圆柱的体积教学反思

圆柱的体积教学反思
圆柱的体积教学反思

六年级数学“圆柱的体积”教学反思今天上了圆柱的体积这一课,通过实践操作、小组合作、分析、讨论、汇报,学生对公式的推导过程掌握的还不错。但在教学这节课以前我就认为,人教版教材对这节知识的教学内容限制了学生思维的发展。

教材上采用“V=SH”,圆柱、长方体都直立摆放。也就是把圆柱转化成长方体,长方体的底面积等于圆柱的底面积S,高就是圆柱的高H,因为长方体的体积等于底面积乘高,所以圆柱的体积V=SH。

而实际操作过程中,并不一定是直立摆放的,如果把侧面的那一面当成底面摆放,这时长方体的长等于圆柱的高H,宽等于圆柱底面周长的一半∏R,高等于圆柱的半径R,因为长方体的体积等于长乘宽乘高。所以圆柱的体积V=∏R×R×H,也就是V=∏R2H。(把切面当成底面来摆放也同样可以推出公式)。

事实学生在学习过程中也会有这样的思考,只是教材把学生的求异思维拉了回来。

不知这是不是我个人的片面考虑?

小学六年级数学教学反思

我们在从事小学数学教学时,不知道有没有发现一个问题。一道题做错了,这节课讲了,下节课做接着错,而且错误率仍然很高。难道知识点一定要在不停的反复中才能掌握吗?如果那样,那就意味着学生要做无数的题,老师的负担也要加重。有没有更好的方法让学生很快地将错误的知识,错误的思维方式纠正过来呢?

今年在教六年级数学时,这个问题一直困扰着我。经过一段时间的教学,我发现数学教学学生也需要反思。六年级的学生已经有了一定的思维方式,但由于基础差,他们还不能完全表达自己的看法。怎样才能让他们想表达自己的看法,而又乐于表达自己的看法呢?我先和学生融为一个集体,让他们喜欢上我,这样就建立了感情基础,在我的鼓励下,他们就愿意把自己的想法说出来。我开始尝试讲解错题时把想法和思路告诉学生,然后让学生到黑板前指着板书把自己的想法说给大家听,交流一下。如果哪里说的不对,请同学们指出来。学生们一下子来了精神,比我在那里讲课听的还认真。一些错误的想法、思维暴露了出来,但也同时被纠正了过来。刚开始只是少数几个数学学习成绩不错的学生到讲台讲。有收效,但不是很大。怎样让更多的学生有发言的机会呢?一份试卷讲完后不再让学生直接改,而是让他们同桌互讲自己做错的题,交流想法、思路。对于比较难的题,再让学生到黑板前讲。让学生说出自己为什么错的,把正确的想法,思路说给同伴听,那么就让学生纠正了错误的思维方式,正确的掌握了知识。讲完之后,学生在改错题时,要把计算的过程或是思路写在错题旁边,判断题如果应打“x”,注明错在了哪里。学生在听别人说,自己说的过程中,知识得到了进一步巩固、识记,而且思路也越来越清晰,解题的方法也越来越多,错误的思维方式被纠正过来了,错误率自然也就降低了,而且一道错题再也不用几遍、十几遍的去巩固了。

错题,不能只改正错误的解法,要让学生在错题反思中,纠正自己错误的思维方式,才不会屡犯同样的错误。

《圆柱的表面积》教学反思

本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。

1、把握重点,突破难点,合理利用教材

对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

2、直观演示和实际操作相结合

通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。

3、讲解与练习相结合

本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

《扇形统计图》的教学反思

我上了一节“扇形统计图”,课后有如下反思:

成功之举

1、激发学生思维,给学生更多的思考空间

课上我是通过提问发散性问题来激活学生思维。如:“从这幅图中你能想到什么”学生回答五花八门,多是肤浅的问题,但参与面很广。接着第二次提问:“从这幅图中你还能想到什么”学生的回答转向一些具体问题。如:“我们一般用圆表示--------。用扇形表示---------,扇形的大小表示——”等等。

2、促成情感目标的落实

如提问:“作为发展中国家的公民你应该怎样去做。”从而激发学生的民族自尊心。

败笔之处

1、有些题目讲的太快部分学生没有跟上,特别是第七张幻灯片中计算扇形B表示的人数和C表示公顷数时讲的不透彻。

2、没有掌握好时间,整节课前松后紧,以至于有点拖堂。

六年级上学期数学教学反思

半个学期瞬间过去了,虽然平时都是耐心地备好每一次的课,认真地上好每一堂课。不过,还存在着一些问题,例如:

1、部分学生不善于动脑思考,不会举一反三,被动接受知识的现象较普遍,因此应用知识解决问题的能力差或方法少。表现为:考试时对老师讲过的题目会做,题目稍加灵活变化就无从下手;较复杂的应用题不善于综合性的运用知识解答或借助画线段图帮助理解、分析题意来解答;几何知识很难把图形看得透,特别是对“割补法”的掌握还不够扎实。

2、尽管在后进生身上付出了很多的时间和精力,但从学习成绩上看,只是略有进步或进步的幅度小,和我的预想有些差距。

3、部分学生良好的学习习惯没有培养起来。

(1)少部分学生良好的计算习惯还没有养成。表现为:简便计算的过程还不能写的完整;计算结果没有按要求化成最简分数;漏数等。

(2)少部分学生良好的审题习惯还没有养成。这也是让我们非常头疼的问题,有些简单的问题往往由于审题不细导致出错,特别是“除”和“除以”的不同,同一题里的单位不同导致的错误。让我感到很可惜。

(3)少部分学生良好的检查习惯还没有养成。他们做完了题不知道检查,不会检查,明明错误在眼皮下却看不出来;有的学生是懒的检查。

4、我在教学中还有不够细致全面的地方。例如,在这学期考试中反映出部分学生对百分数的应用的问题掌握不好,说明我忽视了这个知识点的巩固。

针对出现的问题,我认真的进行了思考:

1、部分学生不善于动脑思考,被动接受知识的现象,原因除了个别学生缺乏自主学习的意识、思想懒惰以外,和我的教学思想、教学方法有一定关系。我担心学生不理解的知识,往往要多讲几遍,这样留给学生思考、质疑的时间就少了,时间一长,学生自主学习的愿望就不那么强烈了。

2、后进生之所以很难取得大的进步,主要是他们遗忘知识特别快,可能你早上刚教过的内容到下午他就忘记了。我觉得我班的后进生学习态度都比较认真,并不是调皮不干,他们也努力了,在家也完成作业,但是完成的质量较差,虽然今天的学会了,可是过几天他又遗忘了,到最后综合练习的时候,堆积的知识太多了,补不过来。

3、优秀的学习习惯没有培养起来不是一两天的事,有些是家庭教育造成的,有些是学校教育造成的。但是一些审题的方法、计算的技巧等教师还是应该随时强调的,并要强调扎实。

通过反思和查阅相关的书籍,我认为除了继续沿用以前好的做法外,还应积极地采取一定的措施加以改善:

1、对于学习落后的学生,一定要让他坚持达到老师提出的目的,独立地解答习题。有时候,可以花两三节课的时间让他思考,教师细心地指导他的思路,而习题被他解答出来的那个幸福时刻到来的时候,学习就成为带来幸福的一个活动了,那么他求知的愿望将永远伴随着他的学习。教育这样的儿童,应当比教育优秀孩子百倍地细致、耐心和富于同情心。

2、学习先进的教育思想和教学理念,在组织教学中,坚持以学生为中心,认真探索指导学习的方法,多给学生创造一些自主学习和勇于创新的机会,激发

学习主体的自觉性,让学生自己发现问题、探讨问题、解决问题,主动活泼的完成学习任务,并掌握一些基本的学习方法。以此改变以往老师讲得多,学生被动接受知识的现象。

3、在改善学生学习习惯方面,需要有坚持不懈、持之以恒的精神和行之有效的方法。如:培养学生计算能力的同时结合知识点进行方法和技能的教学(如培养学生解题时必有验算的习惯);培养学生自我检验和自我评价能力,指导学生对自己作业中的错题分析并登记错因,认真改错,提高正确率;每天的作业计时(做的时间、检查的时间),并取得家长的有力配合(签字)等等。

4、备课和教研再扎实深入、细致全面些,发挥集体的优势,尽最大努力作好教学工作。

用圆柱的体积解决问题教案及反思

《用圆柱的体积解决问题》教学设计 八里营中心小学焦利杰 学习目标: 经历探究不规则物体体积的转化、测量和计算过程,在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。 学习重点:应用圆柱的体积计算公式解决实际问题。 学习难点:理解瓶子的容积是由装水的圆柱的体积和倒置后无水的圆柱的体积两部分组成的。 学习过程 一.创设情境,提出问题。 每个小组桌子上有一个没有装满水的矿泉水瓶。原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗 1:瓶子还有多少水(剩下多少水) 2:喝了多少水(也就是瓶子的空气部分。) 3:这个瓶子一共能装多少水(也就是这个瓶子的容积是多少) 二、小组交流、探究新知 1.独立思考、尝试解决问题 怎么求这个矿泉水瓶的容积根据自己的生活学习经验来想办法解决, 2.小组合作,探讨瓶子的容积计算方法 小组合作活动一:要求:小组内拿出课前准备的矿泉水,先请一位同学倒出一部分,再把你的想法在小组内交流交流。 交流:哪位同学上来把你们的想法给大家交流分享一下(生上台演示讲解。) 3.总结板书:水的体积+空气部分体积=瓶子的容积。 三、同样的方法完成课本例题及做一做。 1.完成例7。指名学生上台板演, 2.数学书P27做一做。 四、总结板书 水的体积+空气部分体积=瓶子的容积 形状变了体积不变

五、作业:课本29页练习第10题、13题。 《用圆柱的体积解决问题》教学反思 八里营中心小学焦利杰 本节课是利用所学圆柱的知识解决实际问题。虽然备课时尽量考虑到可能出现的所有情况,但是实际上课的过程中还是出现了没有预料到的情况。 首先,小组合作的时候分组比较大:即有的学生真的参与进去了,有的学生却无事可干,因为计算量比较大,得到数据的同学忙着计算,没有接触到瓶子的同学没有计算的数据,也反映出我们平时小组合作时互相配合的良好习惯还没养成。如果我把小组设定为4人一组或2人一组的话,学生实际的参与程度会更高。 其次,本课的教学过程中瓶子的容积计算方法的推导过程中,渗透了简便计算的方法,如果在理解底面积x(水的高+空气部分的高)这一步时,如果配上教具展示(把教具中圆柱形的水和倒置后圆柱形的空气部分剪下来,再拼接在一起,形成一个大圆柱。)学生更能理解空气部分体积+水的体积=底面积x(水的高+空气部分的高)表示的具体意义了。 最后,我感觉这节课注重了容积计算方法的推导过程,练习时间较少,还有更多不规则体积的计算,期待在以后的练习中,学生都能找到解决问题的方法!

圆柱的体积教案

圆柱的体积教案 教学内容:圆柱体积公式的推导 教学目的: 1. 通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积 公式,使学生理解圆柱的体积公式的推导过程。 2.能够运用公式正确地计算圆柱的体积。 教具准备:圆柱的体积公式演示课件 教学过程: 一、复习回顾 1、圆柱的侧面积怎么求? (圆柱的侧面积=底面周长×高。) 2、长方体的体积怎样计算? 学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。 板书:长方体的体积=底面积×高 3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高? 二、回忆导入 师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的? 让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。 师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积? 学生相互讨论,思考应怎样进行转化。说出自己想到的方法。 师:这节课我们就让我们一起来研究圆柱的体积。 板书课题:圆校的体积 三、新课讲授 师:看到这个标题你想知道的什么? 学生回答后老师出示教学目标及重难点 1、圆柱体积计算公式的推导。 师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。)“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”

学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。 然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形? 学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”生:长方形。 师:大家再看看整个圆柱,它又被拼成了什么形状? (有点接近长方体:) 师:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。 师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。 师:“长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。 师:请大家观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 板书:圆柱的体积=底面积×高 师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=SH(板书) 2、公式应用 出示例4。 (1)教师指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? 通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。 (2)出示下面几种解答方案,让学生判断哪个是正确的? ①V=SH=50×2.1=105

圆柱体体积的计算

圆柱体体积的计算》教学设计 库伦旗三道洼中心校——杜秀文 概述 《圆柱体的体积计算》是小学数学人教版第十二册中第二单元中的一课时内容。本节课,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题,本节课的学习为学习圆锥体的体积计算奠定基础。 教学目标分析 一、知识技能: 1.理解圆柱体体积公式的推导过程,掌握计算公式. 2.会运用公式计算圆柱的体积,解决生活中的实际问题。 二、过程与方法: 通过学生的小组合作学习,充分利用资源、学具等去探究推导圆柱体体积的计算公式。 三、情感态度价值观: 1、充分利用资源、学具,,通过小组合作学习以及采用与课情、班情相匹配的激励机制,激励和培养学生的学习兴趣,求知欲望。 2、培养学生动手操作、实验、观察等良好的学习态度和良好的科学素养。 学习者特征分析 1、这是乡村六年级学生,是布局调整时,从各村小、初小、教学点汇集到一起后,进行分班,从而产生的班集体。 2、乡村学生的知识面窄,动手能力差,积累也少。 3、学生在五年级时学习过了长方体的体积计算,得出:“底面积×高=长方体体积”的结论,学生知道了只要知道底面积和高就可以求体积。 4、学生的学具准备充分,便于动手操作。 5、学生小组合作、探究、交流、观察、汇报的习惯已经养成。 6、学生的实际情况是师经过长期的作业评价、课堂情况反馈以及学生表现出来的学习习惯等来分析学生的总体特征。 教学策略选择与设计 本节课,以“三维”目标为依据,以学生的原有学习状况为基础,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题。基于本节课的具体情况,我采用“支架式”、“先行组织者策略”、“演示法”、“示范-模仿法”、“操练-反馈法”等教学策略。教学资源与工具设计 1、教学资源:多媒体课件(自制课件)、圆柱体教具。 2、学具:圆柱体模型教学重点圆柱体体积的计算. 教学难点理解圆柱体体积公式的推导过程. 教学过程 一、复习准备 (一)教师提问(课件出示)

七年级数学听课记录

初中数学7年级听课记录【1】 听课课题《圆柱的体积》听课过程 一、导入新课 圆柱体转化成近似长方体。 (媒体操作:点击后出现:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。) 师:通过观察,你有什么发现? 生:这两个物体的体积是一样的。 师:比较这两个物体,它们还有什么是相同的? 生:这两容器的高也是相等的。 [设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。] 师:这个圆柱的体积我们怎样来计算呢?这就是我们今天这节课学习的内容。 (揭示课题:圆柱的体积。) 二、新课学习

1.师:请同学们一起来思考,怎样用我们已有的知识来计算圆柱的体积? (学生可能回答:长方体的体积可以通过底面积×高得到,我想圆柱的体积是不是也可以通过底面积×高得到呢?) 师:对啊!我们是不是也把圆柱体转化成长方体来推导圆柱的体积? (媒体操作:点击后出现:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。) 师:如果我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就…… (学生回答:就越接近于长方体了。) (媒体操作:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。) 师:通过观察,你知道了什么? (学生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。) (媒体操作:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×高,V=Sh。)

2.教学例题。 (1)让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积) 师:为什么杯子的数据要从里面测量? (2)学生尝试完成例题。 ①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) ②杯子的容积:50.24×10=502.4(cm3)=502.4(ml) 答:502.4大于498,所以这个杯子能装下这袋奶。 三、结论总结 同学们,这节课你学得愉快吗?谁能说说你的收获是什么? 四、课堂练习 五、作业布置

人教版数学六年级下册《圆柱的体积解决问题例7》教学设计

《圆柱的体积例7》基于标准的教学设计 教材来源:义务教育教科书《数学》╱人民教育出版社2014年版 内容来源:小学六年级《数学(下册)》第三单元 课时:第一课时 授课对象:六年级学生 设计者:张淑桢╱登封市书院河路小学 目标确定的依据 1.课程标准相关要求 (1)让学生结合实物探索圆柱的特征,认识圆柱的底面、侧面和高。 (2)通过快速旋转长方形硬纸的操作活动,发展学生的空间观念。 2.教材分析 例7呈现了一个装了小半瓶水的矿泉水瓶,下部是圆柱形,而上半部是一个不规则立体图形。教材给出了瓶子平置时的水的高度和倒置时无水部分的高度,要求这个瓶子的容积。这样的问题不是学生常见的常规问题,看似无处下手,也促使学生发现和提出问题。 教材引导学生通过观察,发现水瓶倒置前后,水的体积不变,无水部分(即空气)的体 积也不变。而瓶子的容积就是水的体积与空气的体积之和。倒置前,水的形状是一个圆柱, 而倒置后,空气的形状是一个圆柱,这两个圆柱之和就是瓶子的容积。通过把不规则的体积转化成规则形状,把未知知识转化为已学知识,发现转化过程中的“变”与“不变”,提高学生分析问题和解决问题的能力。 3.学情分析 学生通过探索已经得出了圆柱的体积计算公式,并且会灵活地运用计算公式求圆柱的体积,同时,学生还会计算杯子等相关圆柱的容积,已经具备了运用所学知识解决实际问题的 能力。本节课只要引导到位,同学们利用自己熟悉的“转化”思想,把不规则的图形转化成

规则图形来计算,本节课的内容不仅能顺利解决,学生对转化的数学策略有更为深刻和更为 一般性的理解和掌握。 学习目标 (一)知识与技能 会灵活运用圆柱体积计算公式,求出瓶子的容积。 (二)过程与方法 1.学生通过观察与思考,能把“不规则的图形转化成规则图形”来计算。 2.通过学生自主研究,运用转化策略,把未知知识转化为已学知识, (三)情感态度和价值观 进一步培养学生的问题意识,以及对数学方法的重视总结,会提炼数学思想,提到分析问题和解决问题的能力。 教学重难点 教学重点:利用圆柱的体积计算公式,求出瓶子的容积。 教学难点:利用转化思想,把不规则形状的体积转化为规则形状,发现转化过程中的“变” 与“不变” 评价任务 1.会运用圆柱的体积计算公式。 2.会利用转化思想。 教学过程 教学环 节 教学活动学生活动设计意图活动一(3分钟) 1.要计算圆柱的体积,需要知道哪些条件? 2.计算下面圆柱形水桶的体积。准确分类,以及分类 的方法 复习旧知,尝试引导。

六年级数学 圆柱的体积教案

圆柱第三课时圆柱的体积 教学内容: 人教新课标六年级数学下册第二单元圆柱的体积。 教学目标: 1.理解圆柱体体积公式的推导过程,掌握计算公式。 2.会运用公式计算圆柱的体积。 教学重点: 圆柱体体积的计算。 教学难点: 理解圆柱体体积公式的推导过程。 教学难点: 幻灯片。 教学过程: 一复习准备 (一)教师提问 1.什么叫体积?怎样求长方体的体积? 2.圆的面积公式是什么? 3.圆的面积公式是怎样推导的? (二)谈话导入 同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积) 二探究新知 (一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”) 1.教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。 2.学生利用学具操作。 3.启发学生思考、讨论: (1)圆柱体切开后可以拼成一个什么形体?(近似的长方体) (2)通过刚才的实验你发现了什么? ①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。 ②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。 ③近似长方体的高就是圆柱的高,没有变化。 4.学生根据圆的面积公式推导过程,进行猜想。 (1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样? (2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样? (3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样? 5.启发学生说出通过以上的观察,发现了什么? (1)平均分的份数越多,拼起来的形体越近似于长方体。 (2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。 6.推导圆柱的体积公式 (1)学生分组讨论:圆柱体的体积怎样计算? (2)学生汇报讨论结果,并说明理由。 因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积。(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高) (3)用字母表示圆柱的体积公式。(板书:V=Sh)

圆锥的认识与体积 听课记录

圆锥的认识和体积听课记录 撰写者:莫海燕 学校大圩中心 校 年级六班级 3 节数第 二 节 时间2月22日 学 科 数学课题圆锥的认识与体积授课老师韦明会教学过程分析意见 一、课程检查: 预习和前置作业情况。 此时6(3)班的学生的座位是小组4人围坐的方式。 提醒:小组长在课前要准备好组员的前置作业,摆放在书桌上。预备讨论,奠定整堂课的基础。 二、“书山有路勤为径,学海无涯苦作舟。”检查结束,用诗句提醒学生回到课堂正常的上课座位形式。 1,上次课圆柱的体积公式复习:V圆柱=SH=πR2h。圆柱体积公式的回顾,为V圆锥作铺垫。 三、新授:圆锥的认识与体积。 1,小组讨论:圆锥的特征和体积。向组员说明清楚。讨论时,教师检查讨论交流的情况,板书: 1.圆锥的认识。 四、小组展示汇报。 1,“要想学会游泳,你必须下水。要想学好数学,你必须做练习。”提醒学生讨论结束。 2,小组展示: 组代表展示,下面的同学补充。 3,教师重复提问:圆锥的特征有哪些?它与圆柱有什么不同?教师拿出圆锥模型说明。 4,小组讨论:圆锥的体积。(每个小组都发了一个水槽,一个单底圆柱,一个开口圆锥。) 讨论时有的小组进行了倒水实验:三个圆锥的水倒入与它等底等高的圆柱刚好倒满。 有的小组是先讨论,后实验。有的小组先实验后讨论。 4,小组展示: 实验(先说明了实验目的和实验步骤)——得出结论(圆锥的体积=与它等地等高的圆柱的1/3) 其他同学补充完整:A,V圆锥=1/3Sh。B,圆锥的体积是怎么来的(其他同学帮助他们,说明圆锥的体积是怎么来的。) 5,板书: 圆锥的体积 圆柱等底等高补充环节进行得比较好,同学们积极大胆地补充。说明倾听得比较认识,知识点也掌握得比较好。 让进行了实验的小组上台展示,直观、形象地说出了圆锥的体积是怎么得到的。 有学生提出疑问,别的同学认真的说明、补充。 教师引导要等地等高的条件 五、当堂练习。

数学人教版六年级下册圆柱体积解决问题

《用圆柱体积解决问题》教学设计 教学内容:人教版六年级下册第三单元例7 教学目标: 1、结合具体情境,探索不完整的圆柱体容器的容积的计算方法; 2、通过观察思考、分析,结合合情推理能力和初步的演绎推理能力,体验数学思想和数学研究的方法; 3、体验数学问题的探究性和挑战性,在探索过程中获得成功的喜悦。 教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。 教学难点:通过实践操作、合作交流,体会转化的数学思想。 教学方法:引导探究合作交流 教学准备:多媒体课件每组一个矿泉水瓶 教学过程 一、问题引入,揭示课题 1.出示一个空瓶子。 提问:关于这个瓶子你能提出什么数学问题?瓶子的容积能直接去解决吗? 2.揭题:这节课,我们要根据我们学过的知识来解决生活中的实际问题。 二、探索实践,体验转化过程 1.创设情境,提出问题。

如果现在没有规则形体的容器我们如何来求瓶子的溶剂?如果把满瓶的水倒出一部分,你觉得可以求吗? 2.小组合作探究解决方法。 课件给出探究提示。 3.小组代表上台汇报探究结果,演示转化过程。 4.教师演示并小结。 倒置前水的体积+倒置后空气的体积=瓶子容积。 三、学以致用,解决实际问题。 1.出示教材例7 2.再次提出问题:如果我们要求喝掉了多少水,怎么去解决? 3.学生根据转化思想给出方案并完成做一做。 四、全课总结,提升认识。 通过这节课的学习你有什么收获?刚才两个问题我们为什么都要把瓶子倒转过来呢?转化的思想在我们以前那些知识的学习中有过应用?你有什么收获? 教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。在解决问题时,主要要弄清楚转化前后两部分之间的关系。 五、作业布置 教材29页练习五第7、8题 六、板书设计

六年级下册《圆柱的体积》教学设计

六年级下册《圆柱的体积》教学设计 晋州市小樵镇实验小学杨巧辉教学内容:人教版小学数学六年级下册p19-20 教学目标: 1、知识技能 运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2、过程方法 让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。 3、情感态度价值观 通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。 教学重点: 圆柱体体积的计算公式的推导过程及其应用。 教学难点: 理解圆柱体体积公式的推导过程。 教学准备:圆柱体积公式推导演示学具、多媒体课件。 教学过程: 一、复习导入 同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体

的体积和正方体的体积的通用公式是什么呢?用字母怎样表示? 二、图柱转化,自主探究,验证猜想。 (一)猜想。 1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。) [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。] 2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。 (二)操作验证。 1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。 在操作时,学生分组边操作边讨论以下问题: ①拼成的近似长方体的体积与原来的圆柱体积有什么关系? ②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系? .拼成的近似长方体的高与原来的圆柱的高有什么关系? 2、小组代表汇报 (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) 3、电脑演示操作 (1)电脑演示圆柱体转化成长方体的过程:

小学数学听课笔记:圆柱的体积.doc

小学数学听课笔记:圆柱的体积 小学数学听课笔记:圆柱的体积 (一)、创设情境,引入新课 1、复习:圆柱的体积公式是什么? 2、从日常生活中引出问题,激发学生求知欲望。 商店的冰箱里有两种香芋冰淇淋,圆柱形冰淇淋每支3元,圆锥形的 冰淇淋每支0.8元,已知这两种冰淇淋的底面积相等,高也相等,你认为 买哪一种冰淇淋比较合算?。 3.导入:那么,到底谁的意见正确呢?通过今天这节课学习圆锥的 体积计算之后,相信这个问题就很容易解答了。这节课我们就来研究圆锥的体积。(板书:圆锥的体积) (二)、动手测量,大胆猜想 1.我们已经认识了圆柱和圆锥的各部分的名称,下面请同学们以小组为单位,动手测量一下你们手中的圆柱和圆锥,看看能发现什么?(按四人小组动手测量)教师巡视学生测量方法是否正确,不对的给予指导。 2.量后交流发现,得出结论:每个组的圆柱和圆锥都是等底等高的。

3.大胆猜想:估计一下,这个圆锥的体积与这个圆柱的体积有怎样的关系?可能是这个圆柱体积的几分之几?(给学生充分猜想的时间和机会) (三)、实验操作,推导圆锥体积计算公式 1.谈话:下面请大家利用你们手中的圆柱体和圆锥体来做实验,验证一下 你们的猜想对不对。(你们打算怎样做实验,先在小组内商量好办法) 2.学生分组做实验,师巡回指导。 3.交流汇报。 (1)你们小组是怎样做实验的? (2)通过做实验,你发现了什么规律?圆锥体积与等底等高的圆柱体积 之间有怎样的关系? 师相机板书:圆锥的体积是与它等底等高的圆柱体积的 4.提问:是不是所有的圆柱和圆锥都有这样的关系? 教师出示不等底等高的圆锥、圆柱,让两学生上台操作实验。 提问:通过这个实验,你得出什么结论?(只有等底等高的圆锥才是圆柱体积的 ) 5.启发引导推导出圆锥体积公式并用字母表示。 提问:那么我们怎样计算圆锥的体积? 板书:圆锥的体积=等底等高的圆柱的体积×

小学数学六年级下册圆柱的体积专项练习题

习 题 汇 编姓名: 仅供参考,内容可修改

第5课时练习课 1.有一块正方体的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱体(如下图)。这个圆柱体的体积是多少? 2.把一根长1.5米的圆柱形钢材截成三段后,如图,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少? 3.一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少立方厘米?(保留整数) 4.一个圆柱体水桶,从里面量,底面直径是32厘米,高是50厘米。这个水桶大约能盛水多少千克?(1立方分米的水重1千克) 5.一个圆柱量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

参考答案 1.分析:由圆柱体的体积公式可知:圆柱体的体积大小的决定因素是底面半径和高。因此,要想使加工成的圆柱体的体积最大,则必须满足圆柱底面的直径等于正方体的棱长,高也等于正方体的棱长。 解:3.14×(4÷2)×(4÷2)×4=50.24(立方分米) 答:这个圆柱体的体积是50.24立方分米。

2.分析:从图中观察,可将这段钢材截成三段,表面积增加四个与圆柱底面完全相等的圆面积,因此就可以求出圆柱形钢材的底面积,长1.5米就是圆柱的高,于是问题得到解决。 解:9.6÷4×15←注意统一单位 =2.4×15 =36(立方分米) 答:这根钢材原来体积是36立方分米。 3.分析:“它的侧面展开后恰好是正方形,”通过这个条件可以想象出圆柱的高就是正方形的边长,也是圆柱的底面周长,这样转化后,问题也就得到解决。解:半径:37.68÷3.14÷2=6(厘米) 体积:3.14×6×6×37.68=4259.3472≈4259(立方厘米) 答:这个圆柱体的体积约是4259立方厘米。 4.分析:圆柱形水桶的底面积是: (平方厘米) 圆柱形水桶的容积是 803.84×50=40192(立方厘米), 折合成立方分米数是 40192÷1000=40.192(立方分米), 大约能盛水的重量是 1×40.192≈40(千克) 答:这个水桶大约能盛水40千克。 5.分析:认真读题后,找出题中关键句或词进行分析思考,这是解决问题的重要方法,“把一块铁块从这个量桶里取出后,水面下降3厘米”通过这个变化可以想象出,原来铁块的体积就是水面下降3厘米这个高度的体积,这是铁块原来占的空间,于是问题得到解决。 解:5×5×3.14×3=235.5(立方厘米) 答:这块铁块的体积是235.5立方厘米。

圆柱的体积教学设计

《圆柱的体积》教学设计 教学目标: 1、知识技能 结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。 3、情感态度价值观 通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。 教学重点:掌握和运用圆柱体积计算公式。 教学难点:圆柱体积计算公式的推导过程 设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到最大化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点: 1、合作探究学习为主要的学习方式。

2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。 3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。[教学准备] 多媒体课件、圆柱体体积演示器 [教学过程] 一、创设情境设疑导入 1、复习铺垫。 (1)求各圆的面积: A、半径3厘米 B、直径为4厘米 C、周长为62.8厘米 (2)什么叫体积?长方体的体积怎样计算? 2、导入新课。 1、出示圆柱体实物图(教学过程图片2),引导学生观察它们体积的大小。 激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积? 2、指名说说自己想法。教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积) 二、自主探究学习新知 (一)探究推导圆柱的体积计算公式 1 、教师演示(动画演示“圆柱体的体积”):

《圆柱的体积》听课记录

《圆柱的体积》听课记录 ◆您现在正在阅读的《圆柱的体积》听课记录文章内容由收集!本站将为您提供更多的精品教学资源!《圆柱的体积》听课记录(一)、创设情境,引入新课 1、复习:圆柱的体积公式是什么? 2、从日常生活中引出问题,激发学生求知欲望。 商店的冰箱里有两种香芋冰淇淋,圆柱形冰淇淋每支3元,圆锥形的 冰淇淋每支0.8元,已知这两种冰淇淋的底面积相等,高也相等,你认为 买哪一种冰淇淋比较合算?。 3.导入:那么,到底谁的意见正确呢?通过今天这节课学习圆锥的 体积计算之后,相信这个问题就很容易解答了。这节课我们就来研究圆锥的体积。(板书:圆锥的体积) (二)、动手测量,大胆猜想 1.我们已经认识了圆柱和圆锥的各部分的名称,下面请同学们以小组为单位,动手测量一下你们手中的圆柱和圆锥,看看能发现什么?(按四人小组动手测量)教师巡视学生测量方法是否正确,不对的给予指导。 2.量后交流发现,得出结论:每个组的圆柱和圆锥都是等底等高的。

3.大胆猜想:估计一下,这个圆锥的体积与这个圆柱的体积有怎样的关系?可能是这个圆柱体积的几分之几?(给学生充分猜想的时间和机会) (三)、实验操作,推导圆锥体积计算公式 1.谈话:下面请大家利用你们手中的圆柱体和圆锥体来做实验,验证一下 你们的猜想对不对。(你们打算怎样做实验,先在小组内商量好办法) 2.学生分组做实验,师巡回指导。 3.交流汇报。 (1)你们小组是怎样做实验的? (2)通过做实验,你发现了什么规律?圆锥体积与等底等高的圆柱体积 之间有怎样的关系? 师相机板书:圆锥的体积是与它等底等高的圆柱体积的 4.提问:是不是所有的圆柱和圆锥都有这样的关系? 教师出示不等底等高的圆锥、圆柱,让两学生上台操作实验。 提问:通过这个实验,你得出什么结论?(只有等底等高的圆锥才是圆柱 体积的) 5.启发引导推导出圆锥体积公式并用字母表示。

(完整版)用圆柱的体积解决问题教案

小学六年级数学教案 课题:用圆柱的体积解决问题 教师:杜克辉

圆柱体积的综合应用 教学内容:教材第27页的例7 教学目标: 1、通过观察比较,掌握不规则物体的体积的计算方法。 2、培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。 3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。 教学重点:通过观察比较,掌握不规则物体的体积的计算方法。 教学难点:利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。 教学过程: 一、问题引入,导入新课。 1、提出问题师:在学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们 还记得是怎样解决的吗? 2、揭示课题:解决问题 3、二、探究新知,引导归纳 1、教学例7 出示例7, (1)读题,理解题意:

条件:瓶子内直径是8厘米,瓶内水高7厘米,瓶子倒置后无水部分的高18厘米的圆柱。问题:这个瓶子的容积是多少? (2)质疑。这个瓶子是圆柱吗?怎样求出它的容积? (3)实物演示。用两个相同的酒瓶,内装同样多的水进行演示。(4)尝试解决。 3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18) =1256(cm3) =1256(ml) 答:这个瓶子的容积是1256ml。 2、引导归纳。 求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。 三、巩固练习 1、完成教材第27页的“做一做”习题。 四、小结 这节课我们学习了什么?有哪些收获?还有什么疑问? 五、作业 课后练习题第10题、11题、12题 板书设计:解决问题 例7 3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18) =1256(cm3)

有关圆柱的体积教学案例分析

有关圆柱的体积教学案例分析 【案例背景】 动态生成作为新课程改革对倡导的以学生发展为本的理念,体现自然而又充满生机的课堂。由于报刊的较多宣传,以及发表的案例,都是“动态生成”式,使得大家对课堂动态生成的现象与成功案例更为关注。而预设成功好像被大家所遗忘,甚至有的老师不敢提及预设成功,唯恐被同行取笑,造成了现实课堂“动态生成”一头热,“预设成功”一头冷。实际上,这是对动态生成的片面认识,动态生成与预设成功两者应该互相联系、互为作用,缺一不可。 【课堂实录】 片段一:预设成功。 [在教学“圆柱的体积”一课时,我先引导学生认识圆柱的体积,紧接着让学生试求圆柱玻璃容器中水的体积。] 师:容器中水的体积是多少,你有办法知道吗? 生1:将“圆柱体的水”倒入长方体的容器中,再分别量出长、宽、高,就可以计算出体积了。 生2:“称”水的`重量,就能推算出体积了。 生3:(插嘴)我也听爸爸说过了,水的比重是1,不用“换算”…… 师:刚才同学们都积极动脑筋想办法,用“倒”、“称”的方法解决了“圆柱体的水”的体积。如果将“圆柱体的水”换成“圆柱体的橡皮泥”,又该怎样计算它的体积呢? 生4:把橡皮泥放在长方体容器中,压成“长方体型的橡皮泥”。 生5:用手捏成长方体,量一量就可以计算体积了。 师:假如这个物体(指着橡皮泥)既不是“水”,又不是“泥”,而是圆柱体木块,你能计算出它的体积吗? 生6:将它浸在装有水的长方体的容器中,问题就能解决了。 生7:刚才想圆柱的体积,都是倒、捏,我想要有一个计算圆柱体体积的统一方法就好了! 生8:我觉得圆柱体和长方体有联系。

…… [圆柱的体积一课,因为结合知识点,根据学生的实际而预设教案,在解决发现生活中的圆柱体水、橡皮泥、木块等体积问题,让学生联想到需要统一的计算方法,使学生感受到数学与现实生活的密切联系。] 片段二:动态生成。 师:我们先来一起回忆一下在学习“圆面积的计算”时,是如何把圆转化成我们已经学过的图形来计算的?(媒体演示,板书:转化) [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。] (有学生举手,跃跃欲试):那么我们也把圆柱转化成我们学过的立体图形! 1、引导学生讨论:“把圆柱转化成什么立体图形比较合适”? “圆柱和转化后的立体图形有什么联系”? 2、想一想: (1)圆柱体通过切割、拼凑后,转化为近似的长方体,什么变了?什么没变? (2)这个近似的长方体的底面积与原来的圆柱体的哪一部分有关系? (3)这个近似的长方体的高与原来圆柱体的哪一部分有关系? (4)长方体体积的计算公式是什么?用字母如何表示? (5)圆柱的体积计算公式是什么?用字母如何表示? 3、汇报交流: (1)请学生说说是怎样把圆柱体转变成近似的长方体的。 (2)演示拼、凑的过程,同时让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。 (3)依次解决上面的问题。 4、回顾圆柱体积的推导过程。(同桌互相说一说) [数学课到此,从预设教案到动态生成,学生在“猜想——验证”的学习进程中,充分释放出学习的积极性和主动性,多角度、多方面地探索新知,变被动学习为主动发展。]

圆柱体的计算公式如下

圆柱体的计算公式如下: 圆柱体侧面积公式:侧面积=底面周长×高S侧=C底×h 圆柱体的表面积公式:表面积=2πr2+底面周长×高S表=S底+C底×h 圆柱体的体积公式:体积=底面积×高V圆柱=S底×h 长方体的体积公式: 长方体的体积=长X宽X高 如果用a、b、h分别表示长方体的长、宽、高则公式为:V长=abh 正方体的表面积公式: 表面积=棱长×棱长×6 S正=a^2×6 正方体的体积公式: 正方体的体积=棱长×棱长×棱长. 如果用a表示正方体的棱长,则正方体的体积公式为v正=a·a·a=a ^3 圆锥体的体积=1/3×底面面积×高 V圆锥=1/3×S底×h边坡坡度1:0.5 应是垂距(1)比水平距(0.5)。深是多少?什么结构的?地下室?还是普通的基础挖土?算不了 可以告诉你个公式

S1是基础底面积S1=(基础底边长+工作面)*(基础底边宽+工作面) S2是基础顶面积S2=(基础底边长+工作面+高*0.5*2)*(基础底边宽+工作面+高*0.5*2) V=(S1+S2+S1 *S2的开平方)*H/3 H是深也就是高相当于直角三角形较短的一条直角边是3,较长的一条直角边是4,那么角度(较大的那个角)是arctan(4/3),用计算器算出为53.13010235度!坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。 (1) 百分比法 表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=(高程差/水平距离)x100% 使用百分比表示时, 即:i=h/l×100% 例如:坡度3% 是指水平距离每100米,垂直方向上升(下降) 3米;1%是指水平距离每100米,垂直方向上升(下降)1米。以次类推! (2) 度数法 用度数来表示坡度,利用反三角函数计算而得,其公式如下: tanα(坡度)=高程差/水平距离 所以α(坡度)=tan-1 (高程差/水平距离) 不同角度的正切及正弦坡度 角度正切正弦

新人教版六年级数学下册《用圆柱的体积解决问题》优秀教学设计

新人教版六下《用圆柱的体积解决问题》教学设计一、教学目标 (一)知识与技能 用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。 (二)过程与方法 经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。 (三)情感态度和价值观 通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。 二、教学重难点 教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。 教学难点:转化前后的沟通。 三、教学准备 每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。 四、教学过程 (一)复习旧知,做好铺垫 1.板书:圆柱的体积。 问:圆柱的体积怎么计算?体积和容积有什么区别? 2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。) (二)探索实践,体验转化过程 1.创设情境,提出问题。 每个小组桌子上有一个没有装满水的矿泉水瓶。

教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书) 预设1:瓶子还有多少水?(剩下多少水?) 预设2:喝了多少水?(也就是瓶子的空气部分。) 预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2.你觉得你能轻松解决什么问题? (1)预设1:瓶子有多少水?(怎么解决?) 学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。 教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度) 小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦! (2)预设2:喝了多少水? 学生:喝掉部分的形状是不规则,没有办法计算。 教师:当物体形状不规则时,我们想求出它的体积可以怎么办? 教师相机引导:能否将空气部分变成一个规则的立体图形呢? 学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?

圆柱体的体积(教案)

课题:圆柱的体积 河头店镇东大寨小学李彩云 教学内容:54—55页圆柱的体积及相关练习 教学目标: 1、使学生理解和掌握圆柱体体积的计算方法,能够运用公式灵活地解决生活中的实际问题。 2、使学生经历圆柱体体积公式的推导过程,通过观察、猜测、实验、验证和小组合作、交流等学习方式,培养学生解决问题的能力及合作意识,渗透转化、等积变形、极限的数学思想和方法。 3、通过学生经历圆柱体体积公式的推导过程,让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。 教学重、难点:圆柱的体积公式推导过程。 教学准备:多媒体课件,圆柱体模型。 教学过程: 一、谈话导入 同学们,在炎热的夏天,你们最喜欢吃什么? 出示冰淇淋的图片,(生观察)

这是两种不同形状的冰淇淋,观察一下,它们分别是什么形状的?根据图片中的信息,你能提出哪些数学问题? 如果桶壁厚度忽略不计,就是求圆柱形冰淇淋的体积,怎样求圆柱的体积呢?这节课我们就来研究这个问题。 板书课题:圆柱的体积 二、合作探究 1、猜测:猜一猜,怎样求圆柱的体积呢? 2、小组交流探讨验证方法 3、汇报验证的方法 谁能说一说你们准备怎样验证呢? 4、验证发现 (1)老师为每个小组准备了一套学具,请同学们按自己想的方法验证一下。 (2)生操作,师巡视参与小组活动。 (3)汇报发现。 5、演示,推导总结公式 通过操作,我们发现,把圆柱等分成若干份,拼成了一个近似的长方体,大家想一想等份的份数越多会怎么样?体积变了没有?长方体的高与圆柱的高怎么样? 师生共同总结:因为长方体的体积=底面积×高,所以圆柱的体积也等于底面积×高。 板书:圆柱的体积=底面积×高

圆柱体的体积设计

课题:圆柱的体积(北师大六年级下册数学第一单元) 教学目标:探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。 教学重点:掌握圆柱的体积公式,并能运用其解决简单实际问题。 教学难点:理解圆柱体积公式的推导过程。 教具准备:希沃课件 教学过程: 【复习导入】打开希沃课件出示圆的面积的转化求法。 (1)怎样求圆的面积?圆的面积公式是什么? (2)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。 【引入新课】 我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢? 教师板书:圆柱的体积(1)。 【新课讲授】 1.教学圆柱体积公式的推导。 (1)希沃课件演示。把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。 (2)学生利用学具操作。 (3)启发学生思考、讨论: ①圆柱切开后可以拼成一个什么立体图形? ②通过刚才的实验你发现了什么? 教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? (4)学生根据圆的面积公式推导过程,进行猜想: (5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。 ②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。 (6)推导圆柱的体积公式。 ①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。 教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。【相关练习】见课件

圆柱的体积实习听课记录表5

***学院教育见习、实习记录表 学校时间2012年 3 月7日第 1 节指导教师学科小学数学班级六(4)班课题圆柱的体积 教学过程一、复习 1.长方体的体积公式是什么? 2.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求? 二、新课 1.圆柱体积计算公式的推导。 (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形) (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。 (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh) 2.教学补充例题 (1)补充例题:一根圆柱柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少? (2)指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位) (4)做第20页的“做一做”。 学生独立做在练习本上,做完后集体订正。 3.引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的? (V=πr^2h)

4.教学例6 (1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么? (应先知道杯子的容积) (2)学生尝试完成例6。 ①杯子的底面积:3.14×(8÷2)^2=3.14×4^2=3.14×16=50.24(c㎡) ②杯子的容积:50.24×10=502.4(cm^3)=502.4(ml) ③ 502.4 ml >498 ml 5.比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.) 三、巩固练习 1.做第21页练习三的第1题. 2.练习三的第2题. 这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。 四、布置作业 练习三第3、4、5题。 评价1.把圆柱转化为长方体来计算体积,有利于学生理解和掌握。 2.转化过程中,由于学生没有学具,他们没有亲身参与操作,缺乏情感空间感觉的体 验。 3.练习太少,学生不能熟练的掌握好圆柱体积的计算,他们掌握的计算还很单一,题 目变了下,学生就不会做了。

相关文档
最新文档