受迫振动的研究
受迫振动实验报告

受迫振动实验报告
实验目的:
1. 观察受迫振动现象;
2. 研究受迫振动的频率与外力频率之间的关系。
实验原理:
受迫振动是指在一个振动系统中加入外力的情况下,振动系统受到外力的作用而发生振动。
受迫振动的频率与外力频率有关,外力频率等于振动系统的固有频率时,振动幅度最大。
实验器材:
1.弹簧振子;
2.外力源;
3.震动台。
实验步骤:
1.将弹簧振子固定在震动台上,并调整弹簧振子的松紧程度,
使其能够产生自由振动。
2.将外力源连接到弹簧振子上,并调节外力源的频率,使其与
弹簧振子的固有频率相等。
3.观察弹簧振子的振动情况,并记录其振动幅度。
4.逐渐调整外力源的频率,观察和记录弹簧振子的振动情况。
5.根据观察结果,绘制受迫振动的振幅-频率图。
实验结果:
1.当外力频率等于弹簧振子的固有频率时,振动幅度最大。
2.当外力频率与弹簧振子的固有频率有一定的偏差时,振动幅
度逐渐减小。
实验结论:
通过实验可以得出以下结论:
1.受迫振动的频率与外力频率之间存在关系,外力频率等于振动系统的固有频率时,振动幅度最大。
2.外力频率与振动系统的固有频率存在偏差时,振动幅度逐渐减小。
3.受迫振动是一种通过外力作用使振动系统发生振动的现象。
实验总结:
本实验通过观察弹簧振子的受迫振动现象,研究了受迫振动的频率与外力频率之间的关系。
通过实验可以进一步了解振动现象,并且掌握了观察和记录实验现象的方法。
受迫振动现象的研究

受迫振动的规律研究姜付锦摘 要 用Laplace 变换方法得出受迫振动(共振)规律的数学描述关键词 Laplace 变换;受迫振动;共振共振是力学、电磁学中的一种现象,对共振现象的研究有重要意义。
产生共振的内因是两系统的固有振荡频率相同,外因是能量的传递。
没有能量传递是不会产生共振的。
本文探讨用数学形式描述受迫振动现象的规律,从而得到共振现象的规律。
双摆的受迫振动取摆长为1l 、2l 的两摆组成双摆,为简便取两摆锤质量12m m m ==,且假定两摆在摆动过程中对外没有能量损失。
为了两摆之间有能量传递,两摆很接近地悬于一横梁,且横梁会因力的作用而有微小弹性形变。
正是这微小的弹性形变传递了能量,才产生共振现象。
首先将摆1m 拉开,使之与平衡位置水平距离为(0)A A >,此时1m 具有了有限起始机械能;摆2m 下垂。
松开摆1m ,1m 开始摆动。
在1m 的作用下,摆2m 开始摆动,振幅由小逐渐变大,且1m 与2m 摆动频率相同,由于1m 对2m 作功,消耗了能量,1m 的振幅由大变小。
当1m 的振幅最小时,2m 的振幅达到最大值;此时1m 将有限起始机械能部分传递给了2m ,2m 具有了机械能.再往下是1m 在2m 的作用下开始摆动,振幅逐渐变大,2m 的振幅由大变小直至零,当2m 的振幅为零时,1m 的振幅又达到最大值A ,1m 又具有了机械能,回复到初始状态。
以后,两摆不断重复上述过程。
这种受迫振动主要特点是:(1) 两摆的振幅呈周期性变化;且当一个为最小时,另一个为最大 (2) 两摆的振动频率相同,等于1m 的固有频率(3) 当两摆摆长相等时,2m 会共振且会与1m 交换最大振幅这三点都可以通过数学形式表达并给以解释。
1.当1212,m m l l =≠时 如图,当摆角很小时(小于05),tan sin θθ≈,可用重力1m g 的切向分力1sin m g θ近似代替重力的水平方向分力1tan m g θ进行研究。
受迫振动的研究

受迫振动研究报告1. 实验原理1.1受迫振动本实验中采用的是伯尔共振仪,其外形如图1所示:图1铜质圆形摆轮系统作受迫振动时它受到三种力的作用:蜗卷弹簧B提供的弹性力矩−kθ,轴承、空气和电磁阻尼力矩−b dθdt ,电动机偏心系统经卷簧的外夹持端提供的驱动力矩M=M0cosωt。
根据转动定理,有J d2θdt=−kθ−bdθdt+M0cosωt(1)式中,J为摆轮的转动惯量,M0为驱动力矩的幅值,ω为驱动力矩的角频率,令ω02=kJ,2δ=bJ,m=M0J则式(1)可写为d2θdt +2δdθdt+ω02θ=m cosωt (2)式中δ为阻尼系数,ω0为摆轮系统的固有频率。
在小阻尼(δ2−ω2)条件下,方程(2)的通解为:θ=θa e;δt cos(ω0t+a)+θb cos(ωt+φ)此解为两项之和,由于前一项会随着时间的推移而消失,这反映的是一种暂态行为,与驱动力无关。
第二项表示与驱动力同频率且振幅为θb的振动。
可见,虽然刚开始振动比较复杂,但是在不长的时间之后,受迫振动会到达一种稳定的状态,称为一种简谐振动。
公式为:θ=θb cos (ωt +φ) (3)振幅θb 和初相位φ(φ为受迫振动的角位移与驱动力矩之间的相位差)既与振动系统的性质与阻尼情况有关,也与驱动力的频率ω和力矩的幅度M 0有关,而与振动的初始条件无关(初始条件只是影响达到稳定状态所用的时间)。
θb 与φ由下述两项决定:θb =m022222(4)φ=arctan −2δωω02−ω2(5)1.2共振由极值条件ðθb ðω=0可以得出,当驱动力的角频率为ω=√ω02−2δ2时,受迫振动的振幅达到最大值,产生共振:共振的角频率ωr =022振幅:θr =2δ√ω0;δ2(6)相位差φr =arctan (;√ω02;2δ2δ)由上式可以看出,阻尼系数越小,共振的角频率ωr 越接近于系统的固有频率ω0,共振振幅θr 也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于π/2.下面两幅图给出了不同阻尼系数δ的条件下受迫振动系统的振幅的频率相应(幅频特性)曲线和相位差的频率响应(相频特性)曲线。
受迫振动研究实验报告

受迫振动研究实验报告受迫振动研究实验报告一、实验目的本实验旨在通过实验手段,探究受迫振动现象及其规律,了解振动的幅值、频率、阻尼等因素对受迫振动的影响,并掌握减振降噪的方法。
二、实验原理受迫振动是指物体在周期性驱动力作用下的往复运动。
本实验中,我们将采用电动振动台作为驱动力,使实验物体产生受迫振动。
振动台的振幅、频率和阻尼均可调,以便探究不同因素对受迫振动的影响。
三、实验步骤1.准备实验器材:电动振动台、位移传感器、力传感器、数据采集器、电脑等。
2.将位移传感器和力传感器固定在振动台上,连接数据采集器与电脑,启动数据采集系统。
3.将待测物体放置在振动台上,调整物体的质量、刚度和阻尼等参数。
4.设定振动台的振幅、频率和阻尼,启动振动台,使物体产生受迫振动。
5.通过电脑实时监测位移和力的变化情况,记录多组数据。
6.对实验数据进行处理和分析,绘制受迫振动的幅频图和相频图。
7.改变振动台的振幅、频率和阻尼,重复步骤3至6,探究不同因素对受迫振动的影响。
8.根据实验结果,分析振动的幅值、频率、阻尼等因素对受迫振动的影响,并探讨减振降噪的方法。
四、实验结果及分析1.实验结果在实验过程中,我们分别设定了不同的振幅、频率和阻尼,并记录了相应的位移和力数据。
通过对数据的处理和分析,我们得到了不同因素下的受迫振动的幅频图和相频图。
2.数据分析与结论(1)振幅对受迫振动的影响:随着振幅的增加,物体的振动幅度增大。
当振幅增大到一定程度时,物体的振动幅度将趋于稳定。
这一现象表明,当驱动力足够大时,物体的振动将达到一个稳定的极限值。
(2)频率对受迫振动的影响:随着频率的增加,物体的振动幅度减小。
当频率增大到一定程度时,物体的振动幅度将趋于零。
这一现象表明,高频率的驱动力对物体的影响较小。
(3)阻尼对受迫振动的影响:随着阻尼的增加,物体的振动幅度减小。
当阻尼增大到一定程度时,物体的振动幅度将趋于零。
这一现象表明,阻尼大的物体对外部扰动的抵抗能力较强。
利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的自由振动、阻尼振动和受迫振动现象。
2、研究不同阻尼力矩对受迫振动的影响,并测定阻尼系数。
3、研究受迫振动的幅频特性和相频特性,观察共振现象,测定受迫振动的共振频率和共振振幅。
二、实验仪器波尔共振仪,包括振动系统、电磁阻尼系统、电机驱动系统、光电计数系统和智能控制仪等部分。
三、实验原理1、自由振动无阻尼的自由振动方程为:$m\frac{d^2\theta}{dt^2}=k\theta$,其中$m$为摆轮的转动惯量,$k$为扭转弹性系数,$\theta$为角位移。
其解为:$\theta = A\cos(\omega_0 t +\varphi)$,其中$\omega_0 =\sqrt{\frac{k}{m}}$为固有角频率,$A$和$\varphi$为初始条件决定的常数。
2、阻尼振动考虑阻尼时,振动方程为:$m\frac{d^2\theta}{dt^2} +b\frac{d\theta}{dt} + k\theta = 0$,其中$b$为阻尼系数。
根据阻尼的大小,可分为三种情况:小阻尼:$\omega =\sqrt{\omega_0^2 \frac{b^2}{4m^2}}$,振动逐渐衰减。
临界阻尼:振动较快地回到平衡位置。
大阻尼:不产生振动。
3、受迫振动在周期性外力矩$M = M_0\cos\omega t$作用下,振动方程为:$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + k\theta =M_0\cos\omega t$。
稳定时,振动的角位移为:$\theta = A\cos(\omega t +\varphi)$,其中振幅$A =\frac{M_0}{\sqrt{(k m\omega^2)^2 +(b\omega)^2}}$,相位差$\varphi =\arctan\frac{b\omega}{k m\omega^2}$。
受迫振动的研究实验报告

受迫振动的研究实验报告一、引言。
受迫振动是物理学中一个重要的研究课题,它在许多领域都有着重要的应用,如机械工程、电子工程、生物医学工程等。
本实验旨在通过对受迫振动的研究,探讨受迫振动的特性及其在实际应用中的意义。
二、实验原理。
受迫振动是指在外力作用下,振动系统产生的振动。
在本实验中,我们将研究的对象定为单摆系统。
单摆系统是一个典型的受迫振动系统,它由一个质点和一根不可伸长的细线组成,质点受到重力作用而产生周期性的振动。
当外力施加在单摆系统上时,就会产生受迫振动。
三、实验内容。
1. 实验仪器,单摆装置、振动传感器、数据采集系统等。
2. 实验步骤:a. 将单摆装置悬挂好,并调整至静止状态。
b. 将振动传感器连接至数据采集系统,并将数据采集系统连接至计算机。
c. 施加外力,记录单摆系统的振动数据。
d. 分析数据,得出受迫振动的特性参数。
四、实验结果与分析。
通过实验数据的采集与分析,我们得出了如下结论:1. 受迫振动的频率与外力的频率相同,且振幅受到外力的影响。
2. 外力的频率与振幅的变化会影响受迫振动的稳定性。
3. 受迫振动的共振现象会在特定的外力频率下出现。
五、实验结论。
本实验通过对单摆系统的受迫振动进行研究,得出了受迫振动的特性及其在实际应用中的意义。
受迫振动在机械工程、电子工程、生物医学工程等领域都有着重要的应用价值,对其特性的深入了解有助于我们更好地应用于实际工程中。
六、实验总结。
通过本次实验,我们对受迫振动的特性有了更深入的了解,同时也认识到了受迫振动在实际应用中的重要性。
希望通过今后的学习与实践,能够更好地将受迫振动理论运用于工程实践中,为相关领域的发展做出贡献。
七、致谢。
在本次实验中,感谢所有参与实验的同学们的辛勤劳动和支持,也感谢实验中得到的指导和帮助。
以上就是本次实验的全部内容,希望对受迫振动的研究有所帮助。
受迫振动研究_实验报告

一、实验目的1. 了解受迫振动的概念和特性。
2. 掌握利用波尔共振仪研究受迫振动的实验方法。
3. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
4. 学习用频闪法测定运动物体的某些量,如相位差。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
当策动力频率与原振动系统无阻尼时的固有振动频率相同时,系统产生共振,振幅最大。
2. 频闪法:通过使物体在特定频率下振动,观察物体在短时间内多次闪光,从而计算出物体的某些物理量,如相位差。
三、实验仪器1. 波尔共振仪2. 频闪仪3. 秒表4. 刻度尺5. 计算器四、实验步骤1. 将波尔共振仪放置在平稳的桌面上,调整摆轮使其处于水平位置。
2. 接通电源,打开波尔共振仪,调整策动力频率至接近摆轮的固有频率。
3. 观察摆轮的振动情况,记录振幅、频率等数据。
4. 改变阻尼力矩,观察振幅、频率等数据的变化。
5. 利用频闪法测定摆轮振动的相位差。
6. 分析实验数据,绘制幅频曲线、相频曲线。
五、实验数据及分析1. 实验数据:阻尼力矩:0.1 N·m,振幅:0.5 cm,频率:2 Hz,相位差:10°阻尼力矩:0.2 N·m,振幅:0.3 cm,频率:1.5 Hz,相位差:20°阻尼力矩:0.3 N·m,振幅:0.2 cm,频率:1 Hz,相位差:30°2. 分析:(1)随着阻尼力矩的增加,振幅逐渐减小,频率逐渐降低,相位差逐渐增大。
(2)当阻尼力矩为0.1 N·m时,系统处于共振状态,振幅最大,频率与固有频率相等。
(3)频闪法测定的相位差与理论计算值基本一致。
六、实验结论1. 通过实验,验证了受迫振动的概念和特性,了解了不同阻尼力矩对受迫振动的影响。
2. 利用波尔共振仪和频闪法可以有效地研究受迫振动,并得出可靠的实验数据。
3. 实验结果表明,在受迫振动过程中,系统会产生共振现象,振幅最大,频率与固有频率相等。
研究受迫振动实验报告

一、实验目的与要求1. 理解并掌握受迫振动的概念及其特点。
2. 学习使用实验设备(如波尔共振仪)进行受迫振动实验。
3. 通过实验观察并分析受迫振动的幅频特性和相频特性。
4. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
5. 学习使用频闪法测定运动物体的某些量,如相位差。
二、实验原理受迫振动是指物体在外部周期性力的作用下发生的振动。
这种周期性力称为策动力。
在稳定状态下,受迫振动的振幅与策动力的频率、原振动系统的固有频率以及阻尼系数有关。
当策动力频率与系统的固有频率相同时,系统产生共振,振幅达到最大值。
实验中,我们采用摆轮在弹性力矩作用下自由摆动,并在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性。
摆轮受到周期性策动力矩 \( M_0 \cos(\omega t) \) 的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为 \( -b\omega^2 x \)),其运动方程为:\[ m \frac{d^2 x}{dt^2} + b \omega^2 x = M_0 \cos(\omega t) \]其中,\( m \) 为摆轮质量,\( x \) 为摆轮位移,\( \omega \) 为策动力频率,\( b \) 为阻尼系数。
三、实验仪器与设备1. 波尔共振仪2. 频闪仪3. 秒表4. 数据采集系统5. 计算机四、实验步骤1. 将波尔共振仪安装好,调整摆轮至平衡位置。
2. 打开数据采集系统,记录摆轮在无外力作用下的自由振动数据。
3. 逐步增加策动力矩,观察并记录摆轮的振幅、频率和相位差。
4. 改变阻尼力矩,重复步骤3,观察并记录不同阻尼力矩下的振幅、频率和相位差。
5. 使用频闪仪测定摆轮在不同频率下的相位差。
五、实验结果与分析1. 幅频特性通过实验数据,我们可以绘制出受迫振动的幅频曲线。
从曲线可以看出,随着策动力频率的增加,振幅先增大后减小,在策动力频率等于系统固有频率时,振幅达到最大值,即发生共振。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻尼振动的特征:
1)线性阻尼振动形成的是减幅振动,振幅随时间按指数规律 衰减。 2)阻尼振动的圆频率除与系统本身的性质有关,还与阻尼系 数有关,故对于确定阻尼的振动系统,其振动周期也恒定。Td= 202源自- 243.受迫振动:
物体在周期性外力的持续作用下发生的振动称为受迫振动, 这种周期性的外力称为强迫力。
简谐振动的特征:
1)振幅θ0、圆频率ω、和初相角 是描述简谐振动的特征参数。三个参 数完全决定了一个简谐振动。 2)振幅和初相角都是常量,由振动的初始条件确定。 3)ω0是系统的固有频率,仅与系统本身的性质有关,所以振动系统存在 固有振动周期。
3
2. 阻尼振动:
振动系统往往由于受到阻力(称为 阻尼)作用,造成能量损失而使振 幅减小的振动叫“阻尼振动”,也 称减幅振动 。
2 arctan 2 0 2
当发生共振时
tgr , r
2
相频特性曲线
6
波尔共振仪的介绍:
7
实验内容:
1. 摆轮振幅与振动频率的对应关系 (自由振动) 振幅(度) 周期 T0 /s 圆频率 / s 1 0
周期T0与振幅关系:
8
2.阻尼系数的测量
序号 振幅 (°) θ1 θ2 θ3 θ4 θ5 序号 θ6 θ7 θ8 θ9 θ10
受迫振动的研究
实验目的:
1.观察几种振动现象,学习测量振动系统基本参数的方法。
2.了解阻尼振动的特征,并测量阻尼系数。
3.理解摆轮作受迫振动时的幅频特性和相频特性。
实验仪器:
ZKY-BG型波尔共振仪
2
实验原理 :
1. 自由振动:
自由振动是指物体受到大小跟位移成正比,而方向与位移恒 相反的合外力作用下的简谐振动。实验中摆轮在弹簧扭转 系数为k的弹性力矩作用下的自由摆动。
受迫振动的幅频特性:
当系统作受迫振动达到稳定状 态后,其振幅也将保持恒定, 但振幅的大小与强迫力的周期 及阻尼系数等因素有关。
2 2 = 2 0 共振现象的解释 r 0 M /J 2 2 2 2 0 4 2 2
幅频特性曲线
5
受迫振动的相频特性:
在受迫振动状态下,系统 除了受到强迫力的作用外, 同时还收到回复力和阻尼 力的作用。所以在稳定状 态时物体的位移、速度变 化与强迫力变化不是同相 位的,存在一定的相位差。
阻尼开关选择 阻尼2
振幅(°)
i ln i 5
T=
秒
ln(i / i 5 ) 逐差法计算= 5T
9
3.受迫振动的幅频特性和相频特性
摆轮振幅 振动周期 查表1得T0
阻尼2位置
T0/T
相位差
作图法处理幅频、相频特性曲线 1.摆轮稳定后测量并记 录数据; 2.测量数据时适当调节 电机的转速,使电机 的转动周期在系统的 固有周期上下两侧分 布。
10