线段的比成比例线段1教案
《成比例线段》教案

(1)在比或a∶b中,a是,b是。
求⑴AB4.1成比例线段4.1.1线段的比,成比例的线段学习目的:1、知道线段的比的概念。
理解成比例线段的概念2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
重点:线段的比与成比例线段的概念。
教学过程:一、自主预习(一)阅读课本,思考并回答下列问题:1、一般地,如果选用量得两条线段AB,CD的长度分别为m,n,那么这两条线段的比就是他们长度的比,即AB∶CD=m:n,或写成ABmCDn,其中,线段AB,CD分别叫做这个线m AB段比的前项和后项.如果把表示成比值k,那么n CDk,或AB k CD。
ab⑵两条线段的要统一。
⑶在同一单位下线段长度的比与选用的无关。
⑷线段的比是一个没有的数。
(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。
2、比例尺为1:50000,意思为:。
(三)成比例线段的概念1、一般地,在四条线段中,如果等于的比,那么这四条线段叫做成比例线段。
(举例说明)如:2、四条线段成比例,记作:其中a,d叫比例外项,b,c叫比例内项。
3、四条线段a,b,c,d成比例,有顺序关系。
即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b,d,c成比例线段,则比例式为:a:b=d:c4、思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A、B两地的实际距离AB=250m,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。
例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。
AC,⑵BC AB四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
九年级数学北师大版上册 第4章《4.1 成比例线段》教学设计 教案

课题 4.1.1 线段的比和成比例线段单元第四单元学科数学年级九学习目标1.知道两条线段的比的概念并且会计算两条线段的比.2.知道成比例线段的定义.3.熟记比例的性质并会应用.重点会求两条线段的比,成比例线段的定义,比例的性质.难点会求两条线段的比,注意线段长度的单位要统一.教学过程教学环节教师活动学生活动设计意图导入新课教师课件出示图片师:观察下面几幅图片,你能发现什么?学生观察图片,回答问题。
相同点:形状相同不同点:大小不相同通过用幻灯片展示生活的的图片,引入本章的学习内容——相似图形,初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.讲授新课你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?学生先自主观察这些图形的特点,然后在小组内交流自己的看法,交通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的。
在这个过程中,两个图形上的相应线段也被“放大”或“缩小”,因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.两条线段的比A B C Dm n两条线段的比就是它们长度的比,即AB:CD=m:n也可以表示为:AB m= CD n如果把mn表示成比值k,那么ABCD=k,或AB=k·CD,两条线段的比实际上就是两个数的比.ABC D EA'B'C'D'E'如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm,AB:A′B′=5 :3,53就是线段AB与A′B′的比,这个比值刻画流后借助多媒体展示自己的成果。
教师利用多媒体出示两条线段的比的定义,强调相关要点,明确两条线段的比实际上就是两个数的比,接着出示下面实例进一步加深学生对两条线段的比的认识.教师引导学生结合图形分析形,可以用相应线段长度的比来描述它们的大小关系,适时引出两条线段的比的概念.通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.通过方格纸上两个四边形对应边了这两个五边形的大小关系.【做一做】如图,设小方格的边长为1,四边形ABCD 与四边形EFGH的顶点都在格点上,那么AB, AD, EF, EH的长度分别是多少?教师出示答案:AB=8 AD=210EF=4 EH=10分别计算AB AD AB EF,,,EF EH AD EH的值,你发现了什么?AB8==2 EF4AD210==2 EH10AB8210==AD5210EF4210==EH510总结归纳四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a c=b d,那么这四条线段a,b,c,d叫作成比例线段,简称比例线段. AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段.【议一议】题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算.学生在教师的引导下总结归纳.的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.课堂练习 1.在1:1 000 000的地图上,A ,B 两地之间的距离是5 cm ,则A ,B 两地之间的实际距离是( B ) A .5 km B .50 km C .500 km D .5 000 km2.已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 的比为( A ) A .3:4 B .2:3 C .3:5 D .1:23.下列四组线段中,是成比例线段的是( C ) A .3 cm ,4 cm ,5 cm ,6 cm B .4 cm ,8 cm ,3 cm ,5 cm C .5 cm ,15 cm ,2 cm ,6 cm D .8 cm ,4 cm ,1 cm ,3 cm4.已知a b =23(a ≠0,b ≠0),下列变形错误的是( B ) A.a 2=b 3B .2a =3b C.b 3=a 2D .3a =2b 5.如图,在□ABCD 中,DE ⊥AB 于点E ,BF ⊥AD ,交AD 的延长线于点F.(1)AB ,BC ,BF ,DE 这四条线段是否成比例?如果不是,请说明理由;如果是,请写出比例式.解:AB ,BC ,BF ,DE 这四条线段成比例. ∵在▱ABCD 中,DE ⊥AB ,BF ⊥AD , ∴S ▱ABCD =AB ·DE =AD ·BF.∵BC =AD ,∴AB ·DE =BC ·BF ,即AB BC =BFDE.学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.(2)若AB=10,DE=2.5,BF=5,求BC的长.解:∵AB·DE=BC·BF,∴10×2.5=5BC,解得BC=5.6.【2020·金昌】生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2 m,则a约为( A )A.1.24 mB.1.38 mC.1.42 mD.1.62 m课堂小结本节课你学到了什么?1.线段的比如果选用同一长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n.2.成比例线段四条线段a,b,c,d,如果a与b的比等于c与d的比,即a c=b d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.基本性质如果a c=b d,那么ad=bc.如果ad=bc (a, b, c, d都不等于0),那么a c=b d 课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.板书课题:4.1.1 线段的比和成比例线段一、线段的比二、成比例线段三、基本性质。
初中数学_成比例线段教学设计学情分析教材分析课后反思

《成比例线段》教学设计一、教学目标:1、知识目标:借助几何直观了解线段的比、比例线段的概念,会辨认比例式中的“项”,会判断已知线段是否成比例。
掌握比例的基本性质及其简单应用。
2、数学思考与问题解决能力:通过现实情境,进一步发展从数学的角度发现问题、提出问题、解决问题的能力,培养学生数学应用意识,体会数学与自然、社会的紧密联系;培养学生的观察、归纳、探索和主动获取知识的能力,体会类比、数形结合的思想。
3、情感、态度与价值观:在合作学习及相互交流中,培养学生团队精神;在解决问题中接受挑战、战胜困难,增强学习数学的兴趣;通过观察、欣赏,进一步体验生活中处处有数学,生活离不开数学,同时感受数学之美。
二、教学重点:线段的比、成比例线段的概念,比例的基本性质及应用。
教学难点:概念的理解及基本性质的应用。
三、教法与学法:教学中应贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学的民主化,促进开放式教学的深入研究。
要充分发挥教师的主导作用和学生的主体作用,注重知识的发生、发展过程。
教师要给学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、主动探索并获取知识,将面向全体、因生施教落到实处,培养学生的创新精神和实践能力。
本节课我选用的是自学辅导教学法和引导发现教学法相结合的手段,充分运用课件的演示、操作、观察、激发学生学习兴趣,引发思维碰撞;自学辅导法,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,培养应用意识发展数学能力。
学习数学的过程不只是计算的过程,还要能够在推理、思考的过程中学会合作和交流,在本节课的教学中,安排了学生用观察、猜想、自主探究、合作交流等学法,让学生及时反馈获得的数学信息,实现信息共享,提高学生对比、分析概括归纳的能力。
四、评价设计:1、关注过程评价,随时对学生的发现和想法进行鼓励与评价,有利于丰富学生的数学体验,有利于激发学生学习数学的内驱力。
九年级数学上册《成比例线段》教案、教学设计

(5)课堂小结:对本节课的主要内容进行总结,强调成比例线段的重要性。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决能力等方面,给予积极的评价和鼓励;
(2)终结性评价:通过课后作业、阶段测试等形式,了解学生对成比例线段知识的掌握情况,及时发现问题并进行针对性的辅导。
(四)课堂练习,500字
为了巩固学生对成比例线段知识的掌握,我将设计以下课堂练习:
1.基础练习:给出一些成比例线段的判定题,让学生独立完成;
2.提高练习:设计一些实际问题,让学生运用成比例线段知识解决;
3.拓展练习:给出一些复杂几何问题,如相似三角形中的成比例线段问题,让学生尝试解决。
在练习过程中,我会及时给予学生反馈,指导他们纠正错误,提高解题能力。
4.教学策略:
(1)关注学生的个体差异,提供个性化的辅导,使每个学生都能在原有基础上得到提高;
(2)注重培养学生的几何直观能力,引导学生通过观察、分析、归纳等方法探索几何规律;
(3)鼓励学生提问和质疑,培养学生的批判性思维和创新意识;
(4)整合现代教育技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
5.通过实际操作,培养学生的观察能力、空间想象能力和逻辑思维能力。
(二)过程与方法
在本章节的教学过程中,教师应注重以下过程与方法:
1.创设情境,引导学生自主探究成比例线段的概念;
2.通过实际例子,让学生感受成比例线段在生活中的应用,培养学生学以致用的意识;
3.采用问题驱动的教学方法,引导学生主动发现、提出和解决问题;
四、教学内容与过程
初中数学比例线段教案

初中数学比例线段教案教学目标:1. 理解比例线段的概念,掌握比例线段的性质。
2. 学会判断四条线段是否成比例,并能求出两条线段的比。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 比例线段的概念和性质。
2. 判断四条线段是否成比例,求两条线段的比。
教学难点:1. 比例线段的性质的理解和应用。
2. 判断四条线段是否成比例的方法。
教学准备:1. 教师准备PPT或黑板,展示比例线段的例子和性质。
2. 学生准备笔记本,记录比例线段的概念和性质。
教学过程:一、导入(5分钟)1. 引导学生回顾线段的基本概念,如线段的定义、特点等。
2. 提问:我们已经学习了线段的基本概念,那么如何判断四条线段是否成比例呢?二、新课讲解(15分钟)1. 讲解比例线段的概念:如果两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段。
2. 讲解比例线段的性质:比例线段的比相等,且相邻两条线段的比互为倒数。
3. 举例说明比例线段的判断方法和求比的方法。
三、课堂练习(10分钟)1. 让学生独立完成练习题,判断四条线段是否成比例。
2. 让学生求出两条线段的比。
四、总结与拓展(5分钟)1. 让学生总结比例线段的概念和性质。
2. 提问:比例线段在实际生活中有什么应用?五、课后作业(5分钟)1. 让学生完成课后作业,巩固比例线段的知识。
教学反思:本节课通过讲解和练习,让学生掌握了比例线段的概念和性质,能够判断四条线段是否成比例,并求出两条线段的比。
在教学过程中,要注意引导学生积极参与,培养学生的逻辑思维能力和解决问题的能力。
同时,也要关注学生的学习情况,及时进行反馈和辅导。
成比例线段教案初中

成比例线段教案初中教学目标:1. 理解成比例线段的概念,掌握成比例线段的判定方法。
2. 能够运用成比例线段解决实际问题,提高学生的应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 成比例线段的定义和判定方法。
2. 运用成比例线段解决实际问题。
教学难点:1. 成比例线段的判定方法。
2. 运用成比例线段解决实际问题。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾线段的基本概念,如线段的定义、长度等。
2. 提问:线段之间有没有可能存在某种特殊的关系?二、新课讲解(15分钟)1. 介绍成比例线段的定义:如果四条线段a、b、c、d满足a/b = c/d,那么这四条线段叫做成比例线段。
2. 讲解成比例线段的判定方法:a) 如果四条线段a、b、c、d满足a/b = c/d,那么它们是成比例线段。
b) 如果两条线段a和b与另外两条线段c和d分别成比例,即a/b = c/d,那么这四条线段也是成比例线段。
3. 举例说明成比例线段的判定方法。
三、练习与讨论(15分钟)1. 给学生发放练习题,让学生独立完成。
2. 引导学生分组讨论,共同解决问题。
3. 选取部分学生进行解答展示和讲解。
四、应用拓展(10分钟)1. 给学生发放实际问题题目,让学生运用成比例线段解决。
2. 引导学生分组讨论,共同解决问题。
3. 选取部分学生进行解答展示和讲解。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结成比例线段的定义和判定方法。
2. 提问:你们认为成比例线段在实际生活中有哪些应用?教学评价:1. 课后收集学生的练习题答案,评估学生对成比例线段的掌握程度。
2. 在下一节课开始时,让学生进行成比例线段的课堂测试,评估学生的理解和应用能力。
以上是一份关于成比例线段的教案,希望能够帮助到您。
在实际教学过程中,可以根据学生的实际情况对教案进行调整。
成比例线段教案

成比例线段教案
一、教学目标
1. 知道什么是成比例线段
2. 掌握成比例线段的判断方法
3. 能够计算成比例线段的比例关系
二、教学重难点
1. 成比例线段的定义与判断
2. 成比例线段的比例关系计算
三、教学准备
1. 教材:数学教材
2. 工具:直尺、铅笔、橡皮
四、教学过程
Step1 引入新知
1. 先展示两条直线段,长度不一样,然后问:这两条线段有什么关系?
2. 学生回答之后,引导学生思考:如果这两条线段的长度比相等,这两条线段之间会有什么特点?
3. 引导学生思考后,从引导到定义,告诉学生这两个线段是成比例线段。
Step2 判断成比例线段
1. 给出一些线段的长度,让学生判断它们是否成比例线段。
2. 提示学生注意线段的比例关系,即长度比相等。
3. 让学生通过计算判断线段的比例关系。
Step3 计算成比例线段的比例关系
1. 给出一些已知的成比例线段,让学生计算它们的比例关系。
2. 提示学生可以通过计算线段的长度来得到比例关系。
Step4 巩固与拓展
1. 给学生一些练习题,让他们判断、计算成比例线段的比例关系。
2. 鼓励学生多使用判断方法,巩固对成比例线段的理解。
五、板书设计
成比例线段的定义:
两条线段的长度比相等。
成比例线段的判断:
计算线段的长度比是否相等。
冀教版-数学-九年级上册-25.1比例线段 教案

19.变式训练
已知线段AB及AB上一点P,当P满足下列哪一种关系时,P为AB的黄金分割点( )
(1) (2) AP= (3)PB= (4) (5)
设计意图:
通过复习以前学过知识,为本节课学习做好铺垫。
设计意图:
本环节教师可让学生对疑难问题进行研究、讨论和交流,注重多种思维方法的培养、训练以及能力的发展提高,以激活思维,编织知识网络。
三、总结反思
通过本节课的学习,你在知识上学到了什么?在数学思想方法上学到了什么?(不同层次的学生可以畅所欲言)
师生共同归纳总结所学知识、方法,形成知识网络。
当堂测评, 体验成功喜悦.
自主学习, 享受学习乐趣
一、知识回顾
1.线段有______个端点,线段的长度______度量。
2.比较线段的长短的方法有两个,即____和____。
二、自主学习
知识点1:两条线段的比和成比例线段
预习课本58页观察与思考,完成以下各题。
3.如果选用同一度量单位,量得线段 和 的长度分别是 和 ,我们就把 和 的比叫做______,记作 或 。
25.1比例线段
教学目标:(1)理解线段的比和成比例线段的概念,知道两条线段的比与所采用的单位无关;
(2)理解并掌握比例的基本性质,了解比例中项的概念;
(3)理解黄金分割的概念,能利用比例的基本性质解决一些简单的问题。
教学重点:理解并掌握比例的基本性质,了解比例中项的概念。
教学难点:理解黄金分割的概念,能利用比例的基本性质解决一些简单的问题。
(1) =16cm, =8cm, =5cm , =10cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1 线段的比、成比例线段
线段AB 与A ′B ′,BC 与B ′C ′有什么关系呢?请同学们算一算它们两线段的长度的比,即AB :A ′B ′,BC :B ′C ′会有什么样的结果呢?我们会得到AB 与A ′B ′这两条线段的比与BC ,B ′C ′这两条线
段的比是相等的,即AB A ′B ′=BC B ′C ′。
对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a b =c d
,那么,这四条线段叫做成比例线段,简称比例线段.
若线段a 、b 、c 、d 成比例,即a:b =c:d ,那么其内项乘积
等于外项乘积。
a · d =b ·c ,其它的比例性质也都适用。
上面地图中AB 、A ′B ′、BC 、B ′C ′这四条线段就是成比例线段,
实际上两张相似的地图中的对应线段都是成比例的,同学们不妨
再量一量北京到福州的距离, 即AC 与A ′C ′,然后再算AC ;A ′
C ′,看看是否成比例。
如果
AC A ′C ′≠AB A ′B ′,那会出现什么情况? 如果a b =b c
那么b 叫做a 、c 的比例中项,也可以写成b 2=ac 例1:在比例尺为1:400000地图上,量得甲、乙两地的距离
为15厘米,求甲、 乙两地的实际距离。
例2:线段a =15厘米,b =20厘米,c =75毫米,d =0.1
米,求: a b 与b
c
,这四条线段会成比例吗? 例3:如图AB =21,AD =15,CE =40,并且AD AB
=AE
AC ,求:AC 的长 三、练习
集体修改,补充建议:
1.(1)根据图示求线段比AC
CD
、
AC
CB
、
CD
DB
、
AC
AD
、
CD
CB
(2)指出图中成比例的线段。
2、等腰三角形两腰的比是多少?等腰三角形的腰与底边的比是多少?
四、小结
同学回忆
1、什么样的线段成比例线段?
2、线段成比例与线段比有什么区别?
3、比例有哪些性质?
五、作业
课本65—66面的题:1、2题
板书设计:
①线段的比:
a:b或a b
②成比例线段:
线段的比,成比例线段a:b=c:d或a
b =
b c
那
③注意:(1)长度单位
(2)线段的比有顺序。