高中数学选修4-4《坐标系与参数方程》练习题(含详解)[1]1
高中数学选修4-4习题(含问题详解)

统考作业题目——4-41.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数〕,以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取一样的长度单位.曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. 〔1〕求l 的普通方程和C 的直角坐标方程;〔2〕点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位一样.直线的极坐标方程为:,点,参数.〔I 〕求点轨迹的直角坐标方程; 〔Ⅱ〕求点到直线距离的最大值. 1、[详解]〔1〕12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++=〔2〕因为圆心(1,2)--到直线10x y +-=距离为|121|222---=, 所以点M 到直线l 距离的最大值为2222 1.r +=+2、解:〔Ⅰ〕设,如此,且参数,消参得:所以点的轨迹方程为〔Ⅱ〕因为所以 所以,所以直线的直角坐标方程为法一:由〔Ⅰ〕点的轨迹方程为圆心为〔0,2〕,半径为2.,点到直线距离的最大值等于圆心到直线距离与圆的半径之和, 所以点到直线距离的最大值.法二:当时,,即点到直线距离的最大值为.3.在平面直角坐标系xOy 中,曲线的参数方程为〔为参数〕,曲线的参数方程为〔,t 为参数〕.<1>求曲线的普通方程和曲线的极坐标方程;<2>设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩ 〔α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭〔1〕写出1C 的普通方程和2C 的直角坐标方程;〔2〕设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值与此时P 的直角坐标. 3、[详解]〔1〕对曲线:,,∴曲线的普通方程为.对曲线消去参数可得且∴曲线的直角坐标方程为.又,从而曲线的极坐标方程为.〔2〕设曲线上的任意一点为,如此点到曲线:的距离,当,即时,,此时点的坐标为.4、[详解]〔1〕曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩〔α为参数〕,移项后两边平方可得,2222cos sin 13y x αα+=+= 即有椭圆221:13y C x +=;曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭,即有2222ρθθ⎫+=⎪⎪⎝⎭由cos x ρθ=,sin y ρθ=,可得40x y +-=,即有2C 的直角坐标方程为直线40x y +-=;〔2〕设(cos ,3sin )P αα,由P 到直线的距离为|cos 3sin 4|2d αα+-=当sin 16x π⎛⎫+= ⎪⎝⎭时,||PQ 的最小值为2, 此时可取3πα=,即有13,22P ⎛⎫⎪⎝⎭. 5.在平面直角坐标系中,曲线的参数方程是〔θ为参数〕,以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.假如直线与曲线相交于不同的两点A ,B ,且,求的值.6.直线l 的参数方程为315(45x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.〔Ⅰ〕求直线l 的普通方程与曲线C 的直角坐标方程; 〔Ⅱ〕假如直线l 与曲线C 交于A ,B 两点,求线段AB 的长. 5、 因为,所以直线的直角坐标方程为,其倾斜角为,过点,所以直线的参数方程为〔为参数〕,即〔为参数〕.曲线的参数方程〔θ为参数〕化为普通方程为,将代入曲线的方程,整理得,,设点,对应的参数分别为,如此,所以.6、[详解]〔Ⅰ〕将315(45x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数)消去参数t 可得4(1)3x y -=,即4340x y --=, 故直线l 的普通方程为4340x y --=.由2sin4cos 0ρθθ-=可得0cos 4sin 22=-θρθρ,把cos x ρθ=,sin y ρθ=代入上式,可得042=-x y ,即24y x =,故曲线C 的直角坐标方程为24y x =.〔Ⅱ〕将31545x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =,可得2415250t t --=,设点A ,B 对应的参数分别为1t ,2t ,如此12154t t +=,12254t t =-,所以22121212152525||||()4()4()444AB t t t t t t =-=+-=-⨯-=, 故线段AB 的长为254. 7.平面直角坐标系x0y,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 过点P<-1,2>,且倾斜角为23π,圆C 的极坐标方程为)3cos(2πθρ+=. <1>求圆C 的普通方程和直线l 的参数方程;<2>设直线l 与圆C 交于M 、N 两点.求PM PN +的值.8.在以极点O 为原点,极轴为x 轴正半轴的直角坐标系中,曲线1C的参数方程为2x y t⎧=⎪⎨=⎪⎩〔t 为参数〕,曲线1C 在点),(00y x P 处的切线l的极坐标方程为ρ=.〔1〕求切线l 的直角坐标方程与切点P 的直角坐标;〔2〕假如切线l 和曲线2:C 2cos 6sin 160ρθρθ--+=相交于不同的两点,A B ,求1||PA +1||PB 的值. 7、[详解]〔1〕2cos ,3πρθ⎛⎫=+⎪⎝⎭2cos sin ρρθθ∴=⋅⋅∴圆C的方程:220x y x +-+=,直线l的参数方程为1122x t y ⎧=--⎪⎪⎨⎪=+⎪⎩〔t 为参数〕〔2〕将直线l 的参数方程代入圆C 的方程,得: 8、[详解]〔1〕切线l的极坐标方程为ρ=∴cos 2sin 3θρθ-=,如此切线l的直角坐标方程为230y --=,∵曲线1C 的参数方程为22x ty t⎧=⎪⎨=⎪⎩〔t 为参数〕, ∴曲线1C 的普通方程为y x 22=,即212y x =,如此y x '=, 又切线l 的斜率为3,∴03x =,此时032y =, 故切点P 的直角坐标为3(3,)2.〔2〕切线l 的倾斜角为π3, ∴切线l 的参数方程为1323322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩〔t 为参数〕,曲线2C 的极坐标方程为243cos 6sin 160ρρθρθ--+=,∴曲线2C 的直角坐标方程为22436160x y x y +--+=,将1323322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22436160x y x y +--+=, 得2410310t t -+=,设交点,A B 对应的参数分别是12,t t ,如此121253214t t t t ⎧+=⎪⎪⎨⎪⋅=⎪⎩,∴1212125311210314t t t t t t ++===, 故||1||1PB PA +310=. 9.曲线的参数方程为为参数>,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.〔1〕把的参数方程化为极坐标方程;〔2〕求与交点的极坐标.10.在直角坐标系中,以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,曲线E的极坐标方程为.〔1〕分别求曲线C和E的直角坐标方程;〔2〕求经过曲线C与E交点的直线的直角坐标方程.9、[详解]〔1〕将消去参数t,化为普通方程即将代入得所以的极坐标方程为〔2〕的普通方程为,由解得或所以C1与C2交点的极坐标分别为,.10、[详解]〔1〕由题意,曲线C的直角坐标方程为:;曲线E的直角坐标方程为:.〔2〕由题意得:得.即所求直线的直角坐标方程为11.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos (sin x y ϕϕϕ=⎧⎨=⎩参数〕,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 7,2π〕且经过极点的圆〔1〕求曲线C 1的极坐标方程和C 2的普通方程; 〔2〕射线(0)6πθρ=≥分別与曲线C 1,C 2交于点A,B 〔点B 异于坐标原点O 〕,求线段AB 的长12.选修4-4:坐标系与参数方程.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩,〔t 为参数〕,在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线1:2cos C ρθ=,2:2cos 3C πρθ⎛⎫=-⎪⎝⎭. 〔Ⅰ〕求1C 与2C 交点的直角坐标;〔Ⅱ〕假如直线l 与曲线1C ,2C 分别相交于异于原点的点M ,N ,求MN 的最大值. 11、[详解]〔1〕由曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩〔ϕ为参数〕,消去参数ϕ得2214xy +=,又cos sin x y ρθρθ=⎧⎨=⎩代入2214x y +=得1C 的极坐标方程为222244cos 4sin 13sin ρθθθ==++, 由曲线2C 是圆心的极坐标为7,2π⎛⎫⎪⎝⎭且经过极点的圆. 可得其极坐标方程为7ρθ=,从而得2C 的普通方程为22270x y y +-=.〔2〕将(0)6πθρ=≥代入27sin ρθ=得27sin76B πρ==,又将(0)6πθρ=≥代入2224cos 4sin ρθθ=+得224477cos 4sin 66A ρππ==+, 12、[详解]解:〔Ⅰ〕曲线1C 的直角坐标方程为222x y x +=,曲线2C 的直角坐标方程为2230x y x y +--=.由2222230x y x x y x y ⎧+=⎪⎨+--=⎪⎩解得00x y =⎧⎨=⎩或3232x y ⎧=⎪⎪⎨⎪=⎪⎩, 故1C 与2C 交点的直角坐标为()0,0,33,22⎛⎫⎪ ⎪⎝⎭.〔Ⅱ〕不妨设0απ≤<,点M ,N 的极坐标分别为()1,ρα,()2,ρα所以122cos 2cos 3MN πρραα⎛⎫=-=-- ⎪⎝⎭所以当32πα=时,MN 取得最大值2. 13. 在直角坐标系中,曲线的参数方程为〔为参数〕,直线的方程为.〔1〕以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;〔2〕在〔1〕的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.13、[详解]〔1〕由,得曲线C 的普通方程为,把,代入该式化简得曲线C 的极坐标方程为:.因为直线:是过原点且倾斜角为的直线,所以直线的极坐标方程为:.〔2〕把代入得,故, 把代入得,故,因为,所以的面积为..。
高中数学选修4-4《坐标系与参数方程》练习题(含详解)[1](优选.)
](https://img.taocdn.com/s3/m/267759cf6bec0975f465e295.png)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =5.点M 的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x tt y t =+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x tl t y t =+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。
坐标系与参数方程典型例题含高考题----答案详细)

选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:①了解参数方程,了解参数的意义. ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下, 点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
选修4-4坐标系与参数方程知识点总结及同步练习(附答案) - 副本

坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是(,)x y,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cossinxyρθρθ=⎧⎨=⎩222tan(0)x yyxxρθ=+=≠在一般情况下,由tanθ确定角时,可根据点M所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆(02)rρθπ=≤<圆心为(,0)r,半径为r的圆2cos()22rππρθθ=-≤<圆心为(,)2rπ,半径为r的圆2sin(0)rρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高二年数学选修4-4坐标系与参数方程测试(附答案)

高二年数学选修4-4坐标系与参数方程测试班级:__________________ 座号:______ 姓名:___________________成绩:___________ 一、选择题(共12题,每题5分)1、点M的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 2、极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是 ( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ) 3.已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程是 ( )A .ρ=1B .ρ=cosθC .ρ=-θcos 1D .ρ=θcos 14.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 ( )A .ρ=2cos(θ-4π) B .ρ=2sin(θ-4π) C .ρ=2cos(θ-1) D .ρ=2sin(θ-1) 5.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 6.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 7.在极坐标系中,以(2,2πa )为圆心,2a为半径的圆的方程为( )A .θρcos a =B .θρsin a =C .a =θρcosD .a =θρsin8.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A .线段 B .双曲线的一支 C.圆 D.射线 9、在同一坐标系中,将曲线y=2sin3x 变为曲线y=sinx 的伸缩变换是( )A .⎪⎩⎪⎨⎧==//213y y x xB .⎪⎩⎪⎨⎧==y y xx 213//C .⎩⎨⎧==//23y y x xD .⎩⎨⎧==y y x x 23// 10.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .11、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心12、设P(x ,y)是曲线C :⎩⎨⎧θ=θ+-=sin y ,cos 2x (θ为参数,0≤θ<2π)上任意一点,则yx的取值范围是 ( )A .[-3,3]B .(-∞,3)∪[3,+∞]C .[-33,33]D .(-∞,33)∪[33,+∞]二、填空题(共8题,各5分)1、点A 的直角坐标为(1,1,1),则它的球坐标为 ,柱坐标为2、曲线的1cos 3sin --=θθρ直角坐标方程为____________________3、直线3()14x att y t=+⎧⎨=-+⎩为参数过定点_____________4、设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。
新课标高考《坐标系与参数方程》(选修4-4)含答案

第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π)(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O的公共点的极坐标.热点二参数方程及其应用[例2](2014·福建高考)已知直线l的参数方程为⎩⎪⎨⎪⎧x=a-2t,y=-4t(t为参数),圆C的参数方程为⎩⎪⎨⎪⎧x=4cos θ,y=4sin θ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.2.倾斜角为α的直线l过点P(8,2),直线l和曲线C:⎩⎨⎧x=42cos θ,y=2sin θ(θ为参数)交于不同的两点M1,M2.(1)将曲线C的参数方程化为普通方程,并写出直线l的参数方程;(2)求|PM1|·|PM2|的取值范围.[例3](2014·辽宁高考)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为⎩⎪⎨⎪⎧x=2+t cos α,y=t sin α(t为参数).曲线C的极坐标方程为ρsin2θ=8cos θ.热点三极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,热点二参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. 热点三极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x .(2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6.(2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。
2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)
2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。
(完整)选修4-4坐标系与参数方程知识点总结及同步练习(附答案)-副本,推荐文档
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的. 3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高中数学选修4-4《坐标系与参数方程》练习题(含详解)
数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x tt y t =+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23-C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A.1(,2B .31(,)42-C. D. 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 5.点M的直角坐标是(1-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题 1.直线34()45x tt y t=+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
5.直线cos sin 0x y αα+=的极坐标方程为____________________。
高考理科数学一轮复习专题训练:选修4-4坐标系与参数方程(含详细答案解析)
第16单元 选修4-4 坐标系与参数方程(基础篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线11x ty =+=-+⎧⎪⎨⎪⎩的斜率为( )A .1B .1- CD.【答案】C【解析】由11x ty =+=-+⎧⎪⎨⎪⎩,可得1y =,斜率k C .2.点A 的极坐标为,则A 的直角坐标为( )ABCD【答案】D【解析】 设点(),A x y ,根据直角坐标与极坐标之间的互化公式,52sin 16y π==,即点A的坐标为(),故选D . 3.在极坐标系中,方程sin ρθ=表示的曲线是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】方程sin ρθ=,可化简为2sin ρρθ=,即22x y y +=. 整理得2211y 24x ⎛⎫+-= ⎪⎝⎭,表示圆心为10,2⎛⎫⎪⎝⎭,半径为12的圆.故选B .4.参数方程()sin cos22x y ααα⎧=+⎪⎨⎪=⎩为参数的普通方程为( ) A .221y x -=B .221x y -=C .(221y x x -=D .(221x y x -=【答案】C【解析】由题意可知:21sin x α=+,2222sin 1y y x α=+⇒-=,且y ⎡⎣,据此可得普通方程为(221y x x -=≤.故选C .5.点M 的直角坐标是(-,则点M 的极坐标为( )A .2,3π⎛⎫⎪⎝⎭B .2,3π⎛⎫- ⎪⎝⎭C .22,3π⎛⎫⎪⎝⎭D .()π2,2π3k k ⎛⎫+∈ ⎪⎝⎭Z【答案】C【解析】由于222x y ρ=+,得24ρ=,2ρ=,由cos x ρθ=,得1cos 2θ=-,结合点在第二象限,可得23θπ=,则点M 的坐标为22,3π⎛⎫⎪⎝⎭,故选C . 6.与极坐标2,6π⎛⎫- ⎪⎝⎭表示的不是同一点的极坐标是( )A .72,6π⎛⎫⎪⎝⎭B .72,6π⎛⎫- ⎪⎝⎭C .112,6π⎛⎫-- ⎪⎝⎭D .132,6π⎛⎫- ⎪⎝⎭【答案】B【解析】点2,6π⎛⎫- ⎪⎝⎭在直角坐标系中表示点()1-,而点72,6π⎛⎫- ⎪⎝⎭在直角坐标系中表示点(),所以点2,6π⎛⎫- ⎪⎝⎭和点72,6π⎛⎫- ⎪⎝⎭表示不同的点,故选B .7.点P 的直线坐标为(),则它的极坐标可以是( )A .26π⎛⎫⎪⎝⎭,B .26π⎛⎫- ⎪⎝⎭, C .526π⎛⎫⎪⎝⎭,D .526π⎛⎫- ⎪⎝⎭, 【答案】C【解析】2ρ==,tan θ=,因为点在第二象限,故取526k θπ=π+,k ∈Z ,故选C . 8.圆半径是1,圆心的极坐标是()1,π,则这个圆的极坐标方程是( ) A .cos ρα=- B .sin ρα= C .2cos ρα=- D .2sin ρα=【答案】C【解析】极坐标方程化为直角坐标方程可得圆心坐标为()1,0-, 则圆的标准方程为:()2211x y ++=,即2220x y x ++=,化为极坐标方程即:22cos 0ρρθ+=,整理可得:2cos ρα=-.故选C .9.若曲线21x ty t =-=-+⎧⎨⎩(t 为参数)与曲线ρ=B ,C 两点,则BC 的值为( )A B C D 【答案】C【解析】曲线21x ty t =-=-+⎧⎨⎩的普通方程为10x y +-=,曲线ρ=228x y +=,圆心O 到直线的距离为d ==又r =BC ==C . 10.已知曲线C 的参数方程为4cos 2sin x y θθ==⎧⎨⎩(θ为参数),则该曲线离心率为( )A B .34C D .12【答案】A【解析】由题得曲线C 的普通方程为221164x y +=,所以曲线C 是椭圆,4a =,c =所以椭圆的离心率为e A . 11.在极坐标系中,设圆:4cos C ρθ=与直线():4l θρπ=∈R 交于A ,B 两点,则以线段AB 为直径的圆的极坐标方程为( )A .22sin 4ρθπ⎛⎫=+ ⎪⎝⎭B .22sin 4ρθπ⎛⎫=- ⎪⎝⎭C .22cos 4ρθπ⎛⎫=+ ⎪⎝⎭D .22cos 4ρθπ⎛⎫=-- ⎪⎝⎭【答案】A【解析】以极点为坐标原点,极轴为x 轴的正半轴,建立直角坐标系,则由题意,得圆C 的直角坐标方程2240x y x +-=,直线的直角坐标方程y x =. 由2240x y x y x+-==⎧⎨⎩,解得00x y =⎧⎨=⎩或22x y =⎧⎨=⎩,所以()00A ,,()22B ,, 从而以AB 为直径的圆的直角坐标方程为()()22112x y -+-=, 即2222x y x y +=+.将其化为极坐标方程为()22cos sin 0ρρθθ-+=,即()2cos sin 22sin 4ρθθθπ⎛⎫=+=+ ⎪⎝⎭,故选A .12.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线:2cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠【答案】C【解析】()2222:2cos 211C x y x x y ρθ=⇒+=⇒-+=,所以223141k k k +<⇒<-+,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在直角坐标系中,点()21-,到直线2:x tl y t=-⎧⎨=⎩(t 为参数)的距离是__________.【答案】22【解析】直线一般方程为20x y +-=,利用点到直线距离公式122d -=2.14.极坐标方程()cos sin 10ρθθ+-=化为直角坐标方程是_______. 【答案】10x y +-=【解析】极坐标方程即()cos sin 10ρθθ+-=,则直角坐标方程是10x y +-=.15.在极坐标系中,直线()cos sin 0a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.【答案】1+【解析】圆2cos ρθ=,转化成22cos ρρθ=,用222x y ρ=+,cos x ρθ=,sin y ρθ=,转化成直角坐标方程为()2211x y -+=, 把直线()cos sin a ρθθ+=的方程转化成直角坐标方程为0x y a +-=, 由于直线和圆相切,∴利用圆心到直线的距离等于半径,1=,解得1a =±0a >,则负值舍去,故1a =1+16上,求点P 到直线3424x y -=的最大距离是________.【解析】设点P 的坐标为()4cos 3sin θθ,, 则点P 到直线3424x y -=的时,d 取得最大值为三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在极坐标系下,已知曲线1C :cos sin ρθθ+=和曲线2C :(sin )4ρθπ-(1)求曲线1C 和曲线2C 的直角坐标方程;(2)当()0θ∈π,时,求曲线1C 和曲线2C 公共点的一个极坐标.【答案】(1)1C :220x y x y +--=,2C :10x y -+=;(2)1,2π⎛⎫⎪⎝⎭. 【解析】(1)圆O :cos sin ρθθ+=,即2cos sin ρρθρθ+=, 曲线1C 的直角坐标方程为22x y x y ++=,即220x y x y --+=, 曲线2C:sin 4ρθπ⎛⎫-= ⎪⎝⎭sin cos 1ρθρθ-=,则曲线2C 的直角坐标方程为:1y x -=,即10x y -+=. (2)由22010x y x y x y ⎧-⎨-+⎩+-==,得0x y ⎧⎨⎩==1,则曲线1C 和曲线2C 公共点的一个极坐标为1,2π⎛⎫⎪⎝⎭.18.(12分)已知曲线1C 的极坐标方程是1ρ=,在以极点O 为原点,极轴为x 轴的正半轴的平面 直角坐标系中,将曲线1C 所有点的横坐标伸长为原来的3倍,得到曲线2C . (1)求曲线2C 的参数方程; (2)直线l 过点()1,0M ,倾斜角为,与曲线2C 交于A 、B 两点,求 【答案】(1)3cos sin x y θθ==⎧⎨⎩,(θ为参数);(2)85.【解析】(1)曲线1C 的直角坐标方程为221x y +=,曲线2C 的直角坐标方程为∴曲线2C 的参数方程为3cos sin x y θθ==⎧⎨⎩,(θ为参数).(2)设l 的参数方程为代入曲线2C 的方程19.(12分)在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28sin 150ρρθ-+=. (1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程; (2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值.【答案】(1)1C :3cos sin x y ϕϕ==⎧⎨⎩(ϕ为参数),2C :()2241x y +-=;(2)1.【解析】(1)曲线1C 的参数方程为3cos sin x y ϕϕ==⎧⎨⎩,(ϕ为参数), 2C 的直角坐标方程为228150x y y +-+=,即()2241x y +-=.(2)由(1)知,曲线2C 是以()20,4C 为圆心,1为半径的圆.设()3cos ,sin P ϕϕ,则2PC ==.当1sin 2ϕ=-时,2PC = 又因为21PQ PC ≤+,当且仅当P ,Q ,2C 三点共线,且2C 在线段PQ 上时,等号成立.所以max 1PQ =.20.(12分)在平面直角坐标系xoy 中,已知曲线1C 的参数方程为12cos 2sin x y θθ=+=⎧⎨⎩(θ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线1C 的普通方程;(2)极坐标方程为2sin 3ρθπ⎛⎫+= ⎪⎝⎭l 与1C 交P ,Q 两点,求线段PQ 的长.【答案】(1)()2214x y -+=;(2)2.【解析】(1)曲线1C 的参数方程为12cos 2sin x y θθ=+=⎧⎨⎩(θ为参数),可得1cos 2x θ-=,sin 2yθ=.因为22sin cos 1θθ+=,可得()2214x y -+=, 即曲线1C 的普通方程:()2214x y -+=.(2)将2sin 3ρθπ⎛⎫+= ⎪⎝⎭l 化为普通方程可得:2sin cos 2cos sin 33ρθρθππ+=y =,因为直线l 与1C 交P ,Q 两点,曲线1C 的圆心()10,,半径2r =, 圆心到直线l的距d =所以线段PQ的长2==.21.(12分)在直角坐标系xOy 中,直线l的参数方程为221x y =-=-+⎧⎪⎪⎨⎪⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2232cos 1ρθ=+.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于M ,N 两点,求MON △的面积.【答案】(1)2213y x +=;(2)34. 【解析】(1)因为()222232cos 132cos 1ρρθθ=⇒+=+, 所以曲线C 的直角坐标方程为2213y x +=.(2)将直线l的参数方程21x y ==-+⎧⎪⎪⎨⎪⎪⎩(t 为参数)代入曲线C 的直角坐标方程,得250t +=,设M ,N 两点对应的参数分别为1t ,2t,则12t t +=,125t t ⋅=, 于是MN =, 直线l 的普通方程为10x y +-=,则原点O 到直线l的距离d ==,所以1324MON S MN d =⋅=△. 22.(12分)在直角坐标系xOy 中.直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4θρπ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积. 【答案】(1)1C :cos 2ρθ=-,2C :22cos 4sin 40ρρθρθ--+=;(2)12.【解析】(1)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)将4θπ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ=故12ρρ-=,即MN =由于2C 的半径为1,所以2C MN △是直角三角形,其面积为12.第16单元 选修4-4 坐标系与参数方程(提高篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线314x t y t ==-⎧⎨⎩()t 为参数与圆3cos 3sin x y b θθ==+⎧⎨⎩()θ为参数相切,则b =( ) A .4-或6 B .6-或4 C .1-或9 D .9-或1【答案】A【解析】把直线314x t y t ==-⎧⎨⎩()t 为参数与圆3cos 3sin x y b θθ==+⎧⎨⎩()θ为参数的参数方程分别化为普通方程得:直线4330x y +-=;圆()229x y b +-=.∵此直线与该圆相切,∴22033343b +-=+,解得4b =-或6.故选A .2.椭圆的参数方程为5cos 3sin x y θθ=⎧⎨⎩=()θ为参数,则它的两个焦点坐标是( ) A .()4, 0± B .()0,4± C .()5, 0± D .()0,3±【答案】A【解析】消去参数可得椭圆的标准方程221259x y +=,所以椭圆的半焦距4c =,两个焦点坐标为()4, 0±,故选A .3.直线的参数方程为=31+3x ty t=⎧⎪⎨⎪⎩()t 为参数,则直线l 的倾斜角大小为( )A .6πB .3πC .23π D .56π 【答案】C310x y +-=, 所以直线的斜率3k =-,从而得到其倾斜角为23π,故选C . 4.在平面直角坐标系xOy 中,曲线C 的参数方程为1cos sin x y αα=+=⎧⎨⎩()α为参数.若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为( ) A .sin ρθ= B .2sin ρθ= C .cos ρθ= D .2cos ρθ=【答案】D【解析】由1cos sin x y αα=+=⎧⎨⎩()α为参数得曲线C 普通方程为()2211x y -+=, 又由cos sin x y ρθρθ=⎧⎨⎩=,可得曲线C 的极坐标方程为2cos ρθ=,故选D . 5.在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .()0θρ=∈R 和cos 2ρθ=B .()2πθρ=∈R 和cos 2ρθ=C .()0θρ=∈R 和cos 1ρθ=D .()2πθρ=∈R 和cos 1ρθ=【答案】B【解析】如图所示,在极坐标系中,圆2cos ρθ=是以()10,为圆心,1为半径的圆 故圆的两条切线方程分别为()2πθρ=∈R ,cos 2ρθ=,故选B .6.已知M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,则M 点关于直线2θπ=的对称点坐标为( )A .2,6π⎛⎫⎪⎝⎭B .2,6π⎛⎫- ⎪⎝⎭C .2,6π⎛⎫- ⎪⎝⎭D .112,6π⎛⎫- ⎪⎝⎭【答案】A【解析】M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,即为52,6π⎛⎫⎪⎝⎭,∴M 点关于直线2θπ=的对称点坐标为2,6π⎛⎫⎪⎝⎭,故选A . 7.在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x y αα==+⎧⎨⎩()α为参数,在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为( )A .0B .1C .2D .3【答案】C【解析】()221:11C x y +-=,2:10C x y -+=,圆心()10,1C 到直线2C 的距离22011011d -+==+,∴两曲线相交,有2个交点.故选C .8.若曲线C 的参数方程为2cos 12sin x y θθ==+⎧⎨⎩,22θ⎛⎫ππ⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭参数,则曲线C ( )A .表示直线B .表示线段C .表示圆D .表示半个圆【答案】D【解析】将参数方程2cos 12sin x y θθ==+⎧⎨⎩,22θ⎛⎫ππ⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭参数消去参数θ可得()2214x y +-=.又,22θππ⎡⎤∈-⎢⎥⎣⎦,∴02cos 2x θ≤=≤.∴曲线C 表示圆()2214x y +-=的右半部分.故选D .9.已知M 为曲线3sin :cos x C y θθ=+⎧⎨=⎩()θ为参数上的动点,设O 为原点,则OM 的最大值是( ) A .1 B .2 C .3 D .4【答案】D【解析】从曲线C 的参数方程中消去θ,则有()2231x y -+=,故曲线C 为圆,而3OC =, 故OM 的最大值为3314r +=+=,故选D .10.已知在平面直角坐标系xOy 中,曲线C 的参数方程为4cos sin x y αα==⎧⎨⎩()α为参数,M 是曲线C 上的动点.以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线的极坐标方程为2sin cos 20ρθρθ+=,则点M 到T 的距离的最大值为( )A .1345+B .245+C .445+D .65【答案】B【解析】由曲线的极坐标方程为2sin cos 20ρθρθ+=, 可得曲线T 的直角坐标方程为2200y x +-=,由曲线C 的参数方程4cos sin x y αα==⎧⎨⎩,设曲线上点M 的坐标为()4cos sin αα,,由点到直线的距离公式可得()20sin 204cos 2sin 2055d αθαα+-+-当()sin 1αθ+=-时,d 20202455+=+B .11.在平面直角坐标系xOy 中,曲线C 的参数方程是2cos 2sin x y θθ==⎧⎨⎩()θ为参数,以射线Ox 为极轴建立极坐标系,直线l 的极坐标方程是cos sin 30ρθρθ--=,则直线l 与曲线C 相交所得的弦AB 的长为( ) A .810B .10 C .10 D .85【答案】C【解析】曲线C 的参数方程是2cos 2sin x y θθ==⎧⎨⎩()θ为参数,化为普通方程为:22x 4y +=,表示圆心为(0)0,,半径为2的圆.直线l 的极坐标方程是cos sin 30ρθρθ--=,化为直角坐标方程即为30x y --=.圆心到直线的距离为362d ==. 直线与曲线相交所得的弦的长为264102⎛⎫- ⎪ ⎪⎝⎭C .12.已知点(),P x y 在曲线2cos sin x y θθ=-+=⎧⎨⎩[)(),2θθ∈ππ为参数,且上,则点P 到直线21x ty t =+=--⎧⎨⎩()t 为参数的距离的取值范围是( ) A .3232,22⎡⎤-⎢⎥⎢⎥⎣⎦B .32321,122⎡⎤--+⎢⎥⎢⎥⎣⎦ C .(2,22⎤⎦D .322,12⎛⎤+ ⎥ ⎥⎝⎦【答案】D【解析】直线21x ty t =+=--⎧⎨⎩()t 为参数的普通方程为10x y +-=,点P 到直线距离为2sin 332sin 2cos sin 144222θθθθπ⎛⎫π⎛⎫+--+ ⎪ ⎪-++-⎝⎭⎝⎭==, 因为[),2θππ∈,所以2sin 1,42θ⎡⎫π⎛⎫+∈-⎪⎢ ⎪⎪⎝⎭⎢⎣⎭,因此取值范围是322,12⎛⎤+ ⎥ ⎥⎝⎦,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在极坐标系中,点23π⎛⎫⎪⎝⎭,与圆4cos ρθ=的圆心的距离为_________.【答案】2【解析】由题得点P 的坐标为()1,3,∵4cos ρθ=,∴24cos ρρθ=,∴224x y x +=,∴()2224x y -+=. ∴圆心的坐标为20(,),∴点P 到圆心的距离为()()2221032-+-=,故答案为2.14.若点()3,P m 在以F 为焦点的抛物线244x t y t ==⎧⎨⎩()t 为参数上,则PF 等于_________.【答案】4【解析】抛物线244x t y t==⎧⎨⎩()t 为参数可化为24y x =,∵点()3,P m 在以F 为焦点的抛物线244x t y t==⎧⎨⎩,()t 为参数上,∴24312m =⨯=,∴()323P ,, ∵()10F ,,∴()222234PF =+=,故答案为.15.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位. 已知直线极坐标方程为()4θρπ=∈R ,它与曲线23cos 23sin x y αα=+=-+⎧⎨⎩()α为参数相交于两点A 、B , 则AB =__________. 【答案】2 【解析】∵4ρ=π,利用cos x ρθ==,sin y ρθ==进行化简, ∴0x y -=,23cos 23sin x y αα=+=-+⎧⎨⎩()α为参数,相消去α可得圆的方程为()()22229x y -++=得到圆心()22-,,半径为3,圆心()22-,到直线0x y -=的距离222d ==,∴2222982AB r d =-=-=,∴线段AB 的长为2,故答案为2.16.在平面直角坐标系xOy 中,已知抛物线24 4x ty t⎧=⎪⎨⎪⎩=()t 为参数的焦点为F ,动点P 在抛物线上. 以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,动点Q 在圆()8cos 150ρρθ-+=上, 则PF PQ +的最小值为__________. 【答案】4【解析】∵抛物线的参数方程为24 4x ty t ⎧=⎪⎨⎪⎩=()t 为参数, ∴抛物线的普通方程为24y x =,则()1,0F ,∵动点Q 在圆()8cos 150ρρθ-+=上,∴圆的标准方程为()2241x y -+= 过点P 作PA 垂直于抛物线的准线,垂足为A ,如图所示:∴PF PQ PA PQ +=+,分析可得:当P 为抛物线的顶点时,PA PQ +取得最小值, 其最小值为4.故答案为4.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. 已知曲线C 的极坐标方程为4cos ρθ=,直线l 的参数方程为1cos 63sin6x t y t π⎧=+⎪⎪⎨π⎪=-⎪⎩()t 为参数.(1)求曲线C 的直角坐标方程;(2)若点P 在曲线C 上,且P 到直线l 的距离为1,求满足这样条件的点P 的个数.【答案】(1)()2224x y -+=;(2)3个. 【解析】(1)由4cos ρθ=得24cos ρρθ=,故曲线C 的直角坐标方程为:224x y x +=,即()2224x y -+=. (2)由直线l 的参数方程消去参数t 得()331y x +=-,即340x y --=. 因为圆心()20C ,到直线的距离为2304113d -⋅-==+,d 恰为圆C 半径的12,所以满足这样条件的点P 的个数为3个.18.(12分)在平面直角坐标系xoy 中,倾斜角为2ααπ⎛⎫≠ ⎪⎝⎭的直线l 的参数方程为1cos sin x t y t αα=+=⎧⎨⎩()t 为参数.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:l 2cos 4sin 0ρθθ-=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点()10P ,,若点M 的极坐标为12π⎛⎫⎪⎝⎭,,直线l 经过点M 且与曲线C 相交于A ,B 两点, 设线段AB 的中点为Q ,求PQ 的值.【答案】(1)():tan 1l y x α=-,2:4C x y =;(2)32 【解析】(1)消去直线l 的参数方程1cos sin x t y t αα=+=⎧⎨⎩中的参数t ,得到直线l 的普通方程为()tan 1y x α=-,把曲线C 的极坐标方程:l 2cos 4sin 0ρθθ-=左右两边同时乘以ρ, 得到22cos 4sin 0ρθρθ-=,利用公式cos sin x y ρθρθ==⎧⎨⎩代入,化简出曲线C 的直角坐标方程24x y =.(2)点M 的直角坐标为()01,,将点M 的直角坐标为()01,代入直线():tan 1l y x α=-中, 得tan 1α=-,即:10l x y +-=,联立方程组2104x y x y +-=⎧⎨=⎩,得AB 中点坐标为()23Q -,,从而PQ =.19.(12分)已知曲线C 的参数方程为3cos 2sin x y θθ==⎧⎨⎩()θ为参数,在同一平面直角坐标系中,将曲线C 上的点按坐标变换1'31'2x x y y ⎧=⎪⎪⎨⎪=⎪⎩得到曲线'C .(1)求'C 的普通方程;(2)若点A 在曲线'C 上,点()30B ,,当点A 在曲线'C 上运动时,求AB 中点P 的轨迹方程. 【答案】(1)221x y +=;(2)223124x y ⎛⎫-+= ⎪⎝⎭.【解析】(1)将3cos 2sin x y θθ==⎧⎨⎩代入1'31'2x x y y⎧=⎪⎪⎨⎪=⎪⎩,得'C 的参数方程为cos sin x y θθ==⎧⎨⎩,∴曲线'C 的普通方程为221x y +=. (2)设()P x y ,,()00A x y ,,又()30B ,,且AB 中点为P ,∴00232x x y y =-=⎧⎨⎩,又点A 在曲线'C 上,∴代入'C 的普通方程2201x y +=得()()222321x y -+=, ∴动点P 的轨迹方程为223124x y ⎛⎫-+= ⎪⎝⎭.20.(12分)在直角坐标系xOy 中,曲线1C 的参数方程为2sin x y αα==⎧⎪⎨⎪⎩()α为参数.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线22:4cos 2sin 40C ρρθρθ+-+=. (1)写出曲线1C ,2C 的普通方程;(2)过曲线1C 的左焦点且倾斜角为4π的直线l 交曲线2C 于A ,B 两点,求AB .【答案】(1)2211204:x y C +=,()()222:211C x y ++-=;(2.【解析】(1)222225cos cos sin 122sin 25y x y αααα=⎛⎫⇒+=+= ⎪ ⎧⎪⎨⎪⎩⎪=⎝⎭⎝⎭,即曲线1C 的普通方程为221204x y +=,∵222x y ρ=+,cos x ρθ=,sin y ρθ=,曲线2C 的方程可化为224240x y x y ++-+=, 即()()222:211C x y ++-=.(2)曲线1C 左焦点为()40-,直线的倾斜角为4απ=,2sin cos αα==,∴直线l 的参数方程为2422x y ⎧⎪⎪⎨=-+=⎪⎪⎩()t 为参数将其代入曲线2C 整理可得23240t t -+=,∴()2324420∆=--⨯=>.设A ,B 对应的参数分别为1t ,2t ,则∴1232t t +=124t t =. ∴()()22121212432442AB t t t t t t =-=+-=-⨯21.(12分)在平面直角坐标系xOy 中,曲线1C 过点()1P a ,,其参数方程为221x a y =+=+⎧⎪⎪⎨⎪⎪⎩()t a ∈R 为参数,,以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3cos 0ρθθρ+-=. (1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求已知曲线1C 和曲线2C 交于A ,B 两点,且3PA PB =,求实数a 的值. 【答案】(1)1:10C x y a --+=,22:3C y x =;(2)1348a =或712. 【解析】(1)1C 的参数方程221x a y =+=+⎧⎪⎪⎨⎪⎪⎩,消参得普通方程为10x y a --+=, 2C 的极坐标方程化为222cos 3cos 0ρθρθρ+-=即23y x =.(2)将曲线的参数方程标准化为221x a t y t =+=+⎧⎪⎪⎨⎪⎪⎩()t a ∈R 为参数,代入曲线22:3C y x = 得22260t t a -+-=,由()()2241260a ∆=--⨯->,得14a >, 设A ,B 对应的参数为1t ,2t ,由题意得123t t =即123t t =或123t t =-,当123t t =时,1212123226t t t t t t a ⎧=+==-⎪⎨⎪⎩,解得131448a =>,当123t t =-时,1212123226t t t t t t a=⎧-+==-⎪⎨⎪⎩解得712a =,综上:1348a =或712. 22.(12分)在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y αα==⎧⎪⎨⎪⎩[]()0αα∈π为参数,,,以原点为极点,以x 轴非负半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程;(2)设直线10:l θθ=(0θ为任意锐角)、20:2l θθπ=+分别与曲线C 交于A ,B 两点,试求AOB △面积的最小值.【答案】(1)[]()2221203cos 4sin ρθθθ=∈π+,;(2)127. 【解析】(1)由22cos sin 1αα+=,将曲线C 的参数方程2cos 3sin x y αα==⎧⎪⎨⎪⎩,消参得()221043x y y +=≥,又cos x ρθ=,sin y ρθ=,所以2222cos sin 143ρθρθ+=,化简整理得曲线的极坐标方程为[]()2221203cos 4sin ρθθθ=∈π+,.① (2)将0θθ=代入①式得,22220123cos 4sin A OA ρθθ==+,同理222222000012123sin 4cos 3cos 4sin 22B OB ρθθθθ===ππ+⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,于是22220000223cos 4sin 3sin 4cos 117121212A B θθθθρρ+++=+=,由于2271111212A B A B ρρρρ⎛⎫=+≥⋅ ⎪⎝⎭(当且仅当A B ρρ=时取“=”), 故247A B ρρ⋅≥,11227AOB A B S ρρ=⋅≥△.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题 1.若直线的参数方程为12()23x t t y t =+⎧⎨=-⎩为参数,则直线的斜率为( ) A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( ) A.1(,2 B .31(,)42- C. D.3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤"4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =5.点M的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
;3.已知直线113:()24x t l t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A , 则AB =_______________。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
5.直线cos sin 0x y αα+=的极坐标方程为____________________。
三、解答题1.已知点(,)P x y 是圆222x y y +=上的动点,(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围。
2.求直线11:()5x t l t y =+⎧⎪⎨=-⎪⎩为参数和直线2:0l x y --=的交点P 的坐标,及点P 与(1,5)Q -的距离。
3.在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。
|[综合训练B 组]一、选择题1.直线l 的参数方程为()x a t t y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( ) A .1t B .12t C1 D1 2.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线3.直线112()x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3,4.圆5cos ρθθ=-的圆心坐标是( )&A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2x C .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x 6.直线2()1x t t y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( ) AB .1404 CD二、填空题1.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为__________________。
2.直线3()14x at t y t=+⎧⎨=-+⎩为参数过定点_____________。
~ 3.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为___________。
4.曲线的极坐标方程为1tan cos ρθθ=⋅,则曲线的直角坐标方程为________________。
5.设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。
三、解答题1.参数方程cos (sin cos )()sin (sin cos )x y θθθθθθθ=+⎧⎨=+⎩为参数表示什么曲线2.点P 在椭圆221169x y +=上,求点P 到直线3424x y -=的最大距离和最小距离。
3.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。
(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。
[提高训练C 组]一、选择题$1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 2.曲线25()12x t t y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 3.直线12()2x t t y t =+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( ) A .125 BCD4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上, 则PF 等于( );A .2B .3C .4D .55.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-二、填空题¥ 1.已知曲线22()2x pt t p y pt⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN =_______________。
2.直线2()3x t y ⎧=-⎪⎨=+⎪⎩为参数上与点(2,3)A -的距离等于_______。
3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩为参数,则此圆的半径为_______________。
4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。
5.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα=+⎧⎨=⎩相切,则θ=_______________。
三、解答题1.分别在下列两种情况下,把参数方程1()cos 21()sin 2t t t t x e e y e e θθ--⎧=+⎪⎪⎨⎪=-⎪⎩化为普通方程:(1)θ为参数,t 为常数;(2)t 为参数,θ为常数;2.过点P 作倾斜角为α的直线与曲线22121x y +=交于点,M N , 求PM PN ⋅的值及相应的α的值。
…~新课程高中数学训练题组参考答案数学选修4-4 坐标系与参数方程 [基础训练A 组]一、选择题1.D 233122y t k x t --===-- 2.B 转化为普通方程:21y x =+,当34x =-时,12y = 3.C 转化为普通方程:2y x =-,但是[2,3],[0,1]x y ∈∈4.C (cos 1)0,0,cos 1x ρρθρρθ-=====或5.C 2(2,2),()3k k Z ππ+∈都是极坐标 6.C 2cos 4sin cos ,cos 0,4sin ,4sin ρθθθθρθρρθ====或即则,2k πθπ=+或224x y y += ]二、填空题1.54- 455344y t k x t --===-- 2.221,(2)416x y x -=≥ 22()()422222t t t t t t y x e x e e y y x x y y e e x e ---⎧⎧+==+⎪⎪⎪⇒⇒+-=⎨⎨=-⎪⎪-=⎩⎪⎩3.52 将1324x t y t=+⎧⎨=-⎩代入245x y -=得12t =,则5(,0)2B ,而(1,2)A ,得52AB = 4直线为10x y +-=,圆心到直线的距离2d ==,2=,5.2πθα=+ cos cos sin sin 0,cos()0ρθαρθαθα+=-=,取2πθα-=三、解答题1.解:(1)设圆的参数方程为cos 1sin x y θθ=⎧⎨=+⎩,22cos sin 1)1x y θθθϕ+=++=++121x y ≤+≤@(2)cos sin 10x y a a θθ++=+++≥(cos sin )1)141a a πθθθ∴≥-+-=+-∴≥ 2.解:将15x t y =+⎧⎪⎨=-⎪⎩代入0x y --=得t =,得(1P +,而(1,5)Q -,得PQ ==3.解:设椭圆的参数方程为4cos x y θθ=⎧⎪⎨=⎪⎩,d =3)33θθθθ=-=+- 当cos()13πθ+=时,min 5d =,此时所求点为(2,3)-。
新课程高中数学训练题组参考答案(咨询)数学选修4-4 坐标系与参数方程 [综合训练B 组]一、选择题…1.C1=2.D 2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线3.D221(1)()162t ++-=,得2880t t --=,12128,42t t t t ++==中点为114324x x y y ⎧=+⨯⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪=-⎪⎩4.A圆心为5(,2 5.D 22222,11,1,0,011,0244y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得 6.C2211x x t y t y ⎧=-+⎪=-+⎧⎪⇒⎨⎨=-⎩⎪=⎪⎩,把直线21x t y t =-+⎧⎨=-⎩代入 22(3)(1)25x y -++=得222(5)(2)25,720t t t t -++-=-+=12t t -==12t -=二、填空题)1.2(2)(1)(1)x x y x x -=≠- 111,,1x t t x-==-而21y t =-, 即221(2)1()(1)1(1)x x y x x x -=-=≠-- 2.(3,1)- 143y x a+=-,(1)4120y a x -++-=对于任何a 都成立,则3,1x y ==-且 3椭圆为22164x y +=,设,2sin )P θθ,24sin )x y θθθϕ+=+=+≤4.2x y = 22221sin tan ,cos sin ,cos sin ,cos cos θρθρθθρθρθθθ=⋅===即2x y =5.2224141t x t ty t ⎧=⎪⎪+⎨⎪=⎪+⎩22()40x tx tx +-=,当0x =时,0y =;当0x ≠时,241t x t =+; 而y tx =,即2241t y t =+,得2224141t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩三、解答题1.解:显然tan y x θ=,则222222111,cos cos 1y y x xθθ+==+ …2222112tan cos sin cos sin 2cos cos 221tan x θθθθθθθθ=+=+=⨯++ 即222222222111,(1)12111y y y y x x x x y y y x x x x x+=⨯+=+=++++ 得21y y x x x+=+,即220x y x y +--= 2.解:设(4cos ,3sin )P θθ,则12cos 12sin 245d θθ--=即d = 当cos()14πθ+=-时,max 12(25d =; 当cos()14πθ+=时,min 12(25d =-。