PW3133A超简单的单节锂电池保护电路

合集下载

锂电池充电管理芯片大全,3.7V,7.4V,12.6V,8.4V等等

锂电池充电管理芯片大全,3.7V,7.4V,12.6V,8.4V等等

锂电池充电管理芯片大全,3.7V,7.4V,12.6V,8.4V等等
1 号模块板:单节电池 0.5A 充电, 5V0.5A 输出,带 OVP 过压保护,带保护板, 过流 3A
功能:
1,单节锂电池 3.7V,充满 4.2V,充电电流 0.5A
可选择锂电池充满 4.2V 或 4.35V,默认 4.2V
2,单节锂电池输出 5V0.6A
3,单节锂电池充放电保护,过流 3A
4,带 OVP 过压保护,防止误插 12V 充电器
时损坏,输入过压 6.1V,保证输出通过电
压低于 6.1V,超过关闭无输出,同时输入
可抗压达 30V 芯片正常不坏,保护后级电
路。

1 号模块板用到芯片:
1, PW2606B 过压 OVP 保护芯片,
2, PW4054 锂电池充电芯片, 0.5A
3, PW5100-50 电池升压 5V 输出芯片,
4, PW3133A 单节锂电池过充过放保护芯片
2 号模块板:单节锂电池 2.5A 充电,带 OVP 过压保护,带保护板,过流 3A
功能:
1,单节锂电池 3.7V,充满 4.2V,充电电流 2A
2,单节锂电池充放电保护,过流 3A
3,带 OVP 过压保护,防止误插 12V 充
电器时损坏,输入过压 6.1V 关闭,
保证输出通过低于 6.1V,超过无输
出,同时输入可抗压达 30V 芯片正
常不坏,保护后级其他电路。

DW03二合一锂电保护芯片

DW03二合一锂电保护芯片

DW03一、描述DW03产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。

DW03包括了先进的功率MOSFET,高精度的电压检测电路和延时电路。

DW03具有非常小的SOT23-5的封装,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。

DW03具有过充,过放,过流,短路等所有的电池所需要保护功能,并且工作时功耗非常低。

该芯片不仅仅为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。

二、主要特点充电器反接保护功能;内部集成等效65 mΩ的先进的功率MOSFET;超小封装SOT23-5;外围电路简单;过温保护;过充电电流保护;过放电自恢复功能;3段过流保护:1,过放电电流12,过放电电流23. 负载短路电流;充电器检测;0V电池充电功能;延迟时间内部设定;高精度电压检测;低静态电流:正常工作电流:2.8μA待机电流:1.6uA;兼容ROHS和无铅标准;三、应用单芯锂离子电池组;锂聚合物电池组;典型应用电路四、 订货信息注意:“YW ”代表日期,“Y ”代表年份,“W ”代表星期五、 管脚外形及描述六、 极限参数DW03七、 电气特性参数(除非特别指定,AT=25℃)DW03功能框图VM八、 功能描述DW03监控电池的电压和电流,并通过断开充电器或负载,保护单节可充电锂电池不会因为过充电压,过放电压,过充电流,过放电流以及短路等情况而损坏。

系统外围电路简单。

MOSFET 已内置,等效电阻典型值为65m Ω。

正常工作模式如果没有检测到任何异常情况,输出管一直打开,充电和放电过程都将自由转换。

这种情况称为正常工作模式。

过充电压情况(OCV )在正常条件下的充电过程中,当电池电压高于过充检测电压(VCU ),并持续时间达到过充电压检测延迟时间(tCU )或更长,DW03将关断MOSFET 以停止充电。

这种情况称为过充电压情况。

以下两种情况下,过充电压情况将被释放:1、 当电池电压低于过充解除电压(VCL ),DW03打开输出管,回到正常工作模式。

HY2110单节锂电池保护IC中文规格书

HY2110单节锂电池保护IC中文规格书
vdrvdr过放电释放电压vdr29v30v可调整vdrv0101vdipvdip放电过流检测电压vdipvdd36vvdipmv3030负载短路检测电压vsipvdd30v055085115v充电器检测电压vcha03v延迟时间过充电检测延迟时间tocvdd39v?45v50100150ms过放电检测延迟时间todvdd36v?20v102540ms放电过流检测延迟时间tdipvdd36v51015ms负载短路检测延迟时间tsipvdd30v500700s控制端子输出电压od端子输出高电压vdhvdd01vdd002vod端子输出低电压vdl0105voc端子输出高电压vchvdd01vdd002voc端子输出低电压vcl0105v向0v电池充电的功能允许或禁止充电器起始电压允许允许向0v电池充电功v0ch12v向0v电池充电功能能电池电压禁止向0v禁止向0v电池充电功v0in05v电池充电功能能说明
© 2009-2015 HYCON Technology Corp
DS-HY2110-V16_SC page2
HY2110
1 节锂离子/锂聚合物电池保护 IC
注意: 1、 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更 新 。 2、 本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。 3、 本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。 4、 请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于 客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担 任何责任。 5、 本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。 6、 本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾 器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。 7、 本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效 概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。 8、 本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。

基于DW01芯片的锂电池保护电路设计

基于DW01芯片的锂电池保护电路设计
当电池通过充电器正常充电时,随着充电时间的增加, 电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的 输出电压,使第3脚电压变为0V,SPN8822A内的开关管因第 5脚无电压而关闭。此时,电芯与保护板之间处于断开状态,
即电芯的充电回路被切断,电芯将停止充电,保护板处于过充 电状态并一直保持。等到保护板接上放电负载后,因此时虽然 过充电控制开关管关闭,但其内部的二极管正向与放电回路的 方向相同,故放电回路可以进行放电。当电芯的电压低于4.3V 时,DW01停止过充电保护状态,重新在第3脚输出高电压,使 SPN8822A内的过充电控制管导通,即电芯与保护板又重新接 上,电芯又能进行正常的充放电。 2.4 保护板短路保护控制原理
郭洪祥(1974-),男,工程师,研究方向:检测技术研究。
Hale Waihona Puke 引言随着电子技术的发展,越来越多的手持设备在煤矿井下得 到了广泛的应用。为了提高手持设备的续航能力,其供电电池 多采用锂电池供电。而为了保证锂电池供电手持仪器在煤矿井 下的安全使用,锂电池必须带有保护电路,防止其过充、过放 以及短路保护。本文以DW01为主要芯片,设计了一款单节锂 电池保护电路,具有体积小巧、成本低廉等优点。
P
责任编辑:王金旺
基于DW01芯片的锂电池保护电路设计
Lithium battery protection circuit design based on DW01
郭洪祥 中煤科工集团重庆研究院有限公司(重庆 400037)
摘要:本文介绍了DW01芯片的结构以及工作原理,并给出了单节锂电池的双重保护电路设计,该电路具有体积小巧、保护灵 敏等特点。 关键词:DW01;锂电池;保护电路 DOI: 10.3969/j.issn.1005-5517.2016.7.021

锂电池保护板的电路图与工作原理

锂电池保护板的电路图与工作原理

锂电池保护板的电路图与工作原理锂电池保护板的电路图与工作原理关于锂离子电池的保护板电路,原理介绍,以及管理的书籍推荐.或者聚合物锂电池方面经典书籍。

太深奥了,建议新华书店锂电池保护板原理:锂电池保护板根据使用IC,电压等的不同而电路及参数有所不同。

锂电池保护板其正常工作过程为:当电池电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。

此时DW01的第1脚、第3脚电压将分别加到8205A的第5 4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。

此时电池的负极与保护板的P-端相当于直接连通,保护板有电压输出。

锂电池保护板的电路图与工作原理:锂电池保护板原理:锂电池保护板根据使用IC,电压等的不同而电路及参数有所不同。

锂电池保护板其正常工作...锂电池保护电路板生产过程中CC offset是什么意思?具体有什么作用!:保护板是有计算电芯容量的芯片吧? CC offset 估计是恒流补尝.(也就是在生产过程中通过负载放...求锂电池保护板原理图:照这个做吧!成熟的电路!改变R61可以改变充电电流的大小!有啥不懂进群讨论!105888932为什么有的锂电保护板需要激活?什么原理:所有的锂电池保护板在保护后都需要激活。

激活的方法很简单,在专用充电器上充电1-2分钟就可以了。

锂电池...18650 单节电池充放电保护电路原理图啊:工作原理:将充电器与手机、插座连接后,电压通过电阻调整,以一较小值进入电压比较器,输出一个额定值,是...如何制作18650锂电池保护板,要完整的原理图、pcb板图,:锂电保护板,多节,18650,原理图,PCB板,单片机程序,应有尽有!电池保护电路板都是什么够成的?上面好多小件:因为Li+电池过充或过放可能会导致爆炸并造成人员伤害,所以使用这类电池时,安全是主要关心的问题。

两串锂电池保护电路

两串锂电池保护电路

两串锂电池保护电路适用范围:阻性负载,充电电流<3A特点应用■高精度电压检测电路■两串锂电池可充电电池组■低静态功耗■低温度系数■强抗干扰能力一、主要技术参数:二、保护功能说明将锂电池与保护板按接线图连接保护电路分别检测串联电池组中每只电池的电压和电流,控制电池组的充放电过程。

电池组中每只电池的电压均在过充检测电压和过放检测电压之间,并且输出无短路现象时,P+、P-输出电池组电压,允许对电池组进行放电操作;2、电池组过放保护功能串联电池组中的任意一只电池的电压下降到过放检测电压并且达到过放延时时间时,过放保护功能启动,切断放电MOS管,禁止电池组对外输出电流,保护电池组安全,电路板进入休眠状态,电路板消耗电流为休眠电流以下,进入休眠状态的电路只有在连接充电器后,并且电池电压超过过放恢复电压后才能恢复;3、电池组过充保护功能通过P+和P-对电池组充电过程中,当任何一节电池电压上升到电池过充检测电压,并且超过过充延时时间时,过充保护功能启动,切断充电MOS管,禁止对电池组充电,保护电池组安全,当电池组连接负载放电或者电池电压下降到过充恢复电压以下时,过充状态被恢复;4、电池组短路保护功能当电池组放电端口P+和P-发生短路时,保护电路会在短路保护延时时间后,切断放电MOS 管,禁止电池组对外放电,负载完全解除后,电路自动恢复;5、电池组过流保护功能当电池组放电端口P+和P-发生过电流现象时,保护电路会在过流保护延时时间后,切断放电MOS管,禁止电池组对外放电,负载完全解除后,电路自动恢复;三、装配测试方法保护板与电池组连接后,正确的保护电压的测试非常关键。

保护板的保护电压信号来源于电压采样线,即保护板B-、B1、B+各个端口,此款保护板产品的B1、B+线是电压信号采样线,基本没有电流通过,可采用仅满足强度要求的电源线即可,B-和P-即是输入和输出线,应采用具有足够电流容量的连接线,当有大电流流过时,在B-与电池组负极和B+与电池组正极之间会因为连接线的内阻产生压降,这个压降直接导致采样电压的误差,因此降低B-与电池组负极和B+与电池组正极之间连接线的内阻对保证保护电压的精度非常有利,常用的方法是尽量减小B-与B+和电池组之间连线的距离,尽量增加B-与B+和电池组之间连线的直径,不要在B-与B+和电池组之间放置任何开关、PPTC、温度保险丝等元件。

锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解时间:2012-04-23 12:27:18来源:作者:该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N 沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。

充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。

在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。

放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。

二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。

2. 可制成薄型电池:以3.6V400mAh的容量,其厚度可薄至0.5mm。

3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以0.2C放至3.0V/支后1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。

锂电池保护板电路原理详解

锂电池保护板电路原理详解

锂电池保护板电路原理详解
保护板电路:
以下是我司某产品上使用的锂电池保护板电路图,电池容量3000mA/3.8V,充电限制电压4.35V。

两个双MOS管两两并联。

双MOS管内部结构、
保护板BOM清单:
过充保护:
以上是电池充电电流流向,可见两个双MOS管(U2、U3)全部导通,充电的时候U1的Pin5芯片会实时监听电芯正极电压,此电压相对Pin6,因为Pin6是U1的地参考。

当电芯正极相对Pin6大于过充门限电压时,Pin3控制关闭两个MOS管,此时停止充电,只能放电。

当放电到过充恢复电压以下时,Pin3控制的MOS 管重新打开,
这时可以充电。

过放保护:
以上是电池放电电流流向,可见两个双MOS管(U2、U3)全部导通,放电的时候U1的Pin5芯片会实时监听电芯正极电压,此电压相对Pin6,因为Pin6是U1的地参考。

当电芯正极相对Pin6小于过放门限电压时,Pin1控制关闭两个MOS管,此时停止放电,只能充电。

当充电到过放恢复电压以上时,Pin1控制的MOS 管重新打开,这时可以放电。

放电过流/短路保护:
以上是电池放电电流流向,可见两个双MOS管(U2、U3)全部导通,放电的时候U1的Pin2芯片会实时监听电压,此电压相对Pin6,因为Pin6是U1的地参考。

实际上这个电压就是两个MOS的导通压降,电流越大压降越大,当电压大于放电过流保护/短路保护电压时,Pin1管脚关闭两个MOS管。

以下是芯片MM3280JB7NRH的各种截止电压参数:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PW3133AOne Cell Lithium-ion/Polymer Battery Protection ICGENERAL DESCRIPTIONThe PW3133A series product is a high integration solution for lithiumion/polymer battery protection. PW3133A contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits. PW3133A is put into an ultra-small SOT23-3 package and only one external component makes it an ideal solution in limited space of battery pack.PW3133A has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage. The device is not only targeted for digital cellular phones, but also for any other Li-Ion and Li-Poly battery-powered information appliances requiring longterm battery life.FEATURES● Protection of Charger Reverse Connection ● Protection of Battery Cell ReverseConnection● Integrate Advanced Power MOSFETwithEquivalent of 56mΩ RSS(ON) ● Ultra-small SOT23-3 Package● Only One External CapacitorRequired ● Over-temperature Protection ● Overcharge Current Protection● Two-step Overcurrent Detection :Overdischarge Current;Load Short Circuiting● Charger Detection Function ● 0V Battery Charging Function ● Delay Times are generated inside ● High-accuracy Voltage Detection ● Low Current Consumption: OperationMode: 2.8μA typ.Power-down Mode: 1.5μA typ.● RoHS Compliant and Lead (Pb) FreeAPPLICATIONS● One-Cell Lithium-ion Battery Pack ● Lithium-Polymer Battery PackTYPICAL APPLICATION CIRCUIT代理深圳夸克微科技Wuxi PWChip Semi Technology CO., LTDELECTRICAL CHARACTERISTICSTypicals and limits appearing in normal type apply for TA = 25oC, unless otherwise specifiedNote: The parameter is guaranteed by design .ParameterSymbol Test Condition Min Typ Max UnitDetection VoltageOvercharge Detection Voltage V CU4.254.30 4.35VOvercharge Release Voltage V CL 4.054.10 4.15VOverdischarge Detection VoltageV DL 2.3 2.4 2.5VOverdischarge Release Voltage V DR2.93.03.1VDetection CurrentOverdischarge Current1Detection *I IOV1V DD =3.6V3.5A Load Short-Circuiting Detection*I SHORT V DD =3.6V20ACurrent ConsumptionCurrent Consumption in Normal OperationI OPE V DD =3.6V VM =0V 2.86μA Current Consumption in power DownI PDNV DD =2.0VVM pin floating1.53μAVM Internal Resistance Internal Resistance between VM and V DD*R VMD VDD=2.0V VM pin floating 300k ΩInternal Resistance between VM and GND*R VMSV DD =3.6V VM=1.0V20k ΩFET on ResistanceEquivalent FET on Resistance *R SS(ON)V DD =3.6V I VM =1.0A56m ΩOver Temperature Protection Over T emperature Protection*T SHD+150oCOver T emperature Recovery Degree *T SHD-110Detection Delay TimeOvercharge Voltage Detection Delay Timet CU 80130200mS Overdischarge Voltage Detection Delay Timet DL 204060mS Overdischarge Current Detection Delay Time*t IOV V DD =3.6V 4816mS Load Short-Circuiting Detection Delay Time*t SHORTV DD =3.6V80180300uSFunctional Block DiagramOPERATIONThe PW3133A monitors the voltage and current of a battery and protects it from being damaged due to overcharge voltage, overdischarge voltage, overdischarge current, and short circuit conditions by disconnecting the battery from the load or charger. These functions are required in order to operate the battery cell within specified limits.The device requires only one external capacitor. The MOSFET is integrated and its RSS(ON) is as low as 56mΩ typical.Normal operating modeIf no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.Overcharge ConditionWhen the battery voltage becomes higher than the overcharge detection voltage (VCU) during charging under normal condition and the state continues for the overcharge detection delay time (tCU) or longer, the PW3133A turns the charging control FET off to stop charging. This condition is called the overcharge condition. The overcharge condition is released in the following two cases:1, When the battery voltage drops below the overcharge release voltage (VCL), the PW3133A turns the charging control FET on and returns to the normal condition.2, When a load is connected and discharging starts, the PW3133A turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forward voltage of the diode) from the GND pin voltage momentarily. The PW3133A detects this voltage and releases the overcharge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (VCU), the PW3133A returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (VCU),the chip does not return to the normal condition until the battery voltage drops below the overcharge detection voltage (VCU) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent 1 detection voltage when a load is connected and discharging starts, the chip does not return to the normal condition.Remark If the battery is charged to a voltage higher than the overcharge detection voltage (VCU) and the battery voltage does not drops below the overcharge detection voltage (VCU) even when a heavy load, which causes an overcurrent, is connected, the overcurrent 1 and overcurrent 2 do not work until the battery voltage drops below the overcharge detection voltage (VCU). Since an actual battery has, however, an internal impedance of several dozens of mΩ, and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent 1 and overcurrent 2 work. Detection of load shortcircuiting works regardless of the battery voltage.Overdischarge ConditionWhen the battery voltage drops below the overdischarge detection voltage (VDL) during discharging under normal condition and it continues for the overdischarge detection delay time (tDL) or longer, the PW3133A turns the discharging control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the RVMD resistor between VM and VDD in PW3133A.Meanwhile when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), the current of the chip is reduced to the power-down current (IPDN). This condition is called power-down condition. The VM and VDD pins are shorted by the RVMD resistor in the IC under the overdischarge and power-down conditions. The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load shortcircuiting detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage (VDL) or higher (see note), the PW3133A turns the FET on and changes to the normal condition from the overdischarge condition.Remark If the VM pin voltage is no less than the charger detection voltage (VCHA), when the battery under overdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that the battery voltage reaches the overdischarge release voltage (VDU) or higher.When the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher than the overcurrent detection voltage) during discharging under normal condition and the state continues for the overcurrent detection delay time or longer, the PW3133A turns off the discharging control FET to stop discharging. This condition is called overcurrent condition. (The overcurrent includes overcurrent, or load short-circuiting.)The VM and GND pins are shorted internally by the RVMS resistor under the overcurrent condition. When a load is connected, the VM pin voltage equals the VDD voltage due to the load. The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and Bpins becomes higher than the automatic recoverable impedance. When the load is removed, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the RVMS resistor. Detecting that the VM pin potential is lower than the overcurrent detection voltage (VIOV1), the IC returns to the normal condition.Abnormal Charge Current DetectionIf the VM pin voltage drops below the charger detection voltage (VCHA) during charging under the normal condition and it continues for the overcharge detection delay time (tCU) or longer, the PW3133A turns the charging control FET off and stops charging. This action is called abnormal charge current detection. Abnormal charge current detection works when the discharging control FET is on and the VM pin voltage drops below the charger detection voltage (VCHA). When an abnormal charge current flows into a battery in the overdischarge condition, the PW3133A consequently turns the charging control FET off and stops charging after the battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (tCU) elapses.Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (VCHA) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.Load Short-circuiting conditionIf voltage of VM pin is equal or below short circuiting protection voltage (VSHORT), the PW3133A will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is tSHORT. This status is released when voltage of VM pin is higher than short protection voltage (VSHORT), such as when disconnecting the load.Delay CircuitsThe detection delay time for overdischarge current 2 and load short-circuiting starts when overdischarge current 1 is detected. As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the PW3133A stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the PW3133A stop discharging by overdischarge current detection. In thisPW3133Acase the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the PW3133A shifts to power-down.Overcurrent delay time0V Battery Charging Function (1) (2) (3)This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger having 0 V battery start charging charger voltage (V0CHA) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (VDU), the normal condition returns.Note(1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.(2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).(3) When a battery is connected to the IC for the first time, the IC may not enter the normal condition in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.TIMING CHART1. Overcharge and overdischarge detectionOvercharge and Overdischarge Voltage Detection2. Overdischarge current detectionOverdischarge Current DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent conditionVV CU -VV DL +V VDLONONCHARGEV DD Vov1VSS VVM Charger Load V CUV CU -V HCV DL +V DHV DLONDISCHARGE OFF V DD V V ov2V ov1V SSCharger Load(1)(4)(1)(1)(1)(4)(4)Charger Detection4. Abnormal Charger DetectionAbnormal Charger DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4) Overcurrent conditionVV CU -V V DL +V V DL ON Charger Load V DDV SSV VMVVCU -VV DL +VV DL ON ONCHARGE VDD V SS VVM Charger LoadTYPICAL APPLICATIONAs shown in Figure 6, the bold line is the high density current path which must be kept asshort as possible. For thermal management, ensure that these trace widths are adequate. C1 is a decoupling capacitor which should be placed as close as possible to PW3133A.PW3133A in a Typical Battery Protection CircuitPrecautions• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in PW3133A does not exceed the power dissipation of the package.• Do not apply an electrostatic discharge to this PW3133A that exceeds the performance ratings of the built-in electrostatic protection circuit.PW3133A 11 PW3133A_2.3 PACKAGE DESCRIPTION SOT23-3无锡平芯微。

相关文档
最新文档