九年级数学 【教案】平行线分线段成比例
平行线分线段成比例教案

平行线分线段成比例教案
教案:平行线分线段成比例
教学目标:
1. 了解平行线的定义;
2. 掌握利用平行线分线段成比例的方法。
教学准备:
1. 板书:平行线的定义;
2. 构建平行线的示意图;
3. 一些练习题。
教学过程:
一、导入(5分钟)
1. 打开学生的思维,提问:你们知道什么是平行线吗?请举例说明。
2. 引导学生回答,然后板书平行线的定义。
二、讲解(10分钟)
1. 准备一个平行线的示意图,让学生观察图中的平行线,并请他们描
述平行线的性质。
2. 引导学生总结,平行线之间的性质是什么?
3. 说明平行线分线段成比例的方法:如果一条直线与两条平行线相交,那么这条直线所分割的平行线段与这两条平行线的相应线段成比例。
三、练习(25分钟)
1. 学生独立完成练习题。
2. 收作业并进行讲解。
四、拓展(5分钟)
1. 引导学生思考:如何应用平行线分线段成比例的方法解决生活中的
实际问题?
2. 引导学生举例说明,并进行讨论。
五、总结归纳(5分钟)
1. 总结平行线的定义和性质。
2. 总结平行线分线段成比例的方法。
六、作业布置(5分钟)
1. 布置练习题作业,要求学生运用平行线分线段成比例的方法解答问题。
教学反思:
通过上述教学过程,学生可以积极参与讨论,理解了平行线的定义和性质,并掌握了平行线分线段成比例的方法。
希望学生能够通过课后的练习巩固所学内容,并能运用到实际问题中。
《平行线分线段成比例》教案

《平行线分线段成比例》教案一、教学目标:知识与技能:1. 理解平行线分线段成比例的概念。
2. 学会使用直尺和圆规作图,证明平行线分线段成比例。
3. 能够运用平行线分线段成比例的性质解决实际问题。
过程与方法:1. 通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和推理能力。
2. 学会与他人合作交流,发展学生的表达能力和概括能力。
情感态度价值观:1. 培养学生对数学的兴趣和自信心。
2. 培养学生勇于探究、积极思考的科学精神。
二、教学重点与难点:重点:1. 平行线分线段成比例的概念。
2. 平行线分线段成比例的证明方法。
难点:1. 理解平行线分线段成比例的内在联系。
2. 运用平行线分线段成比例解决实际问题。
三、教学方法:采用问题驱动法、案例分析法、合作交流法、实践操作法等。
四、教学准备:直尺、圆规、多媒体设备等。
五、教学过程:1. 导入新课:创设生活情境,展示两组直线平行时线段的比例关系,引发学生思考。
2. 自主探究:学生分组讨论,观察、操作、猜想、验证平行线分线段成比例的性质。
3. 合作交流:各小组汇报探究成果,师生共同总结平行线分线段成比例的证明方法。
4. 实践操作:学生运用所学知识,利用直尺和圆规作图,证明平行线分线段成比例。
5. 巩固提高:出示练习题,学生独立完成,检验对平行线分线段成比例的理解和掌握程度。
6. 总结反思:学生总结本节课所学内容,分享自己的收获和感悟。
7. 课后作业:布置相关作业,巩固所学知识,提高运用能力。
8. 教学反思:教师在课后对教学过程进行反思,总结成功经验和不足之处,为下一步教学做好准备。
六、教学评价:本节课结束后,将通过课堂表现、练习完成情况、课后作业和小组合作交流等方面对学生的学习情况进行评价。
重点关注学生对平行线分线段成比例概念的理解、证明方法的掌握以及实际应用能力的提升。
七、教学拓展:1. 让学生尝试证明其他图形中线段的比例关系。
2. 组织学生参观现实生活中的平行线分线段成比例的实例,如建筑物的布局、道路的设计等。
数学九年级下册《平行线分线段成比例》教案

一、复习导入什么是相似多边形?对应角分别相等,对应边成比例的两个多边形.二、共同探究,获取新知师:我们知道两条平行线之间的距离是相等的.如果有三条直线l3∥l4∥l5,任意两直线l1和l2与它们相交且截得的线段AB=BC.我们会得到DE=EF, 即ABBC=DEEF=1. 如果ABBC≠1,那么DEEF和ABBC还相等吗?,引导学生按要求画图,测量操作后,讨论.可以发现,当l3∥l4∥l5时,总有AB BC =DE EF ,BC AB =EF DE ,BC AC =EF DF等. 一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.师:把平行线分线段成比例的基本事实应用到三角形中,会出现什么样的情况呢? 可以发现,当l 3∥l 4∥l 5时,总有AB BC =DE EF ,BC AB =EF DE ,BC AC =EF DF等. 一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.师:把平行线分线段成比例的基本事实应用到三角形中,会出现什么样的情况呢? 生:思考、画图. 图(1)中把l 4看成平行于△ABC 的边BC 的直线,图(2)中把l 3看成平行于△ABC 的边BC 的直线,可以得到结论: 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 二、 例题讲解 例 如图,在△ABC 中,E ,F 分别是AB 和AC 上的点,且EF ∥BC. (1)如果AE =7,EB =5,FC =4,那么AF 的长是多少?(2)如果AB =10,AE =6,AF =5,那么FC 的长是多少?作业:科书P31:1。
《平行线分线段成比例》教案

《平行线分线段成比例》教案《平行线分线段成比例》教案作为一名默默奉献的教育工作者,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。
那要怎么写好教案呢?以下是小编整理的《平行线分线段成比例》教案,仅供参考,大家一起来看看吧。
一、学生知识状况分析学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。
从而认识了线段的比,成比例线段。
二、教学任务分析本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。
平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。
在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。
学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
教学目标:(一)知识目标理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
(二)能力目标通过应用,培养识图能力和推理论证能力。
(三)情感与价值观目标(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
教学重点:平行线分线段成比例定理和推论及其应用。
教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。
三、教学过程分析本节课设计了五个教学环节:第一环节:创设情景,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业.一:创设情景,引入新课下图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1互相平行,且若AB=BC,你能猜想出什么结果呢?通过一个生活中的实例激发学生探究的欲望,从而紧扣学生的好奇心,引入新课。
湘教版数学九年级上册3.2《平行线分线段成比例》教学设计1

湘教版数学九年级上册3.2《平行线分线段成比例》教学设计1一. 教材分析《平行线分线段成比例》是湘教版数学九年级上册3.2的内容,本节内容是在学生掌握了平行线的性质,平行线公理及推论的基础上进行学习的。
本节课主要让学生通过观察、操作、探究等活动,发现并证明平行线分线段成比例的定理,培养学生直观推理的能力,提高学生空间想象的能力。
二. 学情分析九年级的学生已经掌握了平行线的性质,平行线公理及推论,对于通过观察、操作、探究等方法获取结论的活动已经比较熟悉。
但是,对于平行线分线段成比例的定理,学生可能还比较陌生,需要通过具体的活动来理解和掌握。
三. 教学目标1.理解平行线分线段成比例的定理。
2.能够运用平行线分线段成比例的定理解决实际问题。
3.培养学生的直观推理能力和空间想象能力。
四. 教学重难点1.重点:平行线分线段成比例的定理的理解和运用。
2.难点:平行线分线段成比例的定理的证明。
五. 教学方法采用观察、操作、探究的教学方法,让学生在活动中发现问题,提出假设,通过推理和证明得出结论。
六. 教学准备1.准备相关的图片和实例,用于导入和巩固环节。
2.准备平行线分线段成比例的定理的证明素材,用于操练和拓展环节。
七. 教学过程1.导入(5分钟)通过展示相关的图片和实例,引导学生观察和思考,提出问题:“你能发现这些图片和实例中的线段有什么特殊的关系吗?”让学生初步感知平行线分线段成比例的现象。
2.呈现(10分钟)通过PPT呈现平行线分线段成比例的定理,并用文字和图形的形式进行解释,让学生理解和记忆定理的内容。
3.操练(10分钟)让学生分组进行实践活动,每组提供一份证明素材,让学生通过推理和证明来验证平行线分线段成比例的定理。
在活动中,教师进行巡回指导,帮助学生解决问题。
4.巩固(10分钟)通过一些相关的例题和练习题,让学生运用平行线分线段成比例的定理来解决问题,巩固所学的内容。
5.拓展(10分钟)让学生思考和探究平行线分线段成比例的定理在实际生活中的应用,提出一些实际问题,让学生运用定理来解决。
平行线分线段成比例定理数学教案

平行线分线段成比例定理数学教案
标题:平行线分线段成比例定理
一、教学目标:
1. 学生能理解并掌握平行线分线段成比例定理。
2. 学生能运用该定理解决实际问题。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容:
平行线分线段成比例定理:如果一条直线截两条平行线,所得的对应线段成比例。
三、教学步骤:
1. 导入新课
通过复习以前学过的关于平行线的知识,引导学生进入新课的学习。
2. 讲解新课
(1) 介绍平行线分线段成比例定理,并解释其含义。
(2) 利用教具或多媒体进行演示,帮助学生理解这个定理。
(3) 引导学生自己画图,尝试证明这个定理。
3. 巩固练习
设计一些习题让学生做,以此来检验他们是否真正理解了这个定理。
4. 拓展应用
引导学生将这个定理应用到实际生活中,或者解决其他数学问题。
四、教学反思:
在教学过程中,教师应关注学生的学习状态,适时调整教学策略,以达到最佳的教学效果。
同时,教师也应鼓励学生积极思考,培养他们的创新精神和实践能力。
五、作业布置:
设计一些与本节课内容相关的习题作为家庭作业,以便学生巩固所学知识。
六、教学评估:
通过课堂观察、作业批改以及测试等方式,对学生的学习情况进行评估,及时反馈学习效果,为下一步的教学提供参考。
平行线分线段成比例教学设计

平行线分线段成比例教学设计教学设计一:平行线分线段成比例的概念与性质教学内容分析:平行线分线段成比例是几何学中一个基本的概念,也是平行线的重要性质之一、通过学习平行线分线段成比例的概念和性质,可以帮助学生更好地理解和应用平行线的性质,解决有关平行线的问题。
教学设计旨在通过引入具体的实例和实践活动,帮助学生深入理解平行线分线段成比例的概念和性质。
教学目标:1.理解平行线分线段成比例的概念。
2.掌握平行线分线段成比例的性质。
3.能够应用平行线分线段成比例的性质解决实际问题。
教学重点:1.平行线分线段成比例的概念。
2.平行线分线段成比例的基本性质。
教学难点:1.平行线分线段成比例的应用。
2.解决实际问题时的思考和分析能力。
教学过程:Step 1 引入问题教师出示一副图形,图中有两条平行线和一条横穿两条平行线的线段。
教师问学生,如何找到这条线段与平行线的关系?是否存在特殊性质?引发学生对平行线分线段成比例的思考。
Step 2 探究性学习教师让学生以小组为单位进行探究性学习,通过观察、实验和讨论找到平行线分线段成比例的性质。
每个小组拿到一份实验材料,包括两张图纸,其中一张上有平行线和线段,另一张只有平行线。
要求学生在两张图纸上进行实验观察,并记录下各自的发现与疑惑。
Step 3 总结概念和性质教师和学生共同讨论实验结果,并总结出平行线分线段成比例的概念和性质。
教师提醒学生将发现的规律以几何性质的方式进行表达。
Step 4 练习巩固教师组织学生进行一些针对概念和性质的基本练习,包括绘制平行线和分线段、推断和验证平行线分线段成比例的性质等。
Step 5 应用拓展教师出示一些实际生活中的问题,要求学生运用平行线分线段成比例的性质解决问题。
问题可以涉及到房屋设计、地图测量等实际场景。
Step 6 制作教学展板学生根据所学内容制作展板,展示平行线分线段成比例的概念、性质和应用。
教学设计二:探究平行线分线段成比例的证明教学内容分析:在上一个教学设计中,学生已经通过实验和观察得出了平行线分线段成比例的性质,这一教学设计旨在让学生通过探究,自己发现并证明这一性质。
平行线分线段成比例教案

平行线分线段成比例教案教案标题:平行线分线段成比例教案教案目标:1. 学生能够理解平行线分线段成比例的概念和性质。
2. 学生能够运用平行线分线段成比例的性质解决相关问题。
3. 学生能够应用所学知识解决实际生活中的问题。
教学准备:1. 教师准备一些平行线分线段成比例的实例和练习题。
2. 准备黑板、白板或投影仪等教学工具。
教学过程:引入活动:1. 教师通过展示一幅图像,其中有两条平行线和一条横切线,引导学生思考平行线的性质。
2. 教师提问学生,当一条横切线与两条平行线相交时,有哪些特点?知识讲解:1. 教师解释平行线分线段成比例的概念,即当一条横切线与两条平行线相交时,所分割的线段在两条平行线上的投影长度成比例。
2. 教师讲解平行线分线段成比例的性质,即如果一条横切线与两条平行线相交,那么所分割的线段在两条平行线上的投影长度成比例。
示例演练:1. 教师通过实例演示平行线分线段成比例的应用,让学生理解该性质的具体运用方法。
2. 教师提供一些练习题,让学生尝试应用所学知识解决问题。
拓展练习:1. 教师提供一些实际生活中的问题,让学生运用平行线分线段成比例的知识解决。
2. 学生分组讨论并展示他们的解决方案,教师给予评价和指导。
总结回顾:1. 教师对本节课的内容进行总结回顾,强调平行线分线段成比例的重要性和应用。
2. 教师鼓励学生通过日常生活中的观察,发现更多的平行线分线段成比例的例子,并分享给全班。
教学延伸:1. 学生可以通过实际测量和计算,验证平行线分线段成比例的性质。
2. 学生可以运用平行线分线段成比例的知识,解决更复杂的几何问题。
教学反思:1. 教师可以收集学生的作业,检查他们对平行线分线段成比例的理解和应用能力。
2. 教师可以根据学生的反馈和表现,调整教学策略和教学方法,以提高教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学平行线分线段成比例
一、教学目标
1.知识目标:
了解平行线分线段成比例定理
2.能力目标:
掌握推理证明的方法,发展演绎推理能力
二、教学过程分析
1.复习提问
(1)什么叫比例线段?
答:四条线段a、b、c、d中,如果a:b=c:d,那么这四条线段a、b、c、d叫做成比例的线段,简称比例线段.
(2)比例的基本性质?
答:如果a :b =c:d,那么ad =bc.
如果ad =bc,那么a:b =c:d.
如果a:b =c:d,那么(a-b):b =(c-d):d; (a+b):b =(c+d):d.
2.引入新课做一做
在图4-6中,小方格的边长均为1,直线l1∥ l2∥ l3,分别交直线m,n与格点A1,A2,
A 3,B
1
,B
2
,B
3
.
图4-6
(1)计算的值,你有什么发现?
(2)将
2
l向下平移到如图4-7的位置,直线m,n 与
2
l的交点分别为
2
1
,B
A
你在问题(1)中发现结论还成立吗?如果将
2
l平移到其它位置呢?
(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?
1212
2323
B B
B B
A A
A A
与
3.分组讨论,得出结论
平行线分线段成比例定理:
两条直线被一组平行线所截,所得的对应线段成比例.
4.想一想
(一)如果把图1中l1 , l2两条直线相交,交点A刚落到l3上,如图2所得的对应线段的比会相等吗?依据是什么?
(二)如果把图1中l1 , l2两条直线相交,交点A刚落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?
得出结论:(推论)
平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.
5.课时小结
1、平行线分线段成比例定理:
(1)两直线被一组平行线所截,所得的对应线段成比例(关键要能熟练地找出对应线段)
(2)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.
6.课后作业
习题4.2。