中,由极坐标中两点距离公式2221212212cos()AB ρρρρθθ=+--=14912()19,2+-⨯-=AB ③对.④中“所有边长相等的凸多边形都是正多边形”为大前提,是错误的,因为只需要正多边形挤压变形,使之仍为凸多边形即可.④对.所以填①③④.20.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,故①正确.命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误 ③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确. 故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.三、解答题21.(1)列联表答案见解析,能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)310.【分析】(1)根据表格中的数据可题中信息可完善22⨯列联表,计算出2K 的观测值,结合临界值表可得出结论;(2)计算得出年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b ,列举出所有的基本事件,并确定事件“所抽的两人年龄都小于20岁”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由题中信息可完善22⨯列联表如下表所示:计算得()2100201446207.605 6.63566344060K ⨯⨯-⨯=≈>⨯⨯⨯,故能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)年龄在()0,20、[)20,40网购男性分别有15人、10人.按分层抽样的方法随机抽取5人,年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b .从中随机抽取2人的一切可能结果所组成的基本事件共10个:()1,2、()1,3、()1,a 、()1,b 、()2,3、()2,a 、()2,b 、()3,a 、()3,b 、(),a b .用A 表示“两人年龄都小于20岁”这一事件,则事件A 由3个基本事件组成:()1,2、()1,3、()2,3.故事件A 的概率为()310P A =. 【点睛】方法点睛:求解古典概型的概率方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.22.(1)没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)分布列见解析,()2E X =.【分析】(1)根据表格中数据和题中信息可完善22⨯列联表,计算出2χ的观测值,结合临界值表可得出结论;(2)由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望值. 【详解】(1)22⨯列联表如下表所示:()22505102015258.33310.828203025253χ⨯⨯-⨯==≈<⨯⨯⨯,所以,没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)9人中学习成绩优秀的人有209630⨯=人,学习成绩一般的有109330⨯=人, X 可能的取值有0、1、2、3,()3911084P X C ===,()1263393114C C P X C ===,()21633915228C C P X C ===,()363953?21C P X C ===.所以,随机变量X 的分布列为()1232142821E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.23.(1)0.94r ≈,线性相关性较弱;(2) +77.3ˆyx =。
最新北师大版高中数学高中数学选修2-3第三章《统计案例》测试卷(有答案解析)
一、选择题1.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:临界值参考:(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别无关”C .有99.99%以上的把握认为“喜欢“应用统计”课程与性别有关”D .有99.99%以上的把握认为“喜欢“应用统计”课程与性别无关” 2.以下四个结论,正确的是( )①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在回归直线方程0.1.3ˆ1y x =+中,当变量ˆx 每增加一个单位时,变量ˆy增加0.13个单位;③在频率分布直方图中,所有小矩形的面积之和是1;④对于两个分类变量X 与Y ,求出其统计量2K 的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大. A .②④B .②③C .①③D .③④3.下列命题是假命题...的是( )A .某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出18人;B .用独立性检验(列联表法)来考察两个分类变量是否有关系时,算出的随机变量的值越大,说明“与有关系”成立的可能性越大;C .已知向量,,则是的必要条件; D .若,则点的轨迹为抛物线.4.已知x 与y 之间的几组数据如下表: x 1 2 4 5 y 0 2 3 5假设根据上表数据所得线性回归直线方程y=bx+a,若某同学根据上表中的前两组数据(1,0)和(2,2),求得的直线方程为y=b'x+a',则以下结论正确的是( ) A .b>b',a>a' B .b<b',a<a' C .b>b',a<a'D .b<b',a>a'5.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是 ( ) A .0.1E ξ=B .•01D ξ=C .10()0.01?0.99k k P k ξ-==D .1010()0.99?0.01kkkP k C ξ-==6.对两个分类变量A ,B 的下列说法中正确的个数为( )①A 与B 无关,即A 与B 互不影响; ②A 与B 关系越密切,则K 2的值就越大; ③K 2的大小是判定A 与B 是否相关的唯一依据 A .0 B .1 C .2 D .37.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k =,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响8.通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:女 男 总计 读营养说明书 90 60 150 不读营养说明书 30 70 100 总计120130250从调查的结果分析,认为性别和读营养说明书的关系为( ) 附:()20P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 0k 2.0722.7063.8415.0246.6357.87910.828()()()()()22n ad bc K a b c d a c b d -=++++ . A .95%以上认为无关 B .90%~95%认为有关 C .95%~99.9%认为有关D .99.9%以上认为有关9.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关 10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1C .2D .3 11.已知样本789x y 、、、、的平均数是82xy 值为 A .8B .32C .60D .8012.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,统计数据如下表附:K≈,现判断数学成绩与物理成绩有关系,则判断出错的概率不会超过经计算2 4.514A.0.5% B.1% C.2% D.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.x,y的取值如下表:则x,y之间的关系可选用函数___进行拟合.15.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x-甲,x-乙,则x-甲>x-乙的概率是________.16.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 17.给出下列5种说法:①标准差越小,样本数据的波动也越小; ②回归分析研究的是两个相关事件的独立性;③在回归分析中,预报变量是由解释变量和随机误差共同确定的; ④相关指数是用来刻画回归效果的,的值越大,说明回归模型的拟合效果越好.⑤对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越小.其中说法正确的是________(请将正确说法的序号写在横线上).18.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 19.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.20.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作 不太积极参加班级工作 合计 学习积极性高 18 7 25 学习积极性一般61925则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表三、解答题21.2017年10月9日,教育部考试中心下发了《关于2018年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.鞍山市教育部门积极回应,编辑传统文化教材,在全是范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中支持态度的为80人.(1)完成22⨯列联表(2)判断是否有99.9%的把握认为性别与支持有关?附:22()()()()()n ad bcKa b c d a c b d-=++++.22.某中学在2020年元旦校运动会到来之前,在高三年级学生中招募了16名男性志愿者和14名女性志愿者,其中男性志愿者,女性志愿者中分别有10人和6人喜欢运动会,其他人员均不喜欢运动会.(1)根据题设完成下列22⨯列联表:喜欢运动会 不喜欢运动会 总计男 女总计(2)在犯错误的概率不超过0.050的前提下能否有95%的把握认为喜欢运动会与性别有关?并说明理由.(3)如果喜欢运动会的女性志愿者中只有3人懂得医疗救护,现从喜欢运动会的女性志愿者中随机抽取2人负责医疗救护工作,求“抽取得2名志愿者都懂得医疗救护”的概率.注:()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++临界值表()20P K k ≥ 0.050 0.025 0.010 0.0010k 3.841 5.024 6.635 10.82823.为调研高中生的作文水平,在某市普通高中的某次联考中,参考的文科生与理科生人数之比为1∶4,且成绩分布在[]0,60的范围内,规定分数在50以上(含50)的作文获奖,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图如图所示,其中a ,b ,c 构成以2为公比的等比数列.(1)求a ,b ,c 的值;(2)填写下面22⨯列联表,能否在犯错误的概率不超过0.01的情况下认为“获奖”与“学生的文理科”有关?.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.(1)根据所给样本数据画出22⨯列联表;(2)请问能有多大把握认为药物有效?附公式:()()()()()22=n ad bcKa b c d a c b d-++++.25.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.经常阅读10024不经常阅读合计200(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82826.在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付,出门不带现金的人数正在迅速增加.某机构随机抽取了一组市民,并统计他们各自出门随身携带现金(单位:元)的情况,制作出如图所示的茎叶图.规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据茎叶图的数据,完成答题卡上的22⨯列联表;男生女生合计手机支付族非手机支付族(2)根据(1)中的列联表,判断是否有99%的把握认为“手机支付族”与“性别”有关. 附:22()()()()()()n ad bc K n a b c d a b c d a c b d -==+++++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】计算212.010.828K ≈>,对比临界值表得到答案. 【详解】()222552020105()53912.010.828()()()()3025302545n ad bc K a b c d a c b d ⨯-⨯-===≈>++++⨯⨯⨯,故在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”. 故选:A. 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】利用系统抽样和分层抽样的知识判断①的正确性;利用回归直线方程的知识判断②的正确性;利用频率分布直方图的知识判断③的正确性;利用独立性检验的知识判断④的正确性. 【详解】①,是系统抽样,不是分层抽样,所以①错误. ②,y增加0.1,所以②错误. ③,在频率分布直方图中,所有小矩形的面积之和是1,所以③正确. ④,对于两个分类变量X与Y,求出其统计量2K的观测值k,观测值k越大,我们认为“X与Y有关系”的把握程度就越大,所以④正确.综上所述,正确的序号为③④.故选:D【点睛】本小题主要考查抽样方法、回归直线方程、频率分布直方图和独立性检验等知识,属于基础题.3.D解析:D【分析】根据分层抽样的概念易得,解出方程即可判断为真;用独立性检验(列联表法)的判定方法即可得出B为真;根据充分条件和必要条件的定义以及向量的数量积的应用,进行判断即可得到C为真;可将原式化为,表示动点到定点和到动直线距离相等的点的轨迹,但是定点在定直线上,故可判断D.【详解】设一般职员应抽出人,根据分层抽样的概念易得,解得,即一般职员应抽出18人,故A为真;用独立性检验(列联表法)来考察两个分类变量是否有关系时,算出的随机变量的值越大,说明“与有关系”成立的可能性越大,可知B为真;若,则,即不成立,若,则,即成立,故是的必要条件,即C为真;方程即:,化简得,即表示动点到定点的距离和到直线的距离相等的点的集合,且在直线上,故其不满足抛物线的定义,即D为假,故选D.【点睛】本题主要考查了分层抽样的概念,独立性检验在实际中的应用,充分条件、必要条件的判定,抛物线的定义等,属于中档题.4.D解析:D【解析】 【分析】先根据()()1,0,2,2求得直线y b x a ='+'的方程.然后计算出回归直线方程y bx a =+,由此比较大小,得出正确的结论. 【详解】由于直线y b x a ='+'过()()1,0,2,2,将两点坐标代入直线方程得022b a b a +=⎧⎨+=''''⎩,解得2,2b a ''==-.124534x +++==,02352.54y +++==,1122334414122542x y x y x y x y +++=+++=.2222123414162546x x x x +++=+++=,故24243 2.54230121.24643463610b -⨯⨯-====-⨯-, 2.5 1.23 2.5 3.6 1.1a =-⨯=-=-.所以,a a b b >'<',故选D.【点睛】本小题主要考查利用直线上的两点坐标求直线方程的方法,考查回归直线方程的计算,属于中档题.5.A解析:A 【解析】 【分析】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,实验的结果只有发生和不发生两种结果,故本题符合独立重复试验,由独立重复试验的期望公式得到结果. 【详解】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,故本题符合独立重复试验,即ξ~(10,0.01)B . ∴100.010.1E ξ=⨯= 故选A . 【点睛】解决离散型随机变量分布列和期望问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.6.B解析:B 【解析】 【分析】根据独立性检验的思想,对题目中的命题进行分析、判断正误即可. 【详解】对于①,对事件A 与B 无关时,说明两事件的影响较小,不是两个互不影响,①错误; 对于②,事件A 与B 关系密切,说明事件A 与B 的相关性就越强,K 2就越大,②正确;对于③,K 2的大小不是判定事件A 与B 是否相关的唯一根据,判定两事件是否相关除了公式外;还可以用三维柱形图和二维条形图等方法来判定,③错误; 故选:B . 【点睛】本题考查了独立性检验思想的应用问题,属于基础题.K 2值是用来判断两个变量相关的把握度的,不是用来判断两个变量是否相关的.7.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.8.D解析:D 【解析】分析:由列联表中的数据,利用公式()()()()()22n ad bc K a b c d a c b d -=++++求得2K ,与邻界值比较,即可得到结论. 详解:()222509070603021.6310.828120130150100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有0099.9的把握认为性别和读营养说明书的有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.C解析:C 【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.10.B解析:B 【解析】一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y 35x =-,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y = b x +a 必过点(),x y ,③正确;因为213.079 6.635K =>,故有0099以上的把握认为这两个变量间有关系,④正确,即错误的个数为1,故选B.11.C解析:C 【解析】由22222789821[(78)(88)(98)(8)(8)]25x yx y ++++⎧=⎪⎪⎨⎪-+-+-+-+-=⎪⎩得=60xy ,故选C. 12.D解析:D 【解析】23.841 4.514 6.635k <=<,则0.010.05P <<,出错概率不超过5%选D.二、填空题13.①③【分析】①在回归分析中根据相关指数越大模型的拟合效果越好即可判断;②根据离散型随机变量的概念即可判断;③根据样本的标准差是样本数据到平均数的一种平均距离样本的方差是标准差的平方即可判断;④根据相解析:①③ 【分析】①在回归分析中,根据相关指数2R 越大,模型的拟合效果越好即可判断;②根据离散型随机变量的概念即可判断;③根据样本的标准差是样本数据到平均数的一种平均距离,样本的方差是标准差的平方即可判断;④根据相互独立事件的定义即可判断. 【详解】解:①用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好,故①正确;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是不确定,无法一一列举出来,不是离散型随机变量,故②错误;③样本的标准差是样本数据到平均数的一种平均距离,样本的方差是标准差的平方,反映了样本数据的分散程度的大小它们越小,则随机变量偏离均值的平均程度越小,故③正确;④甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲、乙都没有击中目标”是对立事件,但不是相互独立事件,因为事件A 对事件B 发生有影响. 故答案为:①③. 【点睛】本题考查了相关系数的意义、离散型随机变量的概念、样本的标准差与方差的概念与应用、对立事件与相互独立事件的区别,是基础题.14.【分析】根据表格中的数据即可估测之间的关系可选用函数进行拟合得到答案【详解】根据表格中的数据可知当时;当时;当时;当时;当时可估测之间的关系可选用函数进行拟合【点睛】本题主要考查了函数的表示方法和指 解析:2x y =【分析】根据表格中的数据,即可估测,x y 之间的关系可选用函数2x y =进行拟合,得到答案. 【详解】根据表格中的数据,可知当2x =-时,0.260.25y =→;当1x =-时,0.510.5y =→;当0x =时, 1.11y =→;当0.5x =时, 1.41y =1x =时, 2.052y =→, 可估测,x y 之间的关系可选用函数2x y =进行拟合. 【点睛】本题主要考查了函数的表示方法和指数函数的性质的应用,其中熟记函数的表示方法和指数函数的性质,合理应用是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.15.【解析】由茎叶图知乙=90甲=89+污损处可取数字012…9共10种而甲>乙时污损处对应的数字有6789共4种故甲>乙的概率为答案:解析:25【解析】由茎叶图知x 乙=90,x 甲=89+5x.污损处可取数字0,1,2,…,9,共10种,而x 甲>x 乙时,污损处对应的数字有6,7,8,9,共4种,故x 甲>x 乙的概率为25. 答案:25. 16.【解析】将代入得所以残差 解析:0.29-【解析】将160x =代入0.85 2.1ˆ87yx =-,得0.8516082.71ˆ53.29y =⨯-=,所以残差5353.ˆ290ˆ.29ey y =-=-=-. 17.①③④⑤【解析】试题分析:由题;①标准差越小样本数据的波动也越小由方差定义正确;②回归分析研究的是两个相关事件的独立性;错误因为相关性;③④⑤回到定义都正确考点:统计中的特征量及回归分析与独立性检验解析:①③④⑤ 【解析】试题分析:由题;①标准差越小,样本数据的波动也越小,由方差定义,正确; ②回归分析研究的是两个相关事件的独立性;错误,因为相关性; ③,④,⑤回到定义都正确.考点:统计中的特征量及回归分析与独立性检验.18.5【分析】根据列联表运用公式求出k 值根据计算出的临界值同临界值表进行比较得到假设不合理的程度【详解】设该学校15至16周岁的男生的身高和体重情况为:偏高超重的记为a 偏高不超重记为b 不偏高超重记为c 不解析:5 【分析】根据列联表运用公式2()()()()()n ad bc k a b c d a c b d -=++++求出k 值,根据计算出的临界值,同临界值表进行比较,得到假设不合理的程度. 【详解】设该学校15至16周岁的男生的身高和体重情况为:偏高超重的记为a,偏高不超重记为b,不偏高超重记为c,不偏高不超重记为D, 则41a b ==,,312c d ==, 所以22()20(41213) 5.934()()()()(41)(312)(43)(112)n ad bc k a b c d a c b d -⨯-⨯==≈++++++++因为5.934 5.024>所以可以有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系. 故答案为97.5. 【点睛】本题考查了独立性检验的应用,我们可以利用临界值的大小来决定是否拒绝原来的统计假设.19.①④【解析】对于①从匀速传递的产品生产流水线上质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测这样的抽样方法是系统抽样故①正确;对于②两个变量的线性相关程度越强则相关系数的绝对值越接近于1解析:①④ 【解析】对于①,从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样,故①正确;对于②,两个变量的线性相关程度越强,则相关系数的绝对值越接近于1,故②错误; 对于③,两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越小,故③错误;对于④,∵随机变量X ∼N (0,1),设P (|X |<1)=p ,则1(1)(1)2pP X P X ->=<-=, ∴11(1)1(1)122p pP X P X -+<=->=-=, ∴2(1)1P X p <-=,即(1)2(1)1P X P X <=<-,故④正确。
高二数学选修1-2《统计案例、框图》单元测试题
高二数学选修1-2《统计案例、框图》单元测试题一、选择题(每题5分)那么吸烟与健康之间存在什么关系( )1、“吸烟有害健康”,A、正相关B、负相关C、无相关D、不确定2、已知x、y之间的数据如下表所示,则y与x之间的线性回归方程过点()A.0,0B.,0x C.0,y D.,x y3、变量y与x之间的回归方程表示()A.y与x之间的函数关系B.y与x之间的不确定性关系C.y与x之间的真实关系的形式D.y与x之间的真实关系达到最大限度的吻合4、设有一个回归方程为2 2.5y x,变量x增加一个单位时,则()A.y平均增加2.5个单位B.y平均增加2个单位C.y平均减少2.5个单位 D.y平均减少2个单位5、经过对2K时,我们()K的统计量的研究,得到若干个临界值,当2 3.841 A.有95%的把握认为A与B有关B.有99%的把握认为A与B有关C.没有充分理由说明事件A与B有关系D.有97.5%的把握认为A与B有关6、若A与B相互独立,则下面不相互独立的事件是()A. A与AB.A与BC. A与BD. A与B7、在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的。
下列说法中正确的是()A.100个心脏病患者中至少有99人打酣B.1个人患心脏病,那么这个人有99%的概率打酣C.在100个心脏病患者中一定有打酣的人D.在100个心脏病患者中可能一个打酣的人都没有8、对于两个变量之间的相关系数,下列说法中正确的是( )A、r越大,相关程度越大;B、(0,)r, r越大, 相关程度越小, r越小,相关程度越大;C、1r且r越接近于1, 相关程度越大; r越接近于0, 相关程度越小;D、以上说法都不对;9、在如图的程序图中,输出结果是()A 5B 10C 15D 20 10、某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()A .12581B .12554C .12536D .12527二、填空题(每题5分)11、某商场经理根据以往经验知道,有40%的客户在结账时会使用信用卡,则连续三位顾客都使用信用卡的概率为12、对于回归方程 4.75257yx,当28x时,y 的估计值为________13、在一次实验中,测得,x y 的四组值分别是1,2A ,2,3B ,3,4C ,4,5D ,则y 与x 之间的回归直线方程为________14、在对某小学的学生进行吃零食的调查中,得到如下表数据:吃零食不吃零食合计男学生24 31 55 女学生8 26 34 合计325789根据上述数据分析,我们得出的2K________。
高中数学选修1-2第一章统计案例测试题带详细解答(可编辑修改word版)
1
A、增加3个单位B、增加个单位C、减少3个单位D、减少个单位
3
【答案】C
【解析】
解释变量即回归方程里的自变量xˆ,由回归方程知预报变量yˆ减少 3 个单位
4.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U
与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之
选修 1-2 第一章、统计案例测试
一、选择题
1.已知x与y之间的一组数据:
x
0
1
2
3
y
1
3
5
7
则y与x的线性回归方程为ybxa必过点() A.(2,2)B. (1.5 ,4)C.(1.5 ,0)D.(1,2)
【答案】B
【解析】
试题分析:由数据可知x1.5,y4,∴线性回归方程
4
为yb xa必过点(1.5,4)
5 =11.72
. Y =(1+2+3+4+5)
5 =3
∴这组数据的相关系数是r=7.2
19.172 =0.3755,
变量U与V相对应的一组数据为(10,5),(11.3,4),
(11.8,3),(12.5,2),(13,1)
. U =(5+4+3+2+1)
5 =3,
∴这组数据的相关系数是-0.3755,
【解析】
试题分析:由题意,年劳动生产率x(千元)和工人工资y(元)之间回归方程为
y1070x,
故当x增加 1 时,y要增加 70 元,
∴劳动生产率每提高1千元时,工资平均提高70元,故A正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修统计案例与框图单元测试题及答
案文科
Last revised by LE LE in 2021
永和中学高二数学选修1-2单元测试题
统计案例和框图(文科)
增城市永和中学 邱永新
班级_____________学号________________姓名________________成绩____________
1.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A 总偏差平方和 B 残差平方和 C 回归平方和 D 相关指数R 2
2.已知回归直线的斜率的估计值是,样本点的中心为(4,5),则回归直线的方
程是() A y ∧
=+4 B y ∧=+5 C y ∧
=+ D
y ∧
=+
3.回归分析中,相关指数R 2的值越大,说明残差平方和( )
A 越小
B 越大
C 可能大也可能小
D 以上
都不对
4.若回归直线方程中的回归系数b=0时,则相关系数r= ( )
A 1
B -1
C 0
D 无法确
定
5.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度。
如果k>,那么就有把握认为“X 和Y 有关系”的百分比为( )
A 25%
B 75%
C %
D %
6.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( )A b 与r 的符号相同 B a 与r 的符号相同 C b 与r 的相反 D a 与r 的符号相反
7.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是( )
A 1l 与2l 重合
B 1l 与2l 一定平行
C 1
l 与2
l 相交于点),(y x D 无法判断1
l 和2
l 是否
相交
8.在如右图的程序图中,输出结果是
A 5
B 10
C 15
D 20
9.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得y 的值分别为11,9,8,5,若在实际问题中,y 的预报最大取值是10,则x 的最大取值不能超过( )
A 16
B 17
C 15
D 12
10.如果某地的财政收入x 与支出y 满足线性回归方程e a bx y ++=(单位:亿元),其中5.0||,2,8.0≤==e a b ,如果今年该地区财政收入10亿元,则年支出预计不会超过( ).
A 10亿
B 9亿
C 亿
D 亿
二、填空题(每小题4分,共16分)
11.若有一组数据的总偏差平方和为100,相关指数为,则期残差平方和为
_________
回归平方和为____________
12.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以下的人,调
13.在研究身高和体重的关系时,求得相关指数≈2R ,可以叙述为“身高解释了64%
的体重变化,而随机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。
14.读下面的流程图,若输入的值为-5时,输出的结果是__________.
三、解答题(共44分)
15(10分)在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲, (1)根据以上的数据建立一个2×2的列联表;
(2)若认为“性别与患色盲有关系”,则出错的概率会是多少
16(10分)假设关于某设备的使用年限x的所支出的维修费用y(万元)有如
若由此资料知y与x呈线性关系,试求
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用为多少
17(本小题满分12分)阅读下文,然后画出该章的知识结构图.
推理与证明这一章介绍了推理与证明这两个知识点. 推理这节包括合情推理和演绎推理;证明这节包括直接证明和间接证明
合情推理中有两种常用推理:归纳推理和类比推理;
直接证明有综合法和分析法;间接证明通常用反证法.
18(12分)新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分),设计一算法,通过考试成绩和平时成绩计算学分,并画出程序框图。
参考答案
一、选择题
1、B
2、C
3、A
4、C
5、 D
6、A
7、C
8、D
9、C 10、C 二、填空题
11、50,50 12、K 2= 13、 14、2 三、解答题
15、解:(1)
(2)假设H :“性别与患色盲没有关系” 先算出K 的观测值:
2
1000(385144426)27.1448052044956
k ⨯⨯-⨯=
⨯⨯⨯= 则有2(10.808)0.001P K ≥=
即是H 成立的概率不超过,
若认为“性别与患色盲有关系”,则出错的概率为 16.解:(1)由表格知:3.112,90,5,45
1
5
1
2====∑∑==i i i i i y x x y x
于是23.145905
453.11255ˆ2
5
1
2
5
1
=⨯-⨯⨯-=--=∑∑==x
x
y
x y
x b
i i
i i
i
08.0423.15ˆˆ=⨯-=-=x b y a
所以所求回归直线方程为08.023.1ˆˆˆ+=+=x a x b y
(2)当10=x 时,38.1208.01023.1ˆ=+⨯=y
估计使用年限为10年时,维修费用为12.38万元
17
18、解:(1)算法:
第一步:输入考试成绩C 1和平时成绩C 2,
第二步:计算模块成绩2
2
1C C C +=
第三步:判断C 与60的大小,输出学分F 若60≥C ,则输出F=2;
若60<C ,则输出F=0。
(2)程序框图:(如右图)。