平行线分线段成比例及相似多边形—知识讲解
相似三角形平行线分线段成比例定理讲解

BD FH AB EF
左下 右下 (左上 右上)
D
AB EF AD EH
左上 右上 (左全 右全)
b E l1 F l2
H l4
练习:
如图,l3∥l4 ∥l5 ,请指出成比例的线段.
l1 l2
A
l3
D
E
l4
B
C l5
l1 l2
DE
l3
A
l4
B
C
l5
从图中抽象出基本图形:
A
D
F
E
G
B
C
D
C
F
A
B
E
A
3、判断题:
如图:DE∥BC, 下列各式是否正确
A: —AA—BD = —AACE— ( )B: —ABDD—= —AC—EE ( ) D
E
C:—AA—DC = —AA—EB ( ) D: —AA—DE = —AA—BC( )B
C
4、填空题:
ED
如图:DE∥BC,AE=2,AC=5,
猜想:平行于三角形一边的直线截其他两边 (或两边的延长线),所得的对应线段是否成 比例?
A
A
D
E
B
C
B
CD
E
A型
X型
结论3:平行线分线段成比例定理推论
平行于三角形一边的直线截其它两边(或
两边的延长线),所得的对应线段成比例。
A
几何语言: 在△ABC中,如果DE∥BC,那么:
D
E
AD AE , AB AC (上比全,全比上) B
5份
∴
BD BA
=
BM BC
相似知识总结讲解

相似知识总结知识点一:放缩与相似形1图形的放大或缩小,称为图形的放缩运动。
2、把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴、相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵、相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶、我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷、若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.1. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1 )有关概念1、比:选用同一长度单位量得两条线段。
a、b的长度分别是m n,那么就说这两条线段的比是a:b= m: n (或—m)b n2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,女口a -b d4、比例外项:a在比例一c(或a:b = c:d)中a、d叫做比例外项。
b d5、比例内项:在比例- c(或a:b = c:d)中b、c叫做比例内项。
b d6、第四比例项:在比例a■—(或a:b = c:d)中, d叫a、b、c的第四比例项。
b da b7、比例中项:如果比例中两个比例内项相等,即比例为(或a:b = b:d时,我们把bb d叫做a和d的比例中项。
8、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长a c度的比相等,即一一(或a:b=c: d),那么,这四条线段叫做成比例线段,简称比例线b d段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)4、合比性质:--b d a b~b~ (分子加(减)分母,分母不变)1)定义:在线段AB上,点C把线段AB分成两条线段AC 和BC(AC >BC),如果ACABBCAC,(2 )比例性质1、基本性质:a:bc d ad bc (两外项的积等于两内项积)2、反比性质:a c b d一(把比的前项、后项交换)b d a c3、更比性质(交换比例的内项或外项):a-,(交换内项)c dd -,(交换外项)b ad b•(同时交换内外项)c a注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b a d c发生同样和差变化比例仍成立•如:a cb d a a bc cd 'a b c d5、等比性质: (分子分母分别相加,比值不变.)a c如果_ —b d 邑m(b df nf n 0),a书[7 Ac e m a那么b d f n b注意:(1)、此性质的证明运用了“设k法”,这种方法是有关比例计算,变形中一种常用方法;(2)、应用等比性质时,要考虑到分母是否为零;(3)、可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割即AC2=AB X BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,ACU5 1与AB的比叫做黄金比。
九年级数学,初中数学,第四章,相似多边形,平行线分线段成比例教案

数学公开课教案1实践探究交流新知1. 探究活动一:(1)如图(1)小方格的边长都是1,直线a ∥b∥c ,分别交直线m、n于 A1,A2,A3,B1,B2,B3。
①填空:2112221=+=AA,32AA= ,31AA = ,21BB = ,32BB = ,31BB = ,②计算12122323,A AB BA AB B的值,你有什么发现?③观察上述各线段的关系,你还有其他发现吗?(2)将b向下平移到如下图2的位置,直线m,n与直线b的交点分别为A2,B2。
上面发现的结论还成立吗?如果将b平移到其他位置呢?(图2)(3)上面我们探究的是在方格纸上的特殊情况,如果不在方格纸上呢?在平面上任意作三条平行线,用他们截两条直线,截得的线段成比例吗?(用几何画板演示)学生通过观察或利用勾股定理进行计算得出线段长度。
联想到上节课的成比例线段知识,得出若干个成比例的式子。
由特殊向一般的探究,学生对上一个结论再次进行分析,从而向一般性归纳总结结论。
让学生通过观察、度量、计算、猜测、推理与交流等数学活动,达到对平行线分线段成比例这一基本事实的意会、感悟。
本次探究是由特殊——一般、猜想——验证的数学探究过程,让学生体验知识产生的过程。
1应用新知巩固提高归纳总结出基本事实:两条直线被一组平行线所截,所得的对应线段成比例;教师提问:1.如何理解“对应线段”?2.平行线分线段成比例的几何语言如何表示?3.“对应线段成比例”都有哪些表达形式?几何语言∵a∥b∥c∴AB DEBC EF=AB DEAC DF或=BC EFAC DF或=等跟踪练习1:1.如图,已知l1 // l2 // l3 ,(1)图(1)中AB = 5, BC = 7,EF=4,求DE的长.(2)图(2)中DE = 6, EF = 7,AB=5,求AC的长.2. 探究活动二:在探究一的表格中,移动直线m、n的位置,你可以构建出三角形吗?你能得出哪些线段成比例?通过摆动牙签的方法,学生直观查看分析,可以得出下图的情况。
27.2相似三角形之预备定理:平行线分线段成比例

(D) E F
A B F
平移
D A B NE C F
平移
!
注意:应用平行线分线段成比例定理得到的 比例式中,四条线段与两直线的交点位置无关!
2、推论:平行于三角形一边的直线截其他两 边(或两边延长线),截得的对应线段成比例
A
E
A
F
E B
F C
B
C
AE AF 等 EB FC
AB AC 等 AF AE
AD BF (1) = BD CF BC AB (3) = DE AD AE DE (2) = EC FC BC AC (4) = DE EC
B A
C
)个.
D
E
A. 1个.
B. 2个.
C. 3个.
D. 4个.
F
C
四、平行线分线段成比例定理的例题和练习:
• 例4. 已知:如图△ABC中,D、E分别是AB、AC上两点,DE、BC的延长线 相交于F. AD=CF. • • 求证:
D
B
E C
一、比例线段的主要知识点
• 2 四条线段成比例: • (1) 定义: • 在四条线段中,如果其中两条线段的比等于另外两 条线段的比,那么这四条线段叫作成比例线段. • 如 a=9cm, b=6cm, c=6cm, d=4cm.
Q a 3 c 3 = , = , b 2 d 2 \ a c = . b d
L5
L4 D
L1
L2 L3 B
E A
L1
L2 C L3
∵
数学符号语言 ∵ DE∥BC AD AE = AC AB ∵
数学符号语言 ∵ DE AD∥BC AE = AC AB
1、平行线分线段成比例定理 : 三条平行线截两 条 直线, 所得的对应线段成比例. A C
相似中考复习平行线分线段成比例定理

F
D
E
A
C B
3.如图,DE是△ABC的中位线,F是DE的中点,CF 的延长线交AB于点G,则AG:GD等于( )
A、2:1
B、3:1
C、3:2
D、4:3
A
G三、简答题:
1.如图所示,D是AB的中点,CF∥AB,G、F、 E、D在一条直线上,求证 DE DG
【变式1】如图,△ABC中,点D、E分别在边AB、AC上.
D梯形ABCD中,AB∥DC,E、F分别在AD、BC上,且BF:FC=2:3,EF∥AB,交AC与点G,则 EG:DC=
.
【例2】如图,点D、E分别在△ABC的边 AB、AC上,且 AD ,AE求证 DE∥BC .
DB EC
【例3】如图,已知L1∥L2∥L3,直线AB、CD分 别与它们相交,如果AB=8cm,BN=5cm, CM=4cm,求CD的长.
(D)BD=2,AB=6,CE=1,AE=3.
(A)AD=6,BD=4,AE=,CE=;
格式:如果△ABC中,D是AB的中点,DE∥BC,那么AE=EC,如图3
B C 如图,四边形ABCD中,取AD边上一点E,连结BE并延长交CD的延长线于F,由以下比例式能判定FC//AB的是( )
说明:平行线等分线段定理是平行线分线段成比问定理的特殊情况. E、D在一条直线上,求证
说明:由此定理可知推论1和推论2
推论1:经过梯形一腰的中点与底平行的直 线必平分另一腰.
格式:如果梯形ABCD,AD∥BC,AE=EB,
EF∥AD,那么DF=FC,如图2
推论2:经过三角形一边的中点与另一边平 行的直线必平分第三边.
格式:如果△ABC中,D是AB的中点, DE∥BC,那么AE=EC,如图3
15初中数学“平行线分线段成比例”知识点全解析

初中数学“平行线分线段成比例”知识点全解析一、引言平行线分线段成比例是初中数学中的一个重要知识点,它涉及到平行线、线段比例等多个概念。
掌握这一知识点,不仅有助于学生理解几何图形的性质,还能提高学生的逻辑思维能力和解决问题的能力。
本文将详细解析平行线分线段成比例的概念、性质、定理以及应用,帮助学生更好地理解和掌握这一知识点。
二、平行线分线段成比例的概念1.平行线:在同一平面内,不相交的两条直线叫做平行线。
2.线段比例:如果两条线段的长度之比等于另外两条线段的长度之比,那么这四条线段是成比例的。
3.平行线分线段成比例:如果一条直线与另外两条平行线相交,且截得的线段之比相等,那么这条直线将这两条平行线分成的线段是成比例的。
三、平行线分线段成比例的性质1.基本性质:如果一条直线与两条平行线相交,那么这条直线截得的两条线段之比是恒定的,与直线的位置无关。
2.等比性质:如果两条平行线被一条横线截得的线段之比等于另外两条平行线被同一条横线截得的线段之比,那么这四条线段是成比例的。
3.交叉相乘性质:如果两条平行线被一条横线截得的两组线段是成比例的,那么这两组线段的交叉相乘结果相等。
四、平行线分线段成比例的定理1.梅内劳斯定理:如果一条直线与一个三角形的两边相交,且截得的线段之比相等,那么这条直线也必将与三角形的第三边相交,并截得相应的成比例线段。
2.塞瓦定理:如果三条直线交于一点,且分别截得三条线段的比是相同的,那么这三条直线所在的平面内的任何一条经过该点的直线都将这三条线段分成成比例的两组。
五、平行线分线段成比例的应用1.几何证明:在几何证明中,平行线分线段成比例的性质和定理可以作为证明的依据,帮助学生理解和解决复杂的几何问题。
2.实际问题解决:在实际生活中,许多问题可以通过建立数学模型并运用平行线分线段成比例的知识进行解决。
例如,在建筑设计中,可以利用这一知识点计算建筑物的各部分尺寸和比例。
3.数学竞赛:在数学竞赛中,平行线分线段成比例的知识点经常作为难题的考点出现。
相似多边形讲义

平行线分线段成比例及相似多边形讲义【知识点拨】知识点一:图形的相似形状相同的图形叫做相似图形。
(1)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到;(2)全等的图形可以看成是一种特殊的相似,即不仅形状相同,大小也相同;(3)判断两个图形是否相似,就是看两个图形是不是形状相同,与其他因素无关。
知识点一:图形的相似形状相同的图形叫做相似图形。
(1)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到;(2)全等的图形可以看成是一种特殊的相似,即不仅形状相同,大小也相同;(3)判断两个图形是否相似,就是看两个图形是不是形状相同,与其他因素无关。
例1、下列命题正确的是( )A、相似多边形是全等多边形B、不全等的多边形不是相似多边形C、全等多边形是相似多边形D、不相似的多边形可能是全等多边形(变式)1、下列说法中正确的是( )A、 两个三角形不全等,那么它们也不相似B、两个三角形不相似,那么它们也不全等C、两个相似三角形一定不全等D、两个全等三角形一定不相似例2、观察下面的图形,如图形状相同的有 。
2、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变换是( )A、平移B、旋转C、对称D、相似知识点二、相似多边形1、相似多边形的定义:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做它们的相似比.2、相似多边形的性质: 相似多边形的对应角相等,对应边成比例.性质:相似多边形的周长之比等于相似比;相似多边形的面积之比等于相似比的平方.考点:相似多边形1、一个多边形的边长分别是2、3、4、5、6,另一个和它相似的多边形的最短边长为6,则这个多边形的最长边为 。
2、两个相似六边形的周长分别是l1,l2,面积分别是S1,S2,若 l1:l2=2︰3,S2-S1 =30,则S1= ______,S2=_____.3.如图中的两个梯形相似,求出未知边x、y、z的长度和α、β的大小.4、△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为( )A、 B、2 C、 D、5、一个多边形的边长分别是4 cm、5 cm、6 cm、4 cm、5cm,和它相似的一个多边形最长边为8 cm,那么这个多边形的周长是( )A、12 cmB、18 cmC、32 cmD、48 cm6、Rt△ABC的两条直角边分别为3 cm、4 cm,与它相似的Rt△A'B'C'的斜边为20 cm,那么Rt△A'B'C'的周长为( )A、48 cmB、28 cmC、12 cmD、10 cm7、如果一个矩形对折后和原来的矩形相似,则此矩形的长边与短边之比为( )A、2:1B、4:11C、:1D、1.5:18、两个相似三角形的对应高的比为1:,其中小三角形的最长边为10 cm,那么另一个三角形的最长边为________。
第二讲 平行线分线段成比例型相似.尖子班

一、相似图形1.定义:我们把形状相同的图形叫做相似图形.2.相似比:相似多边形对应边的比.3.相似多边形的特征:对应角相等,对应边的比相等.二、比例线段1.比例性质:(1)基本性质:a cad bcb d =⇔=(2)反比性质:ac b db d ac =⇔=(3)更比性质:a c a b b d c d =⇔=或d cb a =(4)合比性质:a c a b c db d b d ++=⇔=(5)分比性质:a c a b c db d b d --=⇔=(6)合分比性质:()a c abc dc d a b b d a b c d++=⇔=≠≠--(7)等比性质:312123k k a a a ab b b b ==== 121121k k a a a a b b b b +++⇒=+++ (其中k 为正整数,且b 1+b 2+b 3+…+b k ≠0)2.比例线段及相关概念(1)成比例线段:如果线段a 和b 的比等于线段c 和d 的比,那么线段a ,b ,c ,d 叫做成比例线段,记作a cb d=或a ∶b =c ∶d 。
其中a,c 叫做比的前项,b ,d 叫做比的后项,b ,c 叫做比例内项,a ,d 叫做比例外项,d 叫做a ,b ,c 的第四比例项。
(2)比例中项:若a bb c=,则称b 是a ,c 的比例中项。
3.黄金分割点如图,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),若AC BCAB AC =,则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即512AC AB -=。
知识点睛模块一相似概念和比例线段相似——平行线分线段成比例【例1】(1)已知23a c b d ==,且b d ≠,则a c b d --=()A .23B .25C .35D .15(2)设14a c e b d f ===,0b d f +-≠,则a c eb d f+-=+-_______(3)已知a b ck b c a c a b===+++,则直线2y kx k =+一定经过()A .1第,2象限B .2第,3象限C .3第,4象限D .1第,4象限【巩固】(1)已知一张地图的比例尺是14000∶,若A 、B 两地的实际距离为200 m ,则画在地图上的距离是__________.(2)若k cb a dd b a c d c a b d c b a =++=++=++=++求k 的值.【例2】(1)已知:线段a =3,b =2,c =4,则b 、a 、c 的第四比例项d =;则a 、b 、(a -b)的第四比例项是;3a 、(2a -b)的比例中项是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线分线段成比例及相似多边形
责编:常春芳
【学习目标】
1. 平行线分线段成比例及其推论.
2. 平行线分线段成比例及其推论的应用.
3.相似多边形的有关概念.
【要点梳理】
要点一、平行线分线段成比例及其推论
平行线分线段成比例,一般地,有如下基本事实:
两条直线被一组平行线所截,所得的对应线段成比例.
推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.
要点诠释:
(1).对应线段成比例可用下面的语言形象表示:
右全
左全右上左上全上全上下上下上===,,等等. (2)有推论可以得出以下结论:
要点二、行线分线段成比例及其推论的应用
行线分线段成比例及其推论的应用主要是来求线段的长度.
要点三、相似多边形的有关概念
相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.它的符号是“∽”,读作“相似于”.
相似比:相似多边形的对应边的比叫做相似比.
要点诠释:
(1)相似图形就是指形状相同,但大小不一定相同的图形;
(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等.
(3)相似多边形的定义既是判定方法,又是它的性质.
【典型例题】
类型一、平行线分线段成比例及其推论
1、如图,直线AD ∥BE ∥CF ,BC= 13
AC ,DE=4,那么EF 的值是__________.
【思路点拨】根据BC=1
3
AC可得
2
1
AB
BC
=,再根据条件AD∥BE∥CF,可得
AB DE
BC EF
=,再把DE=4代入可得EF的值.【答案】2.
【解析】
解:∵BC=1
3 AC,
∴
2
1 AB
BC
=,
∵AD∥BE∥CF,
∴AB DE BC EF
=,
∵DE=4,
∴
4
EF
=2,
∴EF=2.
故答案为:2.
【总结升华】此题主要考查了平行线分线段成比例定理,关键是掌握三条平行线截两条直线,所得的对应线段成比例.
2、(2015•安庆一模)如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.
【思路点拨】根据PQ∥BC可得,进而得出,再解答即可.
【答案与解析】
解:∵PQ∥BC,
∴=,
∴,
∴,
∵AP=AQ,
∴PQ=3.
【总结升华】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.
举一反三
【变式】如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,已知AC=4,CE=6,BD=3,则BF等于______________.
【答案】7.5.
类型二、平行线分线段成比例及其推论的应用
3、如图,已知梯形ABCD中,AB∥DC,△AOB的面积等于9,△AOD的面积等于6,AB=7,求CD的长.
【思路点拨】根据△AOB的面积等于9,△AOD的面积等于6,可知OB:OD的值,再根据平行线分线段成比例即可求解.
【答案与解析】
解:∵AB∥DC,
∴
22
42 DM
AB
==,
∵△AOB的面积等于9,△AOD的面积等于6,
∴
2
3 DO
BO
=,
∴
2
3 CD DO
AB CO
==,
∵AB=7,
∴CD= 14
3
.
【总结升华】主要考查了平行线分线段成比例和等高三角形的面积的比等于对应底边的比的性质,熟练掌握性质是解题的关键.
举一反三
【变式】如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,3 7
AD
AB
=,
则EC的长是()
A.4.5 B.8 C.10.5 D.14 【答案】解:∵DE∥BC,
∴△ADE∽△ABC,
∴AD AE AB AC
=,
∴
63
67 AE
AC EC
==
+
,
解得:EC=8.
故选:B.
4、如图,直线l1∥l2∥l3,若AB=2,BC=3,DE=1,则EF的值为()
A 2
3
B
3
2
C 6 D
1
6
【答案】B.
【解析】解:∵直线l1∥l2∥l3,
∴AB DE AC EF
=,
∵AB=2,BC=3,DE=1,
∴21
3EF =,
∴EF=3
2
,
故选B.
【总结升华】本题考查平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的对应线段成比例.
举一反三
【变式】如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()。